TRICHOPTERA: HYDROPSYCHIDAE) James Korecki Clemson University, [email protected]

Total Page:16

File Type:pdf, Size:1020Kb

TRICHOPTERA: HYDROPSYCHIDAE) James Korecki Clemson University, Jkoreck@Clemson.Edu Clemson University TigerPrints All Theses Theses 12-2006 REVISION OF THE MALES OF THE Hydrospyche scalaris GROUP IN NORTH AMERICA (TRICHOPTERA: HYDROPSYCHIDAE) James Korecki Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Part of the Entomology Commons Recommended Citation Korecki, James, "REVISION OF THE MALES OF THE Hydrospyche scalaris GROUP IN NORTH AMERICA (TRICHOPTERA: HYDROPSYCHIDAE)" (2006). All Theses. 44. https://tigerprints.clemson.edu/all_theses/44 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. REVISION OF THE MALES OF THE Hydropsyche scalaris GROUP IN NORTH AMERICA (TRICHOPTERA: HYDROPSYCHIDAE) A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by James A. Korecki December 2006 Accepted by: John C. Morse, Committee Chair Peter H. Adler Patrick D. McMillan © 2006 James A. Korecki ABSTRACT The genus Hydrospsyche Pictet sensu stricto in North America is divided into three species groups, the Hydrospyche cuanis Ross Group Ross, the Hydropsyche depravata Hagen Group Ross, and the Hydropsyche scalaris Hagen Group Banks. Thirty-one of thirty-six described species are recognized in the Hydropsyche scalaris Group. Examination of adult males resulted in 5 junior subjective synonyms and one possible new species based on a single exemplar from Sevier County, Utah. Hydropsyche bidens Ross 1938, H. orris Ross 1938, and H. alvata Denning 1949 are junior synonyms of Hydropsyche incommoda Hagen 1861. Hydrospyche rossi Flint, Voshell and Parker, 1979 and H. fenestra Lago and Harris 2006 are junior synonyms of H. simulans Ross 1938. A key to the adult males is provided and intraspecific variation illustrated. Scanning electron microscopy, cross-sectioned material, careful hand dissections, and a summary of relevant literature were used to formulate a revised description of phallic morphology. The phallobase forms the copulatory organ with the endotheca indistinguishable. The sclerotized, non-eversible, internal atrium of Hydropsyche s.s. is considered phallicata based on the presence of internal longitudinal muscle and its attachment points. Parameres and endophallus are absent. Conflicting and supporting evidence for alternative interpretations of the phallic apparatus is considered. ACKNOWLEDGEMENTS Completion of this revision would not have been possible without the assistance, collaboration, and support of numerous colleagues and friends. The large scope and difficult nature of this project is reflected in the number of people whose assistance proved invaluable. I wish to acknowledge the following collections and their curatorial staff for providing loans to make this study possible: California Academy of Sciences; Dr. Boris Kondratieff and the C.P. Gillette Museum of Arthropod Biodiversity at Colorado State University; Harvard Museum of Comparative Zoology; Illinois Natural History Survey; Dr. Douglas C. Currie and the Royal Ontario Museum; Dr. Oliver S. Flint and the United States National Museum (Dr. Flint also offered guidance in identifying problematic species in need of additional attention.); and the Clemson University Arthropod Collection. In addition I would like to thank Dr. Andrew K. Rasmussen for providing additional specimens of Hydropscyhe alabama. Special thanks is appropriate for Dave Ruiter who provided open access to his personal collection, sent a steady supply of unusual specimens, provided critical discussion, and facilitated the collection of western species during the authors visit to Colorado. As my major advisor, Dr. John C. Morse provided guidance and expert knowledge that facilitated the progress of this revision. Dr. Peter H. Adler, as a committee member and instructor further ignited my love for entomology both inside and outside of the classroom. His broad scientific knowledge, thought provoking lectures, and practical taxonomic insight catalyzed my drive for accurate observation of the natural v world. Dr. Patrick D. McMillan proved an invaluable addition to my committee and assisted greatly in the completion of this project. His knowledge of principal component analysis and familiarity with species delineation problems were invaluable. For all these reasons and more, I offer my sincere thanks to those who served on my graduate committee. Numerous faculty and staff at Clemson University have provided assistance and I wish to thank all those who have contributed to the successful completion of this project. Dr. Guido Schnabel helped translate the original German description of Hydrospyche auricolor into English. Dr. John P. Wourms, Dr. Steven E. Ellis, and Mr. Darryl E. Kruegger provided direction, technical assistance, and access to lab facilities/equipment that enabled the morphological analysis of cross-sectioned material. Mr. William T. Kay and the Electron Imaging and Analytical Services staff provided technical assistance in the capture of scanning electron images used in this study. Many fellow graduate students have made significant contributions to this project, provided much needed encouragement, and at times offered necessary distractions to preserve the integrity of my sanity. I would like to thank Ozlem Kalkar and Yayi Kasumah for sharing their knowledge of scanning and transmission electron microscopy. The graduate students of the Comparative Entomology Laboratory have offered critical discussion that helped shape my ideas. In particular, our lively discussions of caddisfly genitalia and numerous outbursts of exasperation left little to the imagination for unfortunate passerbys, but served to motivate the expolortion of novel ideas expressed in this study. Special thanks to Will K. Reeves, Mark P. Nelder, and Layla Burgess for vi many endless adventures rapelling bridges, crawling through caves, and climbing trees in the interests of science. Finally, I wish to express my gratitude and appreciation to my parents, David and Christine Korecki, for their love, many prayers, and support as I study God’s creation. TABLE OF CONTENTS Page TITLE PAGE.......................................................................................................... i ABSTRACT............................................................................................................ iii ACKNOWLEDGEMENTS.................................................................................... iv LIST OF TABLES.................................................................................................. ix LIST OF FIGURES ................................................................................................ xi CHAPTER 1. INTRODUCTION ................................................................................... 1 2. MATERIALS AND METHODS............................................................. 4 Specimen Preparation and Observation............................................. 4 Borrowed Material............................................................................. 4 Material Examined............................................................................. 5 Scanning Electron Microscopy.......................................................... 5 Embedding and Sectioning ................................................................ 6 Principal Component Analysis .......................................................... 7 Species Concept................................................................................. 7 3. MORPHOLOGY ..................................................................................... 8 Head................................................................................................... 8 Thorax................................................................................................ 12 Abdomen............................................................................................ 14 Phallic Apparatus............................................................................... 17 4. Hydropsyche scalaris GROUP ................................................................ 29 Hydropsyche aerata Ross .................................................................. 29 Hydropsyche alabama Lago and Harris ............................................ 31 Hydropsyche arinale Ross ................................................................. 33 Hydropsyche auricolor Ulmer ........................................................... 36 Hydropsyche bassi Flint, Voshell, and Parker................................... 38 Hydropsyche brunneipennis Flint and Butler .................................... 40 viii Table of contents (Continued) Page Hydropsyche californica Banks......................................................... 42 Hydropsyche catawba Ross ............................................................... 44 Hydropsyche delrio Ross ................................................................... 46 Hydropsyche demora Ross ................................................................ 47 Hydropsyche dicantha Ross............................................................... 49 Hydropsyche fattigi Ross ................................................................... 53 Hydropsyche franclemonti Flint .......................................................
Recommended publications
  • Species Fact Sheet for Homoplectra Schuhi
    SPECIES FACT SHEET Common Name: Schuh’s Homoplectran Caddisfly Scientific Name: Homoplectra schuhi Denning 1965 Phylum: Mandibulata Class: Insecta Order: Trichoptera Suborder: Annulipalpia Family: Hydropsychidae Subfamily: Diplectroninae Conservation Status Global Status (2005): G3Q – Vulnerable, but taxonomic questions persist (last reviewed 25 Mar 2005) National Status (United States): N3 - Vulnerable (23 Feb 2005) State Status (Oregon): S3 - Vulnerable (NatureServe 2015) Oregon Biodiversity Information Center: List 3 IUCN Red List: NE – Not evaluated Taxonomic Note This species has been given a global status of G3Q due to the limited number of specimens that have been reviewed to date, and the variability of diagnostic characteristics (NatureServe 2015). This genus is in need of additional collecting and taxonomic review, which may lead to synonymization with older described species (Wisseman 2015, Ruiter 2015). For example, specimens identified as H. luchia Denning 1966 may in fact be synonyms of H. schuhi (Ruiter 2015). Technical Description A microscope is required to identify Homoplectra schuhi, as identifications are based on genitalia anatomy. The advice of a Trichoptera expert is suggested. See Denning (1965) for lateral view drawings of the male and female genitalia. Adult: The adults of this species are small, moth-like insects in the caddisfly family Hydropsychidae. Homoplectra males are recognized by the complexity of the phallic apparatus, which can be complicated by very strong development of several sclerotized branches (Schmid 1998). Holotype male: Length 6 mm. General color of head, thorax and abdomen dark brown, wings tan with no pattern, legs and antennae varying shades of brownish. Pubescence of head, thorax and legs aureous. Fifth sternite with a dorsal filament enlarged distally and curved dorso-caudad.
    [Show full text]
  • ( ) Hydropsychidae (Insecta: Trichoptera) As Bio-Indicators Of
    ว.วิทย. มข. 40(3) 654-666 (2555) KKU Sci. J. 40(3) 654-666 (2012) แมลงน้ําวงศ!ไฮดรอบไซคิดี้ (อันดับไทรคอบเทอร-า) เพื่อเป2นตัวบ-งชี้ทางชีวภาพของคุณภาพน้ํา Hydropsychidae (Insecta: Trichoptera) as Bio-indicators of Water QuaLity แตงออน พรหมมิ1 บทคัดยอ การประเมินคุณภาพน้ําในแมน้ําและลําธารควรที่จะมีการใชปจจัยทางกายภาพ เคมีและชีวภาพควบคูกัน ไป ปจจัยทางชีวภาพที่มีศักยภาพในการประเมินคุณภาพน้ําในแหลงน้ําคือกลุมสัตว+ไมมีกระดูกสันหลังขนาดใหญที่ อาศัยอยูตามพื้นทองน้ํา โดยเฉพาะแมลงน้ําอันดับไทรคอบเทอรา ซึ่งเป3นกลุมสัตว+ที่มีความหลากหลายมากกลุม หนึ่งในแหลงน้ํา ระยะตัวออนของแมลงกลุมนี้ทุกชนิดอาศัยอยูในแหลงน้ํา เป3นองค+ประกอบหลักในแหลงน้ําและ เป3นตัวหมุนเวียนสารอาหารในแหลงน้ํา ระยะตัวออนของแมลงน้ํากลุมนี้จะตอบสนองตอปจจัยของสภาพแวดลอม ในแหลงน้ําทุกรูปแบบ ระยะตัวเต็มวัยอาศัยอยูบนบกบริเวณตนไมซึ่งไมไกลจากแหลงน้ํามากนัก หากินเวลา กลางคืน ความรูทางดานอนุกรมวิธานและชีววิทยาไมวาจะเป3นระยะตัวออนหรือตัวเต็มวัยของแมลงน้ําอันดับไทร คอบเทอราในประเทศแถบยุโรปตะวันตกและอเมริกาเหนือสามารถวินิจฉัยไดถึงระดับชนิด โดยเฉพาะแมลงน้ํา วงศ+ไฮดรอบไซคิดี้ มีการประยุกต+ใชในการติดตามตรวจสอบทางชีวภาพของคุณภาพน้ํา เนื่องจากชนิดของตัวออน แมลงน้ําวงศ+นี้มีความทนทานตอมลพิษในชวงกวางมากกวาแมลงน้ําชนิดอื่น ๆ 1สายวิชาวิทยาศาสตร+ คณะศิลปศาสตร+และวิทยาศาสตร+ มหาวิทยาลัยเกษตรศาสตร+ วิทยาเขตกําแพงแสน จ.นครปฐม 73140 E-mail: [email protected] บทความ วารสารวิทยาศาสตร+ มข. ปQที่ 40 ฉบับที่ 3 655 ABSTRACT Assessment on rivers and streams water quality should incorporate aspects of chemical, physical, and biological. Of all the potential groups of freshwater organisms that have been considered for
    [Show full text]
  • Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute
    Clemson University TigerPrints Publications Biological Sciences 3-2010 Defining the Genus Hydropsyche (Trichoptera:Hydropsychidae) Based on DNA and Morphological Evidence Christy Jo Geraci National Museum on Natural History, Smithsonian Institute Xin Zhou University of Guelph John C. Morse Clemson University, [email protected] Karl M. Kjer Rutgers University - New Brunswick/Piscataway Follow this and additional works at: https://tigerprints.clemson.edu/bio_pubs Part of the Biology Commons Recommended Citation Please use publisher's recommended citation. This Article is brought to you for free and open access by the Biological Sciences at TigerPrints. It has been accepted for inclusion in Publications by an authorized administrator of TigerPrints. For more information, please contact [email protected]. J. N. Am. Benthol. Soc., 2010, 29(3):918–933 ’ 2010 by The North American Benthological Society DOI: 10.1899/09-031.1 Published online: 29 June 2010 Defining the genus Hydropsyche (Trichoptera:Hydropsychidae) based on DNA and morphological evidence Christy Jo Geraci1 Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012 USA Xin Zhou2 Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario, N1G 2W1 Canada John C. Morse3 Department of Entomology, Soils, and Plant Sciences, Clemson University, Clemson, South Carolina 29634 USA Karl M. Kjer4 Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901 USA Abstract. In this paper, we review the history of Hydropsychinae genus-level classification and nomenclature and present new molecular evidence from mitochondrial cytochrome c oxidase subunit I (COI) and nuclear large subunit ribosomal ribonucleic acid (28S) markers supporting the monophyly of the genus Hydropsyche.
    [Show full text]
  • Trichoptera, Psychomyiidae)
    A peer-reviewed open-access journal ZooKeys 656: 1–23A review (2017) of the genus Metalype Klapálek, with descriptions of three new species 1 doi: 10.3897/zookeys.656.10738 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A review of the genus Metalype Klapálek, with descriptions of three new species from China (Trichoptera, Psychomyiidae) Shuang Qiu1, John C. Morse2, Yun-jun Yan3 1 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hu-bei Province, People’s Republic of China 2 Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, 29634-0310, USA 3 College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hu-bei Province, People’s Republic of China Corresponding author: Yunjun Yan ([email protected]) Academic editor: A. Previšić | Received 9 October 2016 | Accepted 8 January 2017 | Published 14 February 2017 http://zoobank.org/80398C99-3C43-4245-B290-DEBBE4583E62 Citation: Qiu S, Morse JC, Yan Y-j (2017) A review of the genus Metalype Klapálek, with descriptions of three new species from China (Trichoptera, Psychomyiidae). ZooKeys 656: 1–23. https://doi.org/10.3897/zookeys.656.10738 Abstract Three new species of Metalype from China, Metalype hubeiensis Qiu & Morse, sp. n., M. shexianensis Qiu & Morse, sp. n., and M. truncata Qiu & Morse, sp. n., are described and illustrated. Metalype uncatissima (Botosaneanu, 1970) is reported from China for the first time. The differences between genus Metalype and genus Psychomyia are discussed and four Psychomyia species are transferred to Metalype: Metalype holzenthali (Schmid, 1997); M.
    [Show full text]
  • Trichoptera:Hydropsychidae)
    THE ECOLOGICAL ENERGETICS OF THE NET-SPINNING CADDISFLY, Hydropsyche venularis, BANKS (TRICHOPTERA:HYDROPSYCHIDAE) by Douglas A. Howell thesis submitted to the Graduate FacultY. of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE IN ENTOMOLOGY APPROVED: J. R~ese Voshell, Jr. Jackson R. Webster Donald E. Mullins May 1982 Blacksburg, Virginia ACKNOWLEDGEMENTS I thank Dr. J. Reese Voshell, Jr. for serving as my major professor. Without his support and guidance this study would not have been completed. I thank my other corrunittee members, Dr. Jackson R. Webster, Department of Biology, VPI & SU, and Dr. Donald E. Mullins, Depart- ment of Entomology, VPI & SU, for their ideas and discus- sion of this study. Special thanks to Dr. Charles R. Parker and Mr. Boris c. Kondratieff. Dr. Parker's expertise in all aspects of Trichoptera biology contributed significantly to the devel- opment of this project. Boris was very helpful in many as- pects of the research which are too numerous to mention here, so I say thank you Boris, for everything. Dr. D. W. Cherry and Rich Lechleitner, Department 1 of Biology, VPI & SU, provided access to their Gilson respiro- meter and the necessary instruction to operate it efficiently. I thank my colleagues in the Department of Entomology, VPI & SU, for their help in various aspects of the research. In particular, Cliff Keil, Bob Zirrunerman, Debbie Parrella, and Dr. F. William Ravlin. Your help was greatly appre- ciated and your frendship greatly treasured. Very special thanks to my wife, Jo Anne Engebretson.
    [Show full text]
  • (Trichoptera: Limnephilidae) in Western North America By
    AN ABSTRACT OF THE THESIS OF Robert W. Wisseman for the degree of Master ofScience in Entomology presented on August 6, 1987 Title: Biology and Distribution of the Dicosmoecinae (Trichoptera: Limnsphilidae) in Western North America Redacted for privacy Abstract approved: N. H. Anderson Literature and museum records have been reviewed to provide a summary on the distribution, habitat associations and biology of six western North American Dicosmoecinae genera and the single eastern North American genus, Ironoquia. Results of this survey are presented and discussed for Allocosmoecus,Amphicosmoecus and Ecclisomvia. Field studies were conducted in western Oregon on the life-histories of four species, Dicosmoecusatripes, D. failvipes, Onocosmoecus unicolor andEcclisocosmoecus scvlla. Although there are similarities between generain the general habitat requirements, the differences or variability is such that we cannot generalize to a "typical" dicosmoecine life-history strategy. A common thread for the subfamily is the association with cool, montane streams. However, within this stream category habitat associations range from semi-aquatic, through first-order specialists, to river inhabitants. In feeding habits most species are omnivorous, but they range from being primarilydetritivorous to algal grazers. The seasonal occurrence of the various life stages and voltinism patterns are also variable. Larvae show inter- and intraspecificsegregation in the utilization of food resources and microhabitatsin streams. Larval life-history patterns appear to be closely linked to seasonal regimes in stream discharge. A functional role for the various types of case architecture seen between and within species is examined. Manipulation of case architecture appears to enable efficient utilization of a changing seasonal pattern of microhabitats and food resources.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • Part II: Potamyia Chinensis and Cheumatopsyche Trifascia
    Zootaxa 4926 (4): 547–558 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4926.4.5 http://zoobank.org/urn:lsid:zoobank.org:pub:0534BF0D-B6A7-4F0D-8991-F891F561ED9A The larvae of Chinese Hydropsychidae (Insecta: Trichoptera), Part II: Potamyia chinensis and Cheumatopsyche trifascia AO ZHANG1 & XIN ZHOU2* 1College of Science, China Agricultural University, Beijing, China 100193. �[email protected]; https://orcid.org/0000-0002-5668-1592 2Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China 100193. *Corresponding author. �[email protected]; https://orcid.org/0000-0002-1407-7952 Abstract The larvae of Chinese caddisflies Potamyia chinensis and Cheumatopsyche trifascia were successfully associated with identifiable adults using independent DNA markers, mitochondrial COI barcodes and nuclear ribosomal 28S D2 genes. A total of 49 specimens collected in China were employed in the molecular analyses. The two markers were congruent on species boundaries for 11 distinctive haplogroups, while D2 failed in differentiating two closely related species. A brief summary for larval studies of both genera is given, followed by an introduction to the generic morphological characteristics, and detailed morphological descriptions and illustrations for the two successfully associated species. The larva of P. chinensis is re-described here based on Chinese materials, following the previous larval description for P. echigoensis, which was recently synonymized with P. chinensis. Key words: caddisfly, life-stage association, China, DNA barcoding, COI, 28S D2 Introduction Molecular taxonomy uses nucleotide sequences to facilitate species delineation and identification.
    [Show full text]
  • The Study of the Zoobenthos of the Tsraudon River Basin (The Terek River Basin)
    E3S Web of Conferences 169, 03006 (2020) https://doi.org/10.1051/e3sconf/202016903006 APEEM 2020 The study of the zoobenthos of the Tsraudon river basin (the Terek river basin) Ia E. Dzhioeva*, Susanna K. Cherchesova , Oleg A. Navatorov, and Sofia F. Lamarton North Ossetian state University named after K.L. Khetagurov, Vladikavkaz, Russia Abstract. The paper presents data on the species composition and distribution of zoobenthos in the Tsraudon river basin, obtained during the 2017-2019 research. In total, 4 classes of invertebrates (Gastropoda, Crustacea, Hydracarina, Insecta) are found in the benthic structure. The class Insecta has the greatest species diversity. All types of insects in our collections are represented by lithophilic, oligosaprobic fauna. Significant differences in the composition of the fauna of the Tsraudon river creeks and tributary streams have been identified. 7 families of the order Trichoptera are registered in streams, and 4 families in the river. It is established that the streamlets of the family Hydroptilidae do not occur in streams, the distribution boundary of the streamlets of Hydropsyche angustipennis (Hydropsychidae) is concentrated in the mountain-forest zone. The hydrological features of the studied watercourses are also revealed. 1 Introduction The biocenoses of flowing reservoirs of the North Caucasus, and especially small rivers, remain insufficiently explored today; particularly, there is no information about the systematic composition, biology and ecology of amphibiotic insects (mayflies, stoneflies, caddisflies and dipterous) of the studied basin. Amphibiotic insects are an essential link in the food chain of our reservoirs and at the same time can be attributed to reliable indicators of water quality.
    [Show full text]
  • Nabs 2004 Final
    CURRENT AND SELECTED BIBLIOGRAPHIES ON BENTHIC BIOLOGY 2004 Published August, 2005 North American Benthological Society 2 FOREWORD “Current and Selected Bibliographies on Benthic Biology” is published annu- ally for the members of the North American Benthological Society, and summarizes titles of articles published during the previous year. Pertinent titles prior to that year are also included if they have not been cited in previous reviews. I wish to thank each of the members of the NABS Literature Review Committee for providing bibliographic information for the 2004 NABS BIBLIOGRAPHY. I would also like to thank Elizabeth Wohlgemuth, INHS Librarian, and library assis- tants Anna FitzSimmons, Jessica Beverly, and Elizabeth Day, for their assistance in putting the 2004 bibliography together. Membership in the North American Benthological Society may be obtained by contacting Ms. Lucinda B. Johnson, Natural Resources Research Institute, Uni- versity of Minnesota, 5013 Miller Trunk Highway, Duluth, MN 55811. Phone: 218/720-4251. email:[email protected]. Dr. Donald W. Webb, Editor NABS Bibliography Illinois Natural History Survey Center for Biodiversity 607 East Peabody Drive Champaign, IL 61820 217/333-6846 e-mail: [email protected] 3 CONTENTS PERIPHYTON: Christine L. Weilhoefer, Environmental Science and Resources, Portland State University, Portland, O97207.................................5 ANNELIDA (Oligochaeta, etc.): Mark J. Wetzel, Center for Biodiversity, Illinois Natural History Survey, 607 East Peabody Drive, Champaign, IL 61820.................................................................................................................6 ANNELIDA (Hirudinea): Donald J. Klemm, Ecosystems Research Branch (MS-642), Ecological Exposure Research Division, National Exposure Re- search Laboratory, Office of Research & Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH 45268- 0001 and William E.
    [Show full text]
  • This Table Contains a Taxonomic List of Benthic Invertebrates Collected from Streams in the Upper Mississippi River Basin Study
    This table contains a taxonomic list of benthic invertebrates collected from streams in the Upper Mississippi River Basin study unit as part of the USGS National Water Quality Assessemnt (NAWQA) Program. Invertebrates were collected from woody snags in selected streams from 1996-2004. Data Retreival occurred 26-JAN-06 11.10.25 AM from the USGS data warehouse (Taxonomic List Invert http://water.usgs.gov/nawqa/data). The data warehouse currently contains invertebrate data through 09/30/2002. Invertebrate taxa can include provisional and conditional identifications. For more information about invertebrate sample processing and taxonomic standards see, "Methods of analysis by the U.S. Geological Survey National Water Quality Laboratory -- Processing, taxonomy, and quality control of benthic macroinvertebrate samples", at << http://nwql.usgs.gov/Public/pubs/OFR00-212.html >>. Data Retrieval Precaution: Extreme caution must be exercised when comparing taxonomic lists generated using different search criteria. This is because the number of samples represented by each taxa list will vary depending on the geographic criteria selected for the retrievals. In addition, species lists retrieved at different times using the same criteria may differ because: (1) the taxonomic nomenclature (names) were updated, and/or (2) new samples containing new taxa may Phylum Class Order Family Subfamily Tribe Genus Species Taxon Porifera Porifera Cnidaria Hydrozoa Hydroida Hydridae Hydridae Cnidaria Hydrozoa Hydroida Hydridae Hydra Hydra sp. Platyhelminthes Turbellaria Turbellaria Nematoda Nematoda Bryozoa Bryozoa Mollusca Gastropoda Gastropoda Mollusca Gastropoda Mesogastropoda Mesogastropoda Mollusca Gastropoda Mesogastropoda Viviparidae Campeloma Campeloma sp. Mollusca Gastropoda Mesogastropoda Viviparidae Viviparus Viviparus sp. Mollusca Gastropoda Mesogastropoda Hydrobiidae Hydrobiidae Mollusca Gastropoda Basommatophora Ancylidae Ancylidae Mollusca Gastropoda Basommatophora Ancylidae Ferrissia Ferrissia sp.
    [Show full text]
  • Trichoptera, Hydropsychidae) from Papua, Indonesia, with Plesiomorphic State of the Phallic Head
    87 Oláh, J. & P.J. de Vries, 2019. Suara Serangga Papua (SUGAPA digital), 11(2): 87-93 New Baliomorpha species (Trichoptera, Hydropsychidae) from Papua, Indonesia, with plesiomorphic state of the phallic head János Oláh1 & Peter Jan de Vries2 1Tarján u. 28, H-4032 Debrecen, Hungary, email: [email protected] 2Haeckmate 40, 8014MJ Zwolle, The Netherlands, email: [email protected] Suara Serangga Papua (SUGAPA digital) 11(2): 87-93. urn:lsid:zoobank.org:pub: 7C78E846-5438-4191-B2A0-33BE19726054 Abstract: The caddisfly species, Baliomorpha cyclopsensis spec. nov., from the Cyclops Mts. of Indonesian Papua is described, with a brief outline of presentation and a discussion on the transformation series of the character states of the speciation traits, that is of the phallic head in the entire Hydropsychidae together with its incongruent nature. Rangkuman: Spesies Caddisfly, Baliomorpha cyclopsensis spec. nov., dideskripsikan dari Pegunungan Cyclops Papua, dengan outline singkat presentasi dan diskusi pada rangkaian transformasi karakter dari karakter spesiasi yaitu kepala phalilc pada seluruh Hydropsychidae bersama dengan ketidaksesuaiannya dengan alam. Keywords: Trichoptera, new species, New Guinea, Baliomorpha. Introduction A single male specimen of an undescribed medium-sized macronematine species with a remarkable unique yellowish pattern on the brown forewing membrane was attracted to light and collected at low elevation in the Cyclops Mountains, Papua, in Indonesian New Guinea. Microscopic examination of this beautiful caddisfly species with the habitus of Macrostemum Kolenati, 1859 revealed that it is a new species of the Australasian genus Baliomorpha Neboiss, 1984. This genus is separated from the closely related Macrostemum by having variously divergent neutral characters on the head, the spurs and the forewing venation (Neboiss, 1984), as well as by the ancestral plesiomorphic character state of the adaptive speciation trait of the phallic head.
    [Show full text]