Cholangiocarcinoma As an Indication for Liver Transplantation in the Era of Transplant Oncology

Total Page:16

File Type:pdf, Size:1020Kb

Cholangiocarcinoma As an Indication for Liver Transplantation in the Era of Transplant Oncology Journal of Clinical Medicine Review Cholangiocarcinoma as an Indication for Liver Transplantation in the Era of Transplant Oncology 1, 2, , 3 3 Enrico Gringeri y , Martina Gambato * y , Gonzalo Sapisochin , Tommy Ivanics , Erica Nicola Lynch 2, Claudia Mescoli 4, Patrizia Burra 2 , Umberto Cillo 1 and Francesco Paolo Russo 2 1 Hepatobiliary Surgery and Liver Transplantation, Padua University Hospital, 35100 Padua, Italy; [email protected] (E.G.); [email protected] (U.C.) 2 Multivisceral Transplant Unit and Gastroenterology, Padua University Hospital, 35100 Padua, Italy; [email protected] (E.N.L.); [email protected] (P.B.); [email protected] (F.P.R.) 3 Multi-Organ Transplant and HPB Surgical Oncology, Division of General Surgery, University Health Network, Department of Surgery, University of Toronto, Toronto, ON M5G 2N2, Canada; [email protected] (G.S.); [email protected] (T.I.) 4 Surgical Pathology & Cytopathology Unit, Department of Medicine, Padua University Hospital, 35100 Padua, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 2 April 2020; Accepted: 24 April 2020; Published: 5 May 2020 Abstract: Cholangiocarcinoma (CCA) arises from the biliary tract epithelium and accounts for 10–15% of all hepatobiliary malignancies. Depending on anatomic location, CCA is classified as intrahepatic (iCCA), perihilar (pCCA) and distal (dCCA). The best treatment option for pCCA is liver resection and when a radical oncological surgery is obtained, 5-year survival rate are around 20–40%. In unresectable patients, following a specific protocol, liver transplantation (LT) for pCCA showed excellent long-term disease-free survival rates. Fewer data are available for iCCA in LT setting. Nevertheless, patients with very early unresectable iCCA appear to achieve excellent outcomes after LT. This review aims to evaluate existing evidence to define the current role of LT in the management of patients with CCA. Keywords: liver transplantation; cholangiocarcinoma; surgery 1. Introduction Cholangiocarcinoma (CCA) is the second most common hepatic malignancy after hepatocellular carcinoma (HCC); its overall incidence has progressively increased worldwide over the past four decades [1–3]. CCA is a malignant tumor of the cholangiocytes (i.e., the epithelial cells lining the bile ducts), which can develop at any portion of the biliary tree, from the canals of Hering to the main bile duct [4,5]. Most CCAs are well, moderately or poorly differentiated adenocarcinomas; other histological subtypes are rarely encountered. Surgery is the preferred therapeutic option for all subtypes of CCA, although, involvement of the vascular structures and lymph nodes needs to be considered when evaluating the best approach. Refinements in CCA diagnosis and better understanding of genetic profiles may lead to an optimized surgical treatment. In addition, novel drugs, such as checkpoint inhibitors and molecular-targeted molecules, may represent future options for adjuvant and neoadjuvant therapy, alone or in combination with downstaging locoregional therapies [6]. This review aims to analyze the recent advances in the management of CCA, focusing on surgical treatments and highlighting the role of liver transplantation in the era of transplant oncology. J. Clin. Med. 2020, 9, 1353; doi:10.3390/jcm9051353 www.mdpi.com/journal/jcm J. Clin. Med. 2020, 9, 1353 2 of 19 2. Anatomo-Pathological Features of CCA CCAs represent an estimated 3% of all gastrointestinal system malignancies. They are classically divided into three groups, depending on the anatomic site of origin: intrahepatic CCAs (iCCAs), perihilar CCAs (pCCAs) and distal CCAs (dCCAs) [7]. iCCAs are defined as CCAs located proximally to the second-order bile ducts. iCCA can present three different patterns of growth: mass-forming (MF-iCCA), periductal infiltrating (PI-iCCA) and intraductal growing (IG-iCCA). Of these, the MF-iCCA is by far the most frequent type [8]. pCCAs can arise anywhere from the second-order bile ducts to the common bile duct above and at the site of cystic duct insertion. In contrast, dCCAs are confined to the area between the origin of the cystic duct and the ampulla of Vater [7]. pCCAs account for ~50–60% of all CCAs and dCCAs for 20–30% [9]. pCCA and dCCA have similar macroscopic features; they generally are flat or poorly defined nodular sclerosing tumors which diffusely infiltrate into adjacent structures in 80% of cases. Less frequently, pCCAs and dCCAs present as intraductal papillary tumors [10]. PI-iCCAs and flat/nodular sclerosing p/dCCAs often develop from preinvasive lesions, classified as biliary intraepithelial neoplasm (BilIN); likewise, papillary p/dCCAs and IG-iCCA arise from intraductal papillary neoplasms of the bile duct (IPNBs). No preinvasive lesions of the MF-type of iCCA have been identified [11]. Histologically, most pCCAs and dCCAs are mucin-producing adenocarcinomas or papillary tumors, into conventional and unconventional iCCAs. Conventional iCCAs are well to moderately differentiated adenocarcinomas made up of columnar to cuboidal epithelial cells, which bear a resemblance to biliary epithelial cells [12]. Varying degrees of desmoplasia and inflammation can be present. Mucin can be found in the lumen of tubular structures, in the apical side of tumor cells and in the cell cytoplasm. iCCAs cells can cause compression of the surrounding parenchyma or invade hepatocyte plates and sinusoids [10]. iCCAs can also be classified into two main histological subtypes depending on the anatomic site where they may arise [10]. The small bile duct type of iCCA may develop from small intrahepatic bile ducts, progenitor cells or hepatocytes. It presents as small-sized tubular or acinar adenocarcinoma with invasive mass-forming growth pattern and absent or minimal mucin production. It commonly has a peripheral location in the liver [10,13]. On the other hand, large bile duct iCCAs derive from large intrahepatic bile ducts [14] or from peri-biliary glands [15]. They are formed of mucin-producing columnar tumor cells arranged in a large-duct or papillary architecture. Most large bile duct iCCAs are PI-iCAAs and are centrally located in the liver [14,16]. 3. pCCA: Surgical Approach and LT Indications 3.1. Liver Resection When feasible, liver resection (LR) is the best treatment option for pCCA. Surgery can offer a 5-year survival rate of 20–40% after R0 resection (microscopic margins negative for tumor). When R0 is not feasible, the 5-year survival rate drops to 0% [17–21]. Unfortunately, only 20–25% of patients are appropriate candidates for curative resection. Due to its anatomic location—adjacent to the hepatic artery and portal vein—vascular involvement is common in pCCA and represents the main reason for the tumor to be deemed unresectable. Other criteria for unresectability are local progression, jaundice or presence of metastases. The main goal of surgery is to obtain an R0 resection; to achieve it, a complex surgical procedure is required, which involves performing a major hepatectomy with caudate lobe and en-bloc biliary resection, a hepaticojejunostomy and a lymphadenectomy (Figure1). Vascular resection and subsequent reconstruction can also be performed, when necessary. Mortality rates remain high even in experienced centers due to the complexity of the procedure. The 30-day mortality rate ranges from 5–15% [22–27], and the leading cause of death is postoperative liver failure. An accurate diagnosis is crucial to select patients for surgery correctly. Five to 20% of presumed pCCAs, which are resected, turn out to be negative on histopathological assessment [28] and finally showed benign biliary stricture due to chronic inflammation in the setting of IgG4-disease or primary sclerosis cholangitis (PSC). This means that some patients undergo a high-risk surgical procedure even if no J. Clin. Med. 2020, 9, 1353 3 of 19 tumor is to be found. Optimal care of patients with pCCA requires the involvement of liver-specific multidisciplinary teams, which should include interventional radiologists, oncologists, hepatologists, endoscopists and hepatobiliary surgeons, with surgical oncology, vascular and transplant skills [29]. Figure 1. Left hepatectomy with caudate lobe resection for perihilar cholangiocarcinoma (pCCA) (Bismuth IIIb). 3.1.1. Staging Although there is no universal definition of resectability, there are classifications that can help clinicians choose the best treatment for pCCA. The Bismuth classification was introduced in 1975 and, despite it being the oldest classification, it is still primarily used to define pCCAs according to the biliary segment affected by the tumor. A type IV tumor is characterized by a bilateral involvement of the second-order intrahepatic bile ducts and is generally considered unresectable. However, the Bismuth classification does not describe vascular involvement. In 2001, Blumgart introduced the clinical T staging system, which describes both vascular and parenchymal involvement but does not account for distant metastases or lymph node involvement. Recently, the American Joint Committee on Cancer (AJCC) published the 8th edition of the Cancer Staging Manual [30]. The staging system for pCAA included in the Manual is the most comprehensive, as it provides for the assessment of tumor progression, vascular involvement, lymph node and distant metastases. 3.1.2. Biliary Drainage and Future Liver Remnant Quantification Before LR Hyperbilirubinemia and low
Recommended publications
  • Carcinoid) Tumours Gastroenteropancreatic
    Downloaded from gut.bmjjournals.com on 8 September 2005 Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours J K Ramage, A H G Davies, J Ardill, N Bax, M Caplin, A Grossman, R Hawkins, A M McNicol, N Reed, R Sutton, R Thakker, S Aylwin, D Breen, K Britton, K Buchanan, P Corrie, A Gillams, V Lewington, D McCance, K Meeran, A Watkinson and on behalf of UKNETwork for neuroendocrine tumours Gut 2005;54;1-16 doi:10.1136/gut.2004.053314 Updated information and services can be found at: http://gut.bmjjournals.com/cgi/content/full/54/suppl_4/iv1 These include: References This article cites 201 articles, 41 of which can be accessed free at: http://gut.bmjjournals.com/cgi/content/full/54/suppl_4/iv1#BIBL Rapid responses You can respond to this article at: http://gut.bmjjournals.com/cgi/eletter-submit/54/suppl_4/iv1 Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article Topic collections Articles on similar topics can be found in the following collections Stomach and duodenum (510 articles) Pancreas and biliary tract (332 articles) Guidelines (374 articles) Cancer: gastroenterological (1043 articles) Liver, including hepatitis (800 articles) Notes To order reprints of this article go to: http://www.bmjjournals.com/cgi/reprintform To subscribe to Gut go to: http://www.bmjjournals.com/subscriptions/ Downloaded from gut.bmjjournals.com on 8 September 2005 iv1 GUIDELINES Guidelines for the management of gastroenteropancreatic neuroendocrine (including carcinoid) tumours J K Ramage*, A H G Davies*, J ArdillÀ, N BaxÀ, M CaplinÀ, A GrossmanÀ, R HawkinsÀ, A M McNicolÀ, N ReedÀ, R Sutton`, R ThakkerÀ, S Aylwin`, D Breen`, K Britton`, K Buchanan`, P Corrie`, A Gillams`, V Lewington`, D McCance`, K Meeran`, A Watkinson`, on behalf of UKNETwork for neuroendocrine tumours ..............................................................................................................................
    [Show full text]
  • Cholangiocarcinoma 2020: the Next Horizon in Mechanisms and Management
    CONSENSUS STATEMENT Cholangiocarcinoma 2020: the next horizon in mechanisms and management Jesus M. Banales 1,2,3 ✉ , Jose J. G. Marin 2,4, Angela Lamarca 5,6, Pedro M. Rodrigues 1, Shahid A. Khan7, Lewis R. Roberts 8, Vincenzo Cardinale9, Guido Carpino 10, Jesper B. Andersen 11, Chiara Braconi 12, Diego F. Calvisi13, Maria J. Perugorria1,2, Luca Fabris 14,15, Luke Boulter 16, Rocio I. R. Macias 2,4, Eugenio Gaudio17, Domenico Alvaro18, Sergio A. Gradilone19, Mario Strazzabosco 14,15, Marco Marzioni20, Cédric Coulouarn21, Laura Fouassier 22, Chiara Raggi23, Pietro Invernizzi 24, Joachim C. Mertens25, Anja Moncsek25, Sumera Rizvi8, Julie Heimbach26, Bas Groot Koerkamp 27, Jordi Bruix2,28, Alejandro Forner 2,28, John Bridgewater 29, Juan W. Valle 5,6 and Gregory J. Gores 8 Abstract | Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes.
    [Show full text]
  • Klatskin Tumors and “Klatskin-Mimicking Lesions”: Our 22- Year Experience
    Title: Klatskin tumors and “Klatskin-mimicking lesions”: our 22- year experience. Authors: Konstantinos Tsalis, Styliani Parpoudi, Dimitrios Kyziridis, Orestis Ioannidis, Natalia Antigoni Savvala, Nikolaos Antoniou, Savvas Symeonidis, Dimitrios Konstantaras, Ioannis Mantzoros, Manousos-Georgios Pramateftakis, Efstathios Kotidis, Stamatios Angelopoulos DOI: 10.17235/reed.2018.5749/2018 Link: PubMed (Epub ahead of print) Please cite this article as: Tsalis Konstantinos, Parpoudi Styliani, Kyziridis Dimitrios, Ioannidis Orestis, Savvala Natalia Antigoni , Antoniou Nikolaos , Symeonidis Savvas, Konstantaras Dimitrios , Mantzoros Ioannis, Pramateftakis Manousos-Georgios, Kotidis Efstathios, Angelopoulos Stamatios. Klatskin tumors and “Klatskin-mimicking lesions”: our 22-year experience. Rev Esp Enferm Dig 2018. doi: 10.17235/reed.2018.5749/2018. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. OR 5749 Klatskin tumors and “Klatskin-mimicking lesions”: our 22-year experience Konstantinos Tsalis, Styliani Parpoudi, Dimitrios Kyziridis, Orestis Ioannidis, Natalia Antigoni-Savvala, Nikolaos Antoniou, Savvas Symeonidis, Dimitrios Konstantaras, Ioannis Mantzoros, Pramateftakis Manousos-George, Kotidis Efstathios and Stamatios Angelopoulos Fourth Surgical Department. Medical School. Aristotle University of Thessaloniki. Thessaloniki, Greece. General Hospital “George Papanikoalou”. Thessaloniki, Greece Received: 04/06/2018 Accepted: 04/09/2018 Correspondence: Orestis Ioannidis. Fourth Surgical Department. Medical School. Aristotle University of Thessaloniki. Thessaloniki, Greece. General Hospital “G.
    [Show full text]
  • Understanding Surgery a Guide for People with Cancer, Their Families and Friends
    Understanding Surgery A guide for people with cancer, their families and friends Treatment For information & support, call Understanding Surgery A guide for people with cancer, their families and friends First published April 2014. This edition April 2019. © Cancer Council Australia 2019. ISBN 978 1 925651 47 8 Understanding Surgery is reviewed approximately every three years. Check the publication date above to ensure this copy is up to date. Editor: Ruth Sheard. Designer: Eleonora Pelosi. Printer: SOS Print + Media Group. Acknowledgements This edition has been developed by Cancer Council NSW on behalf of all other state and territory Cancer Councils as part of a National Cancer Information Subcommittee initiative. We thank the reviewers of this booklet: Prof Andrew Spillane, Surgical Oncologist, Melanoma Institute of Australia, and Professor of Surgical Oncology, The University of Sydney Northern Clinical School, NSW; Lynne Hendrick, Consumer; Judy Holland, Physiotherapist, Calvary Mater Newcastle, NSW; Kara Hutchinson, Cancer Nurse Coordinator, St Vincent’s Hospital Melbourne, VIC; A/Prof Declan Murphy, Urologist and Director of Genitourinary Oncology, Peter MacCallum Cancer Centre, VIC; Caitriona Nienaber, 13 11 20 Consultant, Cancer Council WA; Prof Stephan Schug, Director of Pain Medicine, Royal Perth Hospital, and Chair of Anaesthesiology and Pain Medicine, The University of Western Australia Medical School, WA; Dr Emma Secomb, Specialist Surgeon, Hinterland Surgical Centre, QLD. We would like to thank the health professionals, consumers and editorial teams who have worked on previous editions of this title. This booklet is funded through the generosity of the people of Australia. Note to reader Always consult your doctor about matters that affect your health.
    [Show full text]
  • Review of Intra-Arterial Therapies for Colorectal Cancer Liver Metastasis
    cancers Review Review of Intra-Arterial Therapies for Colorectal Cancer Liver Metastasis Justin Kwan * and Uei Pua Department of Vascular and Interventional Radiology, Tan Tock Seng Hospital, Singapore 388403, Singapore; [email protected] * Correspondence: [email protected] Simple Summary: Colorectal cancer liver metastasis occurs in more than 50% of patients with colorectal cancer and is thought to be the most common cause of death from this cancer. The mainstay of treatment for inoperable liver metastasis has been combination systemic chemotherapy with or without the addition of biological targeted therapy with a goal for disease downstaging, for potential curative resection, or more frequently, for disease control. For patients with dominant liver metastatic disease or limited extrahepatic disease, liver-directed intra-arterial therapies including hepatic arterial chemotherapy infusion, chemoembolization and radioembolization are alternative treatment strategies that have shown promising results, most commonly in the salvage setting in patients with chemo-refractory disease. In recent years, their role in the first-line setting in conjunction with concurrent systemic chemotherapy has also been explored. This review aims to provide an update on the current evidence regarding liver-directed intra-arterial treatment strategies and to discuss potential trends for the future. Abstract: The liver is frequently the most common site of metastasis in patients with colorectal cancer, occurring in more than 50% of patients. While surgical resection remains the only potential Citation: Kwan, J.; Pua, U. Review of curative option, it is only eligible in 15–20% of patients at presentation. In the past two decades, Intra-Arterial Therapies for Colorectal major advances in modern chemotherapy and personalized biological agents have improved overall Cancer Liver Metastasis.
    [Show full text]
  • Complex General Surgical Oncology
    ACGME Program Requirements for Graduate Medical Education in Complex General Surgical Oncology ACGME-approved focused revision: February 3, 2020; effective July 1, 2020 Contents Introduction .............................................................................................................................. 3 Int.A. Preamble ................................................................................................................ 3 Int.B. Definition of Subspecialty ..................................................................................... 4 Int.C. Length of Educational Program ............................................................................ 4 I. Oversight ............................................................................................................................ 4 I.A. Sponsoring Institution............................................................................................ 4 I.B. Participating Sites .................................................................................................. 4 I.C. Recruitment ............................................................................................................. 6 I.D. Resources ............................................................................................................... 6 I.E. Other Learners and Other Care Providers ............................................................ 7 II. Personnel ...........................................................................................................................
    [Show full text]
  • Pancreatic Cancer and Liver Cancer Are the Deadliest Cancers; and Still No Effective Chemotherapy
    International Journal of ISSN 2692-5877 Clinical Studies & Medical Case Reports DOI: 10.46998/IJCMCR.2021.10.000240 Perspective Pancreatic Cancer and Liver Cancer Are the Deadliest Cancers; and Still No Effective Chemotherapy. Why? Leslie C Costello* and Renty B Franklin Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry and the University of Maryland Greenebaum Comprehensive Cancer Center, USA *Corresponding author: Adel Ekladious, Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry; and the University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, Md. 21201, USA. Email: [email protected]. Received: May 28, 2021 Published: June 14, 2021 Abstract In 2020, there were about 60,400 cases and 48,200 due to pancreatic cancer; an estimated death rate of 80%. For liver cancer the values are 42,800 new cases and 30,000 deaths; an estimated death rate of 72%. The 5-year survival rate is 9% for pancreatic cancer and 18% for liver cancer. During the recent period of 30 years, there has been no decrease in the incidence of pancreatic cancer deaths or liver deaths; and instead, there has been an increase death. The reason is the continued absence of an efficacious systemic chemotherapy. That is due to the failure of the identification of the important factors that are implicated in the develop- ment and progression of those cancers. However, information does exist, which is likely to represent a viable and compelling concept of the manifestation of both cancers; and will provide the basis for a potential effective chemotherapy. The status of zinc is the likely important factor that manifests the development and progression pancreatic and liver cancers and clioquinol zinc ionophore is the treatment.
    [Show full text]
  • Surgical Oncology 3 PGY3
    Stanford University General Surgery Residency Program Surgical Oncology 3 / Endocrine Surgery Rotation Goals and Objectives Rotation Director: Dana Lin, MD Description The Surgical Oncology 3 / Endocrine Surgery rotation offers an intensive experience in the surgical care of patients with endocrine diseases as well as breast cancer and melanoma. Goals The goal of the Surgical Oncology 3 / Endocrine Surgery rotation is to: Gain the knowledge and experience in the evaluation and management of patients with endocrine diseases, breast cancer, and melanoma. The primary goals for the R-3 resident: Develop knowledge and experience in the evaluation and management of patients with endocrine diseases, breast cancer, and melanoma. Acquire and refine procedural and operative skills required in the care of these patients. Direct the post-operative / in-patient care of the patients on the service. Objectives The Surgical Oncology 3/ Endocrine Surgery R-3 rotation has the following objectives: The resident has primary responsibility for the management of all patients admitted to or evaluated by the team in conjunction with the attending surgeon. The R-3 gains knowledge of surgical care through discussion with and teaching from the attending physicians in the inpatient and outpatient setting, attendance at the multidisciplinary endocrine tumor board conference, as well as independent reading. The resident gains operative skills through pre-operative reading and preparation and by direct intra-operative teaching and guidance from the faculty. Residents can expect frequent teaching from members of the team, both at the bedside and during formal and informal sessions. Feedback and teaching is individualized to the needs of the residents.
    [Show full text]
  • Mtorc1 and FGFR1 Signaling in Fibrolamellar Hepatocellular
    Modern Pathology (2015) 28, 103–110 & 2015 USCAP, Inc. All rights reserved 0893-3952/15 $32.00 103 mTORC1 and FGFR1 signaling in fibrolamellar hepatocellular carcinoma Kimberly J Riehle1,2,3,4, Matthew M Yeh1,2, Jeannette J Yu1,4, Heidi L Kenerson3, William P Harris1,5, James O Park1,3 and Raymond S Yeung1,2,3 1The Northwest Liver Research Program, University of Washington, Seattle, WA, USA; 2Department of Pathology, University of Washington, Seattle, WA, USA; 3Department of Surgery, University of Washington, Seattle, WA, USA; 4Seattle Children’s Hospital, Seattle, WA, USA and 5Department of Medicine, University of Washington, Seattle, WA, USA Fibrolamellar hepatocellular carcinoma, or fibrolamellar carcinoma, is a rare form of primary liver cancer that afflicts healthy young men and women without underlying liver disease. There are currently no effective treatments for fibrolamellar carcinoma other than resection or transplantation. In this study, we sought evidence of mechanistic target of rapamycin complex 1 (mTORC1) activation in fibrolamellar carcinoma, based on anecdotal reports of tumor response to rapamycin analogs. Using a tissue microarray of 89 primary liver tumors, including a subset of 10 fibrolamellar carcinomas, we assessed the expression of phosphorylated S6 ribosomal protein (P-S6), a downstream target of mTORC1, along with fibroblast growth factor receptor 1 (FGFR1). These results were extended and confirmed using an additional 13 fibrolamellar carcinomas, whose medical records were reviewed. In contrast to weak staining in normal livers, all fibrolamellar carcinomas on the tissue microarray showed strong immunostaining for FGFR1 and P-S6, whereas only 13% of non-fibrolamellar hepatocellular carcinomas had concurrent activation of FGFR1 and mTORC1 signaling (Po0.05).
    [Show full text]
  • Tumor Registrar Vocabulary: the Composition of Medical Terms Book Three
    SEER Program Self InstructionalManual for Cancer Registrars Tumor Registrar Vocabulary: The Composition of Medical Terms Book Three Second Edition U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National institutesof Health SEER PROGRAM SELF-INSTRUCTIONAL MANUAL FOR CANCER REGISWRARS Book 3 - CANCER REGISTRAR VOCABULARY: THE COMPOSITION OF MEDICAL TERMS Second Edition Originally Preparedfor the Louisiana Regional Medical Program Under the Direction of: C. Dennis Fink, Ph.D., Program Director, HumRRO Robert F. Ryan, M.D., Technical Advisor, Tulane University Revised by: SEER Program Cancer Statistics Branch, National Cancer Institute Editor-in-Chief: Evelyn M. Shambaugh, M.A., CTR Cancer Statistics Branch, National Cancer Institute Assisted by Self-InstructionalManual Committee: Dr. Robert F. Ryan, EmeritusProfessor of Surgery Tulane University School of Medicine New Orleans, Louisiana Mildred Weiss Ruth Navotny Mary A. Kruse LOs Angeles, California San Francisco, California Bethesda, Maryland BOOK 3 CANCER REGISTRAR VOCABULARY: THE COMPOSITION OF MEDICAL TERMS TABLE OF CONTENTS BOOK 3: CANCER REGISTRAR VOCABULARY: THE COMPOSITION OF MEDICAL TERMS Page Section A--Objectives and Content of Book 3 ................................... 1 Section B--Word Roots, Suffixes, and Prefixes ................................... 5 Section C--Common Symptomatic Suffixes ..................................... 31 Section D--Common Diagnostic Suffixes ....................................... 63 Section E--Cancer Registrar Vocabulary: Complaints
    [Show full text]
  • Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash Aga Khan University, [email protected]
    eCommons@AKU Section of Gastroenterology Department of Medicine March 2016 Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash Aga Khan University, [email protected] Adil Ayub Buria Naeem Sehrish Najam Zubair Ahmed Aga Khan University See next page for additional authors Follow this and additional works at: https://ecommons.aku.edu/ pakistan_fhs_mc_med_gastroenterol Part of the Gastroenterology Commons Recommended Citation Parkash, O., Ayub, A., Naeem, B., Najam, S., Ahmed, Z., Jafri, W., Hamid, S. (2016). Primary Hepatic Carcinoid Tumor with Poor Outcome. Journal of the College of Physicians and Surgeons Pakistan, 26(3), 227-229. Available at: https://ecommons.aku.edu/pakistan_fhs_mc_med_gastroenterol/220 Authors Om Parkash, Adil Ayub, Buria Naeem, Sehrish Najam, Zubair Ahmed, Wasim Jafri, and Saeed Hamid This report is available at eCommons@AKU: https://ecommons.aku.edu/pakistan_fhs_mc_med_gastroenterol/220 CASE REPORT Primary Hepatic Carcinoid Tumor with Poor Outcome Om Parkash1, Adil Ayub2, Buria Naeem2, Sehrish Najam2, Zubair Ahmed, Wasim Jafri1 and Saeed Hamid1 ABSTRACT Primary Hepatic Carcinoid Tumor (PHCT) represents an extremely rare clinical entity with only a few cases reported to date. These tumors are rarely associated with metastasis and surgical resection is usually curative. Herein, we report two cases of PHCT associated with poor outcomes due to late diagnosis. Both cases presented late with non-specific symptoms. One patient presented after a 2-week history of symptoms and the second case had a longstanding two years symptomatic interval during which he remained undiagnosed and not properly worked up. Both these cases were diagnosed with hepatic carcinoid tumor, which originates from neuroendocrine cells. Case 1 opted for palliative care and expired in one month’s time.
    [Show full text]
  • VCRVOICE Liverbile Ductcancer Cancer Octoberjanuary 2017 2018
    VCRVOICE LiverBile DuctCancer Cancer OctoberJanuary 2017 2018 Understanding Liver CancerUnderstanding Bile Duct Cancer • Liver cancer as a primary cancer is also Bileknown ducts as hepatic are thin tubes, which bile moves from the cancer; it starts in the liver rather than migratingliver to the from small intestine to help digest the fats in another organ or part of the body. food. Bile duct cancer can occur at younger ages, but the average age of diagnosis is 70 for intrahepatic bile • Most liver cancers are secondary or metastatic,duct cancer, meaning and 72 for extrahepatic bile duct cancer. it started elsewhere in the body. • The liver, which is located below the rightNearly lung and all bileunder duct cancers are cholangiocarcinomas. Other types of bile duct cancers are much less the rib cage, is one of the largest organscommon. of the human These include sarcomas, lymphomas, and body. small cell cancers. • All vertebrates (animals with a spinal column) have a liver. Treatment for bile duct cancer may include surgery, Some animals without spinal columns canchemotherapy also have it. and radiation. Some unresectable bile • Primary liver cancer cases account for onlyduct 2% cancers of cancers have been treated by removing the liver in the U.S., but it counts for half of all cancersand bile in someducts and then transplanting a donor liver. In undeveloped countries. some cases it may even cure the cancer. Researchers • In the U.S., primary liver cancer strikes twicecontinue as many to develop drugs that target specific parts of people at an average age of 67. cancer cells or their surrounding environments.
    [Show full text]