Snow and Ice Volume on Mount Spurr Volcano, Alaska, 1981

Total Page:16

File Type:pdf, Size:1020Kb

Snow and Ice Volume on Mount Spurr Volcano, Alaska, 1981 Snow and Ice Volume on Mount Spurr Volcano, Alaska, 1981 By Rod S. March, Lawrence R. Mayo, and Dennis C. Trabant U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 97-4142 Fairbanks, Alaska 1997 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY GORDON P. EATON, Director For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Branch of Information Services 4230 University Drive, Suite 201 Box 25286 Anchorage, AK 99508-4664 Denver, CO 80225-0286 http://www-water-ak.usgs.gov CONTENTS Abstract ................................................................. 1 Introduction ............................................................... 1 Acknowledgments...................................................... 5 Surveying................................................................. 5 Determination of ice thickness and depth ........................................ 6 Measurements ......................................................... 6 Ice-radar migration ..................................................... 11 Contouring ice thickness and bed topography. ................................ 12 Seasonal snow......................................................... 18 Snow and ice areas and volumes ............................................... 18 Discussion ................................................................ 24 Selected subglacial features............................................... 24 Use of glacier volumes at Mount Spurr to improve volume-estimation methods. ..... 28 Glaciovolcanic hazards and comparison with other volcanoes.................... 29 Summary and conclusions .................................................... 31 References cited............................................................ 32 Appendix: Coordinate systems ................................................ 35 PLATES [Plates in pocket] 1. Altitude of base and surface of glaciers on Mount Spurr, Alaska 2. Ice thickness and surface contours of glaciers on Mount Spurr, Alaska FIGURES 1. Map showing location of Mount Spurr, Alaska ............................. 2 2. Photograph of Mount Spurr Volcano viewed from the south-southwest.......... 4 3. Diagram showing the exact ellipsoidal solution and the more commonly used approximate spherical solution for the location of all possible reflecting surfaces.................................................... 10 4. Photograph of Mount Spurr Volcano seen from the southwest showing Barrier Glacier ...................................................... 13 5. Photograph of Mount Spurr Volcano seen from the southeast showing Painted glacier ...................................................... 14 6. Scatter plot of measured ice thickness versus glacier surface slope.............. 15 7. Scatter plot of basal shear stress versus glacier surface slope or sine of the glacier surface slope ............................................... 16 8. Map showing horizontal surface ice velocities derived from ogive spacings ...... 17 9. Longitudinal profiles of Barrier Glacier's surface and bed .................... 24 Contents III 10. Photograph of Mount Spurr Volcano seen from the east with Capps Glacier in the foreground .............................................. 26 11. Contour map of glacier surface and bed topography of the summit region of Mount Spurr ...................................................... 27 12. Longitudinal profiles of upper South branch of Capps Glacier's surface and bed ............................................................ 28 13. Log-log scatter plot of glacier volume versus glacier area for Mount Spurr glaciers and Cascade Range glaciers on volcanoes ..................... 29 TABLES 1. Coordinates of survey control stations in the Mount Spurr area ................ 6 2. Ice-thickness measurements ............................................ 7 3. Seasonal snow data from U.S. Soil Conservation Service sites near Mount Spurr ........................................................ 18 4-11. Areas and volumes of snow and ice in: 4. Barrier Glacier sub-basin ........................................... 19 5. Painted glacier sub-basin ........................................... 19 6. West Kidazqeni Glacier sub-basin .................................... 20 7. East Kidazqeni Glacier sub-basin. .................................... 20 8. Crater glacier sub-basin ............................................ 21 9. South branch, Capps Glacier sub-basin ................................ 21 10. Main branch, Capps Glacier sub-basin. ................................ 22 11. Chichantna River drainage .......................................... 22 12. Summary of areas and volumes of snow and ice on Mount Spurr and their seasonal minimums and maximums. ................................. 23 13. Summary of snow and ice minimum seasonal area (September), maximum seasonal area (May), and volume above altitude of glacier termini.............. 30 IV Contents CONVERSION FACTORS, VERTICAL AND HORIZONTAL DATUMS, AND SYMBOLS USED IN THIS REPORT Multiply by To obtain meter (m) 3.281 foot kilometer (km) 0.6214 mile square kilometer (km2) 0.3861 square mile cubic kilometer (km3) 0.2399 cubic mile cubic meter per second (m /s) 35.31 cubic foot per second kilopascal (kPa) 0.1450 pound per square inch grad 0.9 degree degree Celsius (°C) 1 .8, then add 32 degree Fahrenheit VERTICAL DATUM Altitudes are measured relative to the National Geodetic Vertical Datum of 1929 (NGVD of 1929) which is defined as follows: A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "Mean Sea Level." The year indicates the time of the last general adjustment. HORIZONTAL DATUM The horizontal datum for all locations in this report is the North American Datum of 1927 (NAD of 1927). SYMBOLS AND ABBREVIATIONS A glacier surface area, in square kilometers deg degree E UTM Easting F shape factor h glacier thickness, measured perpendicular to glacier bed, in meters h* glacier thickness, measured vertically between glacier surface and glacier bed, in meters k scale factor £ mean scale factor m/jas meter per microsecond MHz megahertz min minutes r2 coefficient of determination S transmitter-receiver separation, in meters Contents V id time delay, in microseconds UTM Universal Transverse Mercator y estimated glacier volume, in cubic kilometers va velocity of light in air, in meters per microsecond v, velocity of light in ice, in meters per microsecond X,, local sea-level coordinate, increasing eastward Y(> local sea-level coordinate, increasing northward Z altitude above sea level, in meters ct glacier surface slope (3 average glacier bed slope (3# bed slope at the basal reflection point H micro T,, yield stress of ice, in kilopascals 1h basal shear stress, in kilopascals VI Contents Snow and Ice Volume on Mount Spurr Volcano, Alaska, 1981 By Rod S. March, Lawrence R. Mayo and Dennis C. Trabant Abstract Mount Spurr (3,374 meters altitude) is an active volcano 130 kilometers west of Anchorage, Alaska, with an extensive covering of seasonal and perennial snow, and glaciers. Knowledge of the volume and distribution of snow and ice on a volcano aids in assessing hydrologic hazards such as floods, mudflows, and debris flows. In July 1981, ice thickness was measured at 68 locations on the five main glaciers of Mount Spurr: 64 of these measurements were made using a portable 1.7 megahertz monopulse ice-radar system, and 4 measurements were made using the helicopter altimeter where the glacier bed was exposed by ice avalanching. The distribution of snow and ice derived from these measurements is depicted on contour maps and in tables compiled by altitude and by drainage basins. Basal shear stresses at 20 percent of the measured locations ranged from 200 to 350 kilopas- cals, which is significantly higher than the 50 to 150 kilopascals commonly referred to in the liter­ ature as the "normal" range for glaciers. Basal shear stresses higher than "normal" have also been found on steep glaciers on volcanoes in the Cascade Range in the western United States. The area of perennial snow and ice coverage on Mount Spurr was 360 square kilometers in 1981, with an average thickness of 190±50 meters. Seasonal snow increases the volume about 1 percent and increases the area about 30 percent with a maximum in May or June. Runoff from Mount Spurr feeds the Chakachatna River and the Chichantna River (a tributary of the Beluga River). The Chakachatna River drainage contains 14 cubic kilometers of snow and ice and the Chichantna River drainage contains 53 cubic kilometers. The snow and ice volume on the mountain was 67±17 cubic kilometers, approximately 350 times more snow and ice than was on Mount St. Helens before its May 18, 1980, eruption, and 15 times more snow and ice than on Mount Rainier, the most glacierized of the measured volcanoes in the Cascade Range. On the basis of these relative quantities, hazard-producing glaciovolcanic phenomena at Mount Spurr could be significantly greater than similar phenomena at Cascade Vol­ canoes. INTRODUCTION Following the eruption of Mount St. Helens in May 1980, the U.S. Geological Survey accel­ erated the assessment of hazards at other volcanoes. On the basis of their historical eruptive pat­ terns, Mount Spurr (fig. 1) and several other volcanoes in Alaska, including Mount Redoubt, were identified as being among those volcanoes
Recommended publications
  • Emplacement of a Silicic Lava Dome Through a Crater Glacier: Mount St Helens, 2004–06
    14 Annals of Glaciology 45 2007 Emplacement of a silicic lava dome through a crater glacier: Mount St Helens, 2004–06 Joseph S. WALDER, Richard G. LaHUSEN, James W. VALLANCE, Steve P. SCHILLING United States Geological Survey, Cascades Volcano Observatory, 1300 Southeast Cardinal Court, Vancouver, Washington WA 98683-9589, USA E-mail: [email protected] ABSTRACT. The process of lava-dome emplacement through a glacier was observed for the first time after Mount St Helens reawakened in September 2004. The glacier that had grown in the crater since the cataclysmic 1980 eruption was split in two by the new lava dome. The two parts of the glacier were successively squeezed against the crater wall. Photography, photogrammetry and geodetic measure- ments document glacier deformation of an extreme variety, with strain rates of extraordinary magnitude as compared to normal alpine glaciers. Unlike normal temperate glaciers, the crater glacier shows no evidence of either speed-up at the beginning of the ablation season or diurnal speed fluctuations during the ablation season. Thus there is evidently no slip of the glacier over its bed. The most reasonable explanation for this anomaly is that meltwater penetrating the glacier is captured by a thick layer of coarse rubble at the bed and then enters the volcano’s groundwater system rather than flowing through a drainage network along the bed. INTRODUCTION ice bodies have been successively squeezed between the Since October 2004, a lava dome has been emplaced first growing lava dome and the crater walls. through, and then alongside, glacier ice in the crater of Several examples of lava-dome emplacement into ice Mount St Helens, Washington state, US.
    [Show full text]
  • 1961 Climbers Outing in the Icefield Range of the St
    the Mountaineer 1962 Entered as second-class matter, April 8, 1922, at Post Office in Seattle, Wash., under the Act of March 3, 1879. Published monthly and semi-monthly during March and December by THE MOUNTAINEERS, P. 0. Box 122, Seattle 11, Wash. Clubroom is at 523 Pike Street in Seattle. Subscription price is $3.00 per year. The Mountaineers To explore and study the mountains, forests, and watercourses of the Northwest; To gather into permanent form the history and traditions of this region; To preserve by the encouragement of protective legislation or otherwise the natural beauty of Northwest America; To make expeditions into these regions in fulfillment of the above purposes; To encourage a spirit of good fellowship among all lovers of outdoor Zif e. EDITORIAL STAFF Nancy Miller, Editor, Marjorie Wilson, Betty Manning, Winifred Coleman The Mountaineers OFFICERS AND TRUSTEES Robert N. Latz, President Peggy Lawton, Secretary Arthur Bratsberg, Vice-President Edward H. Murray, Treasurer A. L. Crittenden Frank Fickeisen Peggy Lawton John Klos William Marzolf Nancy Miller Morris Moen Roy A. Snider Ira Spring Leon Uziel E. A. Robinson (Ex-Officio) James Geniesse (Everett) J. D. Cockrell (Tacoma) James Pennington (Jr. Representative) OFFICERS AND TRUSTEES : TACOMA BRANCH Nels Bjarke, Chairman Wilma Shannon, Treasurer Harry Connor, Vice Chairman Miles Johnson John Freeman (Ex-Officio) (Jr. Representative) Jack Gallagher James Henriot Edith Goodman George Munday Helen Sohlberg, Secretary OFFICERS: EVERETT BRANCH Jim Geniesse, Chairman Dorothy Philipp, Secretary Ralph Mackey, Treasurer COPYRIGHT 1962 BY THE MOUNTAINEERS The Mountaineer Climbing Code· A climbing party of three is the minimum, unless adequate support is available who have knowledge that the climb is in progress.
    [Show full text]
  • Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 Through December 31, 2009
    Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2009 Data Series 531 U.S. Department of the Interior U.S. Geological Survey Catalog of Earthquake Hypocenters at Alaskan Volcanoes: January 1 through December 31, 2009 By James P. Dixon, U.S. Geological Survey, Scott D. Stihler, University of Alaska Fairbanks, John A. Power, U.S. Geological Survey, and Cheryl K. Searcy, U.S. Geological Survey Data Series 531 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1-888-ASK-USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted materials contained within this report. Suggested citation: Dixon, J.P., Stihler, S.D., Power, J.A., and Searcy, Cheryl, 2010, Catalog of earthquake hypocenters at Alaskan volcanoes: January 1 through December 31, 2009: U.S. Geological
    [Show full text]
  • The Dynamics and Mass Budget of Aretic Glaciers
    DA NM ARKS OG GRØN L ANDS GEO L OG I SKE UNDERSØGELSE RAP P ORT 2013/3 The Dynamics and Mass Budget of Aretic Glaciers Abstracts, IASC Network of Aretic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) • GEOLOGICAL SURVEY OF D EN MARK AND GREENLAND DANISH MINISTAV OF CLIMATE, ENEAGY AND BUILDING ~ G E U S DANMARKS OG GRØNLANDS GEOLOGISKE UNDERSØGELSE RAPPORT 201 3 / 3 The Dynamics and Mass Budget of Arctic Glaciers Abstracts, IASC Network of Arctic Glaciology, 9 - 12 January 2012, Zieleniec (Poland) A. P. Ahlstrøm, C. Tijm-Reijmer & M. Sharp (eds) GEOLOGICAL SURVEY OF DENMARK AND GREENLAND DANISH MINISTRY OF CLIMATE, ENERGY AND BUILDING Indhold Preface 5 Programme 6 List of participants 11 Minutes from a special session on tidewater glaciers research in the Arctic 14 Abstracts 17 Seasonal and multi-year fluctuations of tidewater glaciers cliffson Southern Spitsbergen 18 Recent changes in elevation across the Devon Ice Cap, Canada 19 Estimation of iceberg to the Hansbukta (Southern Spitsbergen) based on time-lapse photos 20 Seasonal and interannual velocity variations of two outlet glaciers of Austfonna, Svalbard, inferred by continuous GPS measurements 21 Discharge from the Werenskiold Glacier catchment based upon measurements and surface ablation in summer 2011 22 The mass balance of Austfonna Ice Cap, 2004-2010 23 Overview on radon measurements in glacier meltwater 24 Permafrost distribution in coastal zone in Hornsund (Southern Spitsbergen) 25 Glacial environment of De Long Archipelago
    [Show full text]
  • Beneath the Forest Is a Biannual Newsletter Published by the Forest Service of the U.S
    Volume 11, Issue 2 Fall 2018 Beneath the Forest is a biannual newsletter published by the Forest Service of the U.S. Department of Agriculture. Edited by Johanna L. Kovarik, Minerals and Geology Management Inside this Issue…and much more! Page Special Feature Article Part II, Case Study: Evolution of Cave and Karst Management on the Tongass National Forest 4 Peppersauce Cave Graffiti Removal Project, Coronado National Forest 9 Avalanche Cave and Karst Field Visit, Tahoe National Forest 13 Mount Saint Helens Glacier Cave Project, Gifford Pinchot National Forest 16 Arnold Ice Cave Stair Removal, Deschutes National Forest 20 Beneath the Forest 1 Editor’s Notes: CAVE AND KARST I am pleased to present our 21st issue of Beneath the Forest, the Forest Service cave and karst newsletter, CALENDAR OF EVENTS published twice a year in the spring and in the fall. ------------------------------------------------------------------------------- This is our tenth full year! Special thanks go to Phoebe Ferguson, our GeoCorps Participant in the National Cave Rescue Commission MGM WO, for the celebratory artwork on the logo of this issue. National NCRC Weeklong Seminar 11 - 18 May 2019 Articles for the Spring 2019 issue are due on April 1 Camp Riverdale/ Mitchell, Indiana 2019 in order for the issue to be out in May. We welcome contributions from stakeholders and New this year - you will be certified! volunteers as well as forest employees. Please —————————————————— encourage resource managers, cavers, karst scientists, National Speleological Society Convention and other speleological enthusiasts who do work on your forest to submit articles for the next exciting 17 - 21 June 2019 issue! Cookeville, Tennessee —————————————————— Cover art: Jewel Cave reaches 200 miles! WKU Karst Field Studies Program Cavers L– R: Dan Austin, Adam Weaver, Rene Ohms, Chris Pelczarski, Garrett June and July 2019 Jorgenson, Stan Allison Hamilton Valley Field Station/ Cave City, Kentucky Image: Dan Austin Courses available on a wide range of cave and karst- related topics.
    [Show full text]
  • Redalyc.ACTIVIDAD ERUPTIVA Y CAMBIOS GLACIARES EN EL
    Boletín de Geología ISSN: 0120-0283 [email protected] Universidad Industrial de Santander Colombia Julio-Miranda, P.; Delgado-Granados, H.; Huggel, C.; Kääb, A. ACTIVIDAD ERUPTIVA Y CAMBIOS GLACIARES EN EL VOLCÁN POPOCATÉPETL, MÉXICO Boletín de Geología, vol. 29, núm. 2, julio-diciembre, 2007, pp. 153-163 Universidad Industrial de Santander Bucaramanga, Colombia Disponible en: http://www.redalyc.org/articulo.oa?id=349632018015 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto ACTIVIDAD ERUPTIVA Y CAMBIOS GLACIARES EN EL VOLCÁN POPOCATÉPETL, MÉXICO Julio-Miranda, P. 1; Delgado-Granados, H. 2; Huggel, C.3 y Kääb, A. 4 RESUMEN El presente trabajo, se centra en el estudio del impacto de la actividad eruptiva del volcán Popocatépetl en el área glaciar durante el período 1994-2001. Para determinar el efecto de la actividad eruptiva en el régimen glaciar, se realizaron balances de masa empleando técnicas fotogramétricas, mediante la generación de modelos digitales de elevación (MDE). La compa- ración de MDEs permitió establecer los cambios glaciares en términos de área y volumen tanto temporales como espaciales. Así mismo, los cambios morfológicos del área glaciar fueron determinados con base en la fotointerpretación, de manera que los datos obtenidos por este procedimiento y los obtenidos mediante la comparación de los MDE se relacionaron con la actividad eruptiva a lo largo del periodo de estudio, estableciendo así la relación entre los fenómenos volcánicos y los cambios glaciares.
    [Show full text]
  • Rapid Glacial Retreat on the Kamchatka Peninsula During the Early 21St Century” by Colleen M
    The Cryosphere Discuss., doi:10.5194/tc-2016-42-RC2, 2016 TCD © Author(s) 2016. CC-BY 3.0 License. Interactive comment Interactive comment on “Rapid glacial retreat on the Kamchatka Peninsula during the early 21st Century” by Colleen M. Lynch et al. Anonymous Referee #2 Received and published: 16 May 2016 STRENGTHS: Positively 1 - A huge amount of work behind the paper Positively 2 - A good review of associated publications, including Russian authors WEAKNESSES: - The paper is too long. The text contains lots of unnecessary naturally clear details and numbers which hinder its perception. Most numbers should be removed and put in the tables. Printer-friendly version - The authors don’t seem to take into account the uniqueness of Kamchatka region Discussion paper as an area where Holocene volcanism exists along with glaciation and can not help affecting it. The accomplished analysis is of a “standard” (formal) type, the same as for C1 non-volcanic regions. TCD However, along with tephra of recent eruptions (mentioned in the paper) many glaciers in Kamchatka (or their tongues) which motion is permanently destroying the friable slopes of Holocene volcanoes appear to be buried under a thick layer of deposits and Interactive continue flowing with it. comment At the same time they are nothing to do with rock glaciers having usually a snow- covered accumulation zone and a high flow velocity. In other words, they keep all glacial features but have a thick cover of deposits on themselves which exceeds obviously 5 cm, the threshold used in the paper for digitizing of glacial margins, which seems to be totally invalid for glacial mapping in Kamchatka.
    [Show full text]
  • Unalaska Hazard Mitigation Plan 2018
    Unalaska, Alaska Multi-Jurisdictional Hazard Mitigation Plan Update April 2018 Prepared for: City of Unalaska and Qawalangin Tribe of Unalaska City of Unalaska Hazard Mitigation Plan THIS PAGE LEFT BLANK INTENTIONALLY ii City of Unalaska Hazard Mitigation Plan Table of Contents 1. Introduction .......................................................................................................... 1-1 1.1 Hazard Mitigation Planning ..................................................................... 1-1 1.2 Grant Programs with Mitigation Plan Requirements ............................... 1-1 1.2.1 HMA Unified Programs ............................................................... 1-2 2. Community Description ....................................................................................... 2-1 2.1 Location, Geography, and History ........................................................... 2-1 2.2 Demographics .......................................................................................... 2-3 2.3 Economy .................................................................................................. 2-4 3. Planning Process .................................................................................................. 3-1 3.1 Planning Process Overview ..................................................................... 3-1 3.2 Hazard Mitigation Planning Team ........................................................... 3-3 3.3 Public Involvement & Opportunities for Interested Parties to participate ................................................................................................
    [Show full text]
  • Geology of the Prince William Sound and Kenai Peninsula Region, Alaska
    Geology of the Prince William Sound and Kenai Peninsula Region, Alaska Including the Kenai, Seldovia, Seward, Blying Sound, Cordova, and Middleton Island 1:250,000-scale quadrangles By Frederic H. Wilson and Chad P. Hults Pamphlet to accompany Scientific Investigations Map 3110 View looking east down Harriman Fiord at Serpentine Glacier and Mount Gilbert. (photograph by M.L. Miller) 2012 U.S. Department of the Interior U.S. Geological Survey Contents Abstract ..........................................................................................................................................................1 Introduction ....................................................................................................................................................1 Geographic, Physiographic, and Geologic Framework ..........................................................................1 Description of Map Units .............................................................................................................................3 Unconsolidated deposits ....................................................................................................................3 Surficial deposits ........................................................................................................................3 Rock Units West of the Border Ranges Fault System ....................................................................5 Bedded rocks ...............................................................................................................................5
    [Show full text]
  • Mount St. Helens National Volcanic Monument: Preserved to Change the Real Treasure of the Mount St
    OLCANO REVIEW VA VISITOR’S GUIDE TO MOUNT ST. HELENS NATIONAL VOLCANIC MONUMENT Mount St. Helens National Volcanic Monument: Preserved to Change The real treasure of the Mount St. Helens National Volcanic Monument is not the volcano or the surrounding landscape; it lies in the idea that this monument should be protected so that nature can work at its own pace to renew the land. Most protected areas are managed to keep them as they once were so that future generations will have an experience similar to what early visitors to the site would have had. Mount St. Helens National Volcanic Monument was set aside in the hopes that the next generation will have an experience markedly different than the one we have today. The Forest Service has worked hard to protect this valued place while ensuring public safety and providing recreational, educational and research opportunities. This precarious task can only be successful through partnering with our local communities. Join us in helping to provide a unique experience for future generations by sharing nature’s monumental achievements at Mount St. Helens National Volcanic Monument. Photo by Gavin Farrell U.S. Forest Service Gifford Pinchot National Forest Take Care of Your Pet and WELCOME Help Protect the Monument To protect plant and animal life and provide for visitor safety, pets are prohibited at all recreation sites and trails here is a lot going on within the monument’s restricted area (see yellow shaded section at the Monument of map on page 7). Pets are permitted only in designated pet Tthis summer.
    [Show full text]
  • Volcanology: Electric Eruption
    news & views VOLCANOLOGY Electric eruption On the morning of 24 August, ad 79, Mount Vesuvius in the Bay of Naples, Italy, exploded into activity. The eruption caught the roman occupants of Pompeii and Herculaneum utterly unawares. The cities were rapidly buried by thick ash fall and pyroclastic surges, killing thousands of people. In a letter to the historian Tacitus, Pliny the Younger, an eyewitness and survivor of the eruption, described “frightening dark clouds, rent by lightning twisted and hurled” (http://go.nature.com/gkcLgn). Volcanic lightning has since been documented during many historical eruptions. More recently, spectacular lightning was observed during the eruptions of Mount Redoubt in Alaska, USA, in 2009 and Eyjafjallajökull Volcano in Iceland in 2010. The lightning generally occurs within the volcanic plume — a spreading column of ash, rock and hot gases blasted from the volcano vent. Although the details of the processes are poorly understood, volcanic lightning is thought to be triggered by the fragmentation of, and high-speed collisions between, volcanic rocks and ash as they exit the vent, as well as by the interactions between super-cooled water / ALAMY IMAGES © ARCTIC droplets and ice particles in higher, cooler parts of the column. The collisions create positive and negative electrically charged analysed ash deposits collected from The glass spherules mostly formed regions within the volcanic plume that are the Mount Redoubt and Eyjafjallajökull from melting of the smallest individual ash equalized by an electrical discharge that eruptions and found tiny glass spherules grains or from the fusion of several melted creates a lightning flash. (less than 100 μm across), which could ash grains.
    [Show full text]
  • Mount St. Helens, 1980 to Now—What's Going
    U.S. GEOLOGICAL SURVEY and the U.S. FOREST SERVICE—OUR VOLCANIC PUBLIC LANDS Mount St. Helens, 1980 to Now—What’s Going On? ount St. Helens seized M the world’s attention in 1980 when the largest historical landslide on Earth and a powerful explosive eruption reshaped the volcano, created its distinctive cra- ter, and dramatically modified the surrounding landscape. An enor- mous lava dome grew episodically in the crater until 1986, when the volcano became relatively quiet. A new glacier grew in the crater, wrapping around and partly burying the lava dome. From 1987 to 2003, sporadic earthquake swarms and small steam explosions indicated that magma (molten rock) was be- ing replenished deep underground. In 2004, steam-and-ash explosions heralded the start of another erup- More is going on than meets the eye in this south-facing photo of Mount St. Helens taken on June 8, 2005. tion. A quieter phase of continuous An unrelenting flow of semi-solid magma rises from a vent on the crater floor at a rate of about 10 feet per lava extrusion followed and lasted day, pushing up skyscraper-size spines. The spines collapse to form a steaming mound of lava called a lava until 2008, building a new dome dome. Split in two by the growing dome, Crater Glacier has started to flow more quickly northward. When the and doubling the volume of lava eruption ended in early 2008, the two arms of the glacier had met again after encircling both the new dome on the crater floor. Scientists with and an earlier one that grew from 1980 to 1986.
    [Show full text]