<<

Determinants and eigenvalues

Math 40, Introduction to Linear Wednesday, February 15, 2012

Amazing facts about determinants

det A can be found by “expanding” along any row or any column

Theorem. The determinant of a triangular Consequence: is the of its diagonal entries.

123 4 056 7 A =   det(A)=1 5 8 10 = 400 008 9 · · · 0 0 0 10     Amazing facts about determinants

EROs barely change the determinant, and they do so in a predictable way.

EROs effect on det A Strategy to compute swap two rows changes det A more quickly for general matrices A = multiply row multiply det ⇒ by c by scalar c Perform EROs to get REF of A and add c ຘ row i no change at all! compute det A based to row j on det of REF

Amazing facts about determinants

Theorem. A A is invertible if and only if det A =0. ￿

det(A) = det(AT )

determinant is multiplicative det(AB) = det(A) det(B) Consequence: 1 1 det(A) det(A− ) = det(AA− ) = det(I)=1 det(A 1)= 1 ⇒ − det A 1 1 If A is invertible, det(A− )= det A . Example using properties of determinant

Example If det A = -3 for a 5 x 5 matrix A, find the determinant of the matrix 4A3.

We have det(4A3) =45 det(A3)

=45[det(A)]3

= 45( 3)3 −

Another property of the determinant?

Question True or false: det(A + B) = det A + det B ?

False!

Consider 11 1 1 A = ,B= − 11 11 ￿ ￿ ￿− ￿

Then 20 A + B = det(A + B)=4= 0 = det A + det B 02 ￿ ￿ ￿ Eigenvalues and eigenvectors

Introduction to eigenvalues

Let A be an n x n matrix.

If A￿x = λ￿x for some scalar λ and some nonzero vector ￿x, then we say λ is an eigenvalue of A and ￿x is an eigenvector associated with λ.

n n Viewed as a linear transformation from R to R A sends vector ￿x to a scalar multiple of itself ( λ￿ x ) . Eigenvalues, eigenvectors for a 2x2 matrix

12 A = 54 ￿ ￿ 12 2 12 2 Notice that = =6 54 5 30 5 ￿ ￿￿ ￿ ￿ ￿ ￿ ￿ 12 6 6 =6 54 15 15 eigenvectors eigenvalues ￿ ￿￿ ￿ ￿ ￿ 6 2 =3 12 1 1 1 15 5 − = =( 1) − 54 1 1 − 1 ￿ ￿ ￿ ￿ ￿ ￿￿ ￿ ￿− ￿ ￿ ￿ Any (nonzero) scalar multiple of an eigenvector is itself an eigenvector (associated w/same eigenvalue). A(c￿x)=c(A￿x) = c(λ￿x)=λ(c￿x)

Graphic demonstration of eigenvalues and eigenvectors: eigshow

eigshow demonstrates how the image A ￿x changes as we rotate a vector ￿x in R 2 around a circle

in particular, we are interested in knowing when A ￿x is parallel to ￿x Finding eigenvalues of A

We want nontrivial solutions to A￿x = λ￿x A￿x λ￿x = ￿0 A￿x λI￿x = ￿0 ⇐⇒ − ⇐⇒ − (A λI)￿x = ￿0 When does this ⇐⇒ − homogeneous system have a solution other than ￿x = ￿0 ? Must have that A λ I is not invertible, − which means that det(A λI)=0 − eigenvalues of A given eigenvalue λ, ⇒ associated eigenvectors are find values of λ nonzero vectors in such that det(A λI)=0 null(A λI) − −

Example of finding eigenvalues and eigenvectors

Find eigenvalues and 10 1 Example − A = 2 15 corresponding eigenvectors of A.  −  00 2   1 λ 0 1 − − 0 = det(A λI) = 2 1 λ 5 − ￿ − − ￿ ￿ 002λ￿ ￿ − ￿ ￿ ￿ ￿ ￿ ￿ 1 λ 0 ￿ characteristic = (2 λ) − − 2 1 λ ￿ − − ￿ λ3 +2λ2 + λ 2 ￿ ￿ − − = (2 λ)(1￿ λ)( 1 λ) ￿ − ￿ − − − ￿ λ =2, 1, or 1 − Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and 10 1 − A = 2 15 corresponding eigenvectors of A.  −  00 2 λ =2, 1, or 1 −  

λ =2 Solve (A 2I)￿x = ￿0. − 10 1 0 10 1 0 − − EROs [ A 2I 0]= 2 350 01 1 0 − |  −  −−−→  −  0000 00 0 0     x x 1 eigenvectors of A for λ = 2 are 1 − 3 − ￿x = x = x3 = x3 1 1  2     − x3 x3 1 c 1 for c =0       ￿   for any x3 R 1 ∈  

Example of finding eigenvalues and eigenvectors

Find eigenvalues and 10 1 Example − A = 2 15 corresponding eigenvectors of A.  −  00 2 λ =2, 1, or 1 −   1 − ￿ eigenvectors of A for λ = 2 are c 1 for c =0 λ =2 Solve (A 2I)￿x = 0.   ￿ − 1   E = eigenspace of A = set of all eigenvectors ￿0 2 for λ =2 of A for λ =2 ∪ { } = null(￿ A 2I) ￿ − 1 − = span 1   1   Example of finding eigenvalues and eigenvectors

Example Find eigenvalues and 10 1 − A = 2 15 corresponding eigenvectors of A.  −  00 2 λ =2, 1, or 1 −  

1 − λ =2 E2 = span 1   1   1 λ =1 Solve (A I)￿x = ￿0. = E1 = span 1   − ⇒ 0   0 λ = 1 Solve (A + I)￿x = ￿0. = E 1 = span 1 −   − ⇒ 0  

Eigenvalues, eigenvalues... where are you?

11 Example Find eigenvalues of A. A = 11 ￿− ￿ 1 λ 1 0 = det(A λI) = − = (1 λ)2 +1 − 11λ − ￿ − − ￿ ￿ ￿ ￿ ￿ 2 ￿ ￿ = λ 2λ +2 − 2 √4 8 = λ = ± − =1 i ⇒ 2 ±

Eigenvalues are complex!