How Bacterial Cell Division Might Cheat Turgor Pressure – a Unified Mechanism of Septal Division in Gram-Positive and Gram-Negative Bacteria

Total Page:16

File Type:pdf, Size:1020Kb

How Bacterial Cell Division Might Cheat Turgor Pressure – a Unified Mechanism of Septal Division in Gram-Positive and Gram-Negative Bacteria Insights & Perspectives Hypotheses How bacterial cell division might cheat turgor pressure – a unified mechanism of septal division in Gram-positive and Gram-negative bacteria Harold P. Erickson An important question for bacterial cell division is how the invaginating septum can periplasm, which is a major focus of the overcome the turgor force generated by the high osmolarity of the cytoplasm. I present analysis. To achieve division all suggest that it may not need to. Several studies in Gram-negative bacteria have layers of the cell envelope must invagi- nate into the division site, although not shown that the periplasm is isoosmolar with the cytoplasm. Indirect evidence at the same time, and eventually fully suggests that this is also true for Gram-positive bacteria. In this case the invagination cover the daughter cells. of the septum takes place within the uniformly high osmotic pressure environment, In 2008, Osawa et al. [6] demon- and does not have to fight turgor pressure. A related question is how the V-shaped strated that FtsZ-mts could assemble Z constriction of Gram-negative bacteria relates to the plate-like septum of Gram- rings when reconstituted in tubular liposomes. The mts (membrane-target- positive bacteria. I collected evidence that Gram-negative bacteria have a latent ing sequence) is an amphipathic helix capability of forming plate-like septa, and present a model in which septal division is that can tether FtsZ directly to mem- the basic mechanism in both Gram-positive and Gram-negative bacteria. brane. These reconstituted Z rings could constrict the thick walls of Keywords: multilamellar liposomes. Both Z-ring .bacteria; cell division; cytokinesis; FtsZ; peptidoglycan; tubulin; turgor assembly and constriction were achieved by FtsZ-mts alone À no other division protein was needed. This Introduction cycle. Near the end of the cell cycle the Z discovery elevated FtsZ as the prime ring, including all the downstream candidate for generating the constric- In bacterial cytokinesis FtsZ provides proteins, constricts over a period of tion force in bacterial cell division. the cytoskeletal framework for the Z minutes to pinch the cell in two. The How could FtsZ constrict mem- ring, which serves as the docking site for mechanisms of FtsZ have been investi- branes? Previous work had demon- up to two dozen other division proteins. gated intensively since the discovery strated that FtsZ protofilaments can The Z ring assembles early in the cell 25 years ago that FtsZ is a homolog of switch conformation from straight to cycle and remains in place without any eukaryotic tubulin, and that it is local- curved, and it was suggested that the obvious constriction for most of the ized at the site of constriction [1–5]. curved protofilaments could generate a Bacteria are surrounded by a cell bending force on the membrane and DOI 10.1002/bies.201700045 envelope. In Gram-positive bacteria the pull it inward [7, 8]. Additional experi- cell envelope consists of an inner lipid ments with “inside-out Z rings” sup- Department of Cell Biology, Duke University membrane (IM) and a rigid cell wall ported this mechanism [9–12]. Medical School, Durham, NC 27710, USA composed primarily of peptidoglycan Recently this Z-centric hypothesis (the abbreviation PG will refer to the cell has been questioned. Coltharp and Corresponding author: wall, implicitly including all other Xiao [13, 14] suggested that the force Harold P. Erickson E-mail: [email protected] components). Gram-negative bacteria from bending FtsZ protofilaments have an additional outer lipid mem- would be insufficient to constrict the Abbreviations: brane (OM), which is closely attached to IM against the turgor pressure gener- EM, electron microscopy; IM, inner membrane; MDO, membrane-derived oligosaccharide; OM, the PG. The PG layer is separated from ated by the high osmolarity of the outer membrane; PG, peptidoglycan. the IM by a variable space termed the bacterial cytoplasm. They suggested Bioessays 39: 1700045, ß 2017 WILEY Periodicals, Inc. www.bioessays-journal.com 1700045 (1 of 10) H. P. Erickson Insights & Perspectives..... that the major force for constriction is and relies on the natural contrast of the likely generated by inward growth of the membranes and protein structures with PG wall, pushing the IM from the surrounding water. Most of the results outside. In this mechanism the role of discussed below (Figs. 1–3) were FtsZ is primarily to serve as a docking obtained from high pressure freezing site for the PG synthetic enzymes, and to followed by cryosectioning. An alter- regulate assembly of the PG. native to cryosectioning is cryoEM Here, I am not arguing for one tomography, where the whole bacte- constriction mechanism or the other. I rium is imaged at multiple tilts and a 3- present the hypothesis that the essen- D image is reconstructed (Fig. 4). The tial steps of cell division, constricting thin samples for tomography are typi- Hypotheses the IM, and building new PG to form a cally prepared by plunge freezing Figure 1. CryoEM (high pressure freezing E. septum, likely take place completely without the need for high pressure. and cryosection) of the cell envelope of coli K-12. The black arrows point to the IM within the high osmolarity environ- Matias, Beveridge, and colleagues and OM. The PG is the lightly stained ment, and never have to resist the applied the technique of high pressure narrow band indicated by the white arrow. turgor pressure. This would mean freezing and cryosectioning to bacteria The periplasm is the lighter stained zone that both potential mechanisms, FtsZ in a series of seminal papers from 2003 between the PG and IM. Bar is 50 nm. bending and cell wall ingrowth, would to 2008. Figure 1 shows the cell enve- Reprinted with permission from [16]. need only modest forces to achieve lope of E. coli K12 [16]. The IM and OM division. are each seen as a single, thin, dark staining layer. The PG appears as a line medium density “outer wall zone” that of slightly enhanced density close to the can be identified as the PG layer. The cell envelope of OM. The periplasm is the lighter stain- Several other Gram-positive bacteria Gram-positive and Gram- ing space between the IM and the PG. have been imaged bythe same technique, Matias et al. [16] noted two important anddimensionsof theircellenvelopes are negative bacteria features of the periplasmic space: its given in Table 1. For most of these the visualized by cryoEM width varied by 10% over non- periplasm is 20 nm thick versus 10 nm compressed sections of the cell enve- for E. coli, and the PG is much thicker, The structural relationships of the mem- lope; and it could be significantly 20–30 nm versus 6.4 nm for E. coli.An branes and PG wall have been determined compressed by the sectioning knife. exception is Mycobacterium bovis, whose by thin section electron microscopy (EM). They suggested that the periplasmic periplasm and PG are closer to the In the early days of EM, bacteria were space has inherent compressibility or dimensions of E. coli. Interestingly, M. chemically fixed, dehydrated and infil- flexibility that allows the IM to move bovis and related Corynebacterineae were trated with plastic, and thin sections were closer or farther away from the PG. It is shown to have an outer lipid bilayer, cut. Aldehydes and OsO4 were the most not a rigid gel. chemically different but structurally sim- popular fixation agents. There was, how- The term “periplasm” has had two ilar to the OM of E. coli [19]. ever, always concern about changes in the different meanings in the literature. A structure that might occur during the time number of authors use the term to refer to for the fixation to work and during the entire space between the IM and OM, The periplasm of Gram- subsequent processing. with the PG layer being contained within negative bacteria is Rapid freezing offered the promise this periplasm. However, we will use the of instantaneous fixation, but ice terms periplasm or periplasmic space to isoosmotic with the crystal formation disrupted tissue refer specifically to thespacebetweenthe cytoplasm structures more than a few mmfrom PG and IM. This designation was used in the freezing surface. Cryoprotectants the original study of osmolarity of the An important concern for bacterial divi- could reduce ice crystals, but might compartments [17], and it is also consis- sionishowitdealswiththeturgorforceof alter the cellular structures. A major tent with the definition of periplasm in the bacterial cytoplasm. To understand advance was the development of high Gram-positive bacteria. this we need to know which elements of pressure freezing; see McDonald for a Early studies had suggested that in the cell envelope generate and which review of the history and applica- Gram-positive bacteria the IM was elements contain the turgor force. tions [15]. Briefly, the sample is sub- pressed in tight apposition to the In Gram-negative bacteria the OM is jected to 2,000 bar pressure relatively thick PG cell wall [18]. In tightly coupled to the PG by the very simultaneously with rapid freezing, 2005, Matias and Beveridge [18] over- abundant lipoprotein Lpp (other attach- both being achieved in 30 micro- turned this model when they applied ments exist but Lpp is the most seconds. The high pressure prevents cryosectioning to image the envelope of abundant). Lpp is a triple helical rod, formation of ice crystals, and the rapid Bacillus subtilis. Figure 2 reproduces 8.3 nm long with three fatty acid chains freezing preserves the organic struc- their definitive images. The cell enve- on its N-terminus that insert into the tures. The frozen specimen can then be lope comprises the IM, resolved here as OM [20].
Recommended publications
  • Progression of the Late-Stage Divisome Is Unaffected by the Depletion of the Cytoplasmic Ftsz Pool ✉ Nadine Silber 1,2,3, Christian Mayer1,2,3, Cruz L
    ARTICLE https://doi.org/10.1038/s42003-021-01789-9 OPEN Progression of the late-stage divisome is unaffected by the depletion of the cytoplasmic FtsZ pool ✉ Nadine Silber 1,2,3, Christian Mayer1,2,3, Cruz L. Matos de Opitz 1,2 & Peter Sass 1,2 Cell division is a central and essential process in most bacteria, and also due to its complexity and highly coordinated nature, it has emerged as a promising new antibiotic target pathway in recent years. We have previously shown that ADEP antibiotics preferably induce the degradation of the major cell division protein FtsZ, thereby primarily leading to a depletion of the cytoplasmic FtsZ pool that is needed for treadmilling FtsZ rings. To further investigate the 1234567890():,; physiological consequences of ADEP treatment, we here studied the effect of ADEP on the different stages of the FtsZ ring in rod-shaped bacteria. Our data reveal the disintegration of early FtsZ rings during ADEP treatment in Bacillus subtilis, indicating an essential role of the cytoplasmic FtsZ pool and thus FtsZ ring dynamics during initiation and maturation of the divisome. However, progressed FtsZ rings finalized cytokinesis once the septal peptidoglycan synthase PBP2b, a late-stage cell division protein, colocalized at the division site, thus implying that the concentration of the cytoplasmic FtsZ pool and FtsZ ring dynamics are less critical during the late stages of divisome assembly and progression. 1 Department of Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Auf der Morgenstelle, Tübingen, Germany. 2 Cluster of Excellence - Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germany.
    [Show full text]
  • Cell Division in Corynebacterineae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Frontiers - Publisher Connector REVIEW ARTICLE published: 10 April 2014 doi: 10.3389/fmicb.2014.00132 Cell division in Corynebacterineae Catriona Donovan* and Marc Bramkamp* Department of Biology I, Ludwig-Maximilians-University, Munich, Planegg-Martinsried, Germany Edited by: Bacterial cells must coordinate a number of events during the cell cycle. Spatio-temporal Wendy Schluchter, University of regulation of bacterial cytokinesis is indispensable for the production of viable, genetically New Orleans, USA identical offspring. In many rod-shaped bacteria, precise midcell assembly of the division Reviewed by: machinery relies on inhibitory systems such as Min and Noc. In rod-shaped Actinobacteria, Julia Frunzke, Jülich Research Centre, Germany for example Corynebacterium glutamicum and Mycobacterium tuberculosis, the divisome Andreas Burkovski, Friedric assembles in the proximity of the midcell region, however more spatial flexibility is University of Erlangen-Nuremberg observed compared to Escherichia coli and Bacillus subtilis. Actinobacteria represent a (FAU), Germany group of bacteria that spatially regulate cytokinesis in the absence of recognizable Min and *Correspondence: Noc homologs. The key cell division steps in E. coli and B. subtilis have been subject to Catriona Donovan and Marc Bramkamp, Department of Biology I, intensive study and are well-understood. In comparison, only a minimal set of positive and Ludwig-Maximilians-University, negative regulators of cytokinesis are known in Actinobacteria. Nonetheless, the timing Munich, Großhaderner Str. 2-4, of cytokinesis and the placement of the division septum is coordinated with growth as 82152 Planegg-Martinsried, well as initiation of chromosome replication and segregation.
    [Show full text]
  • Some English Terms Used in Microbiology 1
    Some English terms used in Microbiology 1 Shapes & Structures General terms Antibiotics and related Bacillus (pl. bacilli) Acid fast (acid fastness) ácido-alcohol resistente Acetylases Capsule Bacterial (adj.) Ampicillin Cell wall pared celular Bacterium (pl., bacteria): Beta-lactamase Coccus (cocci; and hence Staphylococcus, Bench: poyata Beta-lactamic Staphylococci) Biofilm Cephalosporin Core oligosaccharide núcleo oligosacarídico Burner (Bunsen Burner): mechero (Bunsen) Chloramphenicol Cortex Colony: colonia Colistin Fimbria (pl. fimbriae) Coverslip: (vidrio) cubreobjetos D-Cycloserine Flagellum (pl. flagella) Dye colorante DNA-gyrase Glycocalix Eukaryote or eucaryote Erythromycin Lipid A Incubator: estufa de incubación Ethambuthol Lipopolysaccharide Inoculating loop asa de siembra Fluoroquinolone Murein mureína Inoculum (inocula): Gentamicin (formerly gentamycin) Omp: outer membrane major protein proteína To flame: flamear Isoniazide de membrane externa Flask (Erlenmeyer flask): matraz Methicillin Outer membrane membrana externa Volumetric flask: matraz aforado Methylases PAMP (pathogen associated molecular pattern): Microorganism Nalidixic acid patrón molecular asociado a patógeno Motility movilidad Penicillin Peptidoglycan peptidoglucano Mycoplasm Penicillin binding protein (PBP) Periplasm periplasma Negative staining tinción negativa Phosphonomycin Periplasmic space espacio periplásmico Petri dish: placa de Petri Phosphorylases Permeability barrier barrera de permeabilidad Prokaryote or procaryote Polymyxin Pilus (pl. pili) Rack:
    [Show full text]
  • Crystal Structure of Ftsa from Staphylococcus Aureus
    FEBS Letters 588 (2014) 1879–1885 journal homepage: www.FEBSLetters.org Crystal structure of FtsA from Staphylococcus aureus Junso Fujita a, Yoko Maeda a, Chioko Nagao c, Yuko Tsuchiya c, Yuma Miyazaki a, Mika Hirose b, ⇑ Eiichi Mizohata a, Yoshimi Matsumoto d, Tsuyoshi Inoue a, Kenji Mizuguchi c, Hiroyoshi Matsumura a, a Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan b Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan c National Institute of Biomedical Innovation, 7-6-8, Saito-Asagi, Ibaraki, Osaka 567-0085, Japan d Laboratory of Microbiology and Infectious Diseases, Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan article info abstract Article history: The bacterial cell-division protein FtsA anchors FtsZ to the cytoplasmic membrane. But how FtsA Received 5 February 2014 and FtsZ interact during membrane division remains obscure. We have solved 2.2 Å resolution crys- Revised 2 April 2014 tal structure for FtsA from Staphylococcus aureus. In the crystals, SaFtsA molecules within the dimer Accepted 2 April 2014 units are twisted, in contrast to the straight filament of FtsA from Thermotoga maritima, and the Available online 18 April 2014 half of S12–S13 hairpin regions are disordered. We confirmed that SaFtsZ and SaFtsA associate Edited by Kaspar Locher in vitro, and found that SaFtsZ GTPase activity is enhanced by interaction with SaFtsA. Structured summary of protein interactions: Keywords: Bacterial divisome SaFtsA and SaFtsZ bind by comigration in non denaturing gel electrophoresis (View interaction) Staphylococcus aureus SaFtsZ and SaFtsA bind by molecular sieving (View interaction) FtsA SaFtsA and SaFtsA bind by x-ray crystallography (View interaction) FtsZ Ó 2014 Federation of European Biochemical Societies.
    [Show full text]
  • The Regulation of Arsenic Metabolism in Rhizobium Sp. NT-26
    The regulation of arsenic metabolism in Rhizobium sp. NT-26 Paula Corsini Madeira University College London Thesis submitted for the degree of Doctor of Philosophy 2016 I, Paula Corsini Madeira, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Date: Signed: II Abstract Arsenic (As) is a toxic metalloid and a major contaminant in terrestrial and aquatic environments. The two soluble forms, arsenite (AsIII) and arsenate (AsV) are toxic to most organisms. A range of phylogenetically distant bacteria are able to oxidize AsIII to the less toxic form, arsenate AsV using the periplasmic arsenite oxidase (AioBA). The two-component signal transduction system AioS/AioR and the AsIII-binding periplasmic protein AioX are required for AsIII oxidation and are involved in the transcriptional regulation of the aioBA operon. Most AsIII oxidisers can also reduce AsV to AsIII via the As (Ars) resistance system. The focus of this work was to understand the regulation of genes involved in AsIII oxidation and As resistance together with those involved in phosphate metabolism in the facultative chemolithoautotrophic AsIII oxidiser NT-26 grown under different conditions. Gene expression was studied by quantitative PCR in cells grown heterotrophically with and without AsIII or AsV in late-log and stationary phases. qPCR was optimised and suitable reference genes were chosen. The expression of genes involved in phosphate transport, sensing As and the genes aioX, aioS, aioR (AsIII-sensing and regulation) and aioB, aioA (AsIII oxidation) and cytC (cytochrome c) were also analysed in NT-26 grown heterotrophically in the presence or absence of AsIII or AsV at different growth stages (i.e., late-log and stationary phases).
    [Show full text]
  • Regulation of Cell Division in Streptococci: Comparing with the Model Rods
    Curr. Issues Mol. Biol. (2019) 32: 259-326. DOI: https://dx.doi.org/10.21775/cimb.032.259 Regulation of Cell Division in Streptococci: Comparing with the Model Rods Zhenting Xiang1, Zongbo Li1, Jumei Zeng2, Yuqing Li1*, Jiyao Li1* 1State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, PR China. 2Department of Infectious Diseases, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, USA. *Corresponding authors: [email protected], [email protected] Abstract Streptococcus is a genus of oval-shaped bacteria that act as both commensals and pathogens. Streptococcal infections are relevant to high morbidity and huge socioeconomic costs, with drug resistant strains becoming an increasing threat. Cell division plays an essential role during streptococcal colonization and infection, rendering it an ideal target for antibiotics. Substantial progress has been made to uncover the molecular biology and cellular processes of cell division, favoring the target strategies. This review discusses recent advances in caister.com/cimb 259 Curr. Issues Mol. Biol. (2019) Vol. 32 Regulation of Cell Division Xiang et al our understanding of streptococcal cell division and its regulatory mechanisms regarding the conserved proteins, by comparing with model rods. Peptidoglycan synthesis that involved in septum formation and the maintenance of the unique oval shape have been spatiotemporally controlled in concert with the pace of division. With newly available tools of genetic and cytological study, streptococci will become an additional model bacterial system for cytokinesis and novel therapeutic agents that target cell division. Introduction Most bacteria divide into two identical progeny cells by binary fission, which requires the initial formation of a division septum.
    [Show full text]
  • Elongation at Midcell in Preparation of Cell Division Requires Ftsz, but Not Mreb Nor PBP2 in Caulobacter Crescentus
    fmicb-12-732031 August 23, 2021 Time: 14:48 # 1 ORIGINAL RESEARCH published: 27 August 2021 doi: 10.3389/fmicb.2021.732031 Elongation at Midcell in Preparation of Cell Division Requires FtsZ, but Not MreB nor PBP2 in Caulobacter crescentus Muriel C. F. van Teeseling1,2* 1 Junior Research Group Prokaryotic Cell Biology, Department Microbial Interactions, Institute of Microbiology, Friedrich-Schiller-Universität, Jena, Germany, 2 Department of Biology, University of Marburg, Marburg, Germany Controlled growth of the cell wall is a key prerequisite for bacterial cell division. The existing view of the canonical rod-shaped bacterial cell dictates that newborn cells first elongate throughout their side walls using the elongasome protein complex, and subsequently use the divisome to coordinate constriction of the dividing daughter cells. Interestingly, another growth phase has been observed in between elongasome- mediated elongation and constriction, during which the cell elongates from the midcell outward. This growth phase, that has been observed in Escherichia coli and Caulobacter crescentus, remains severely understudied and its mechanisms remain elusive. One pressing open question is which role the elongasome key-component Edited by: Cara C. Boutte, MreB plays in this respect. This study quantitatively investigates this growth phase in University of Texas at Arlington, C. crescentus and focuses on the role of both divisome and elongasome components. United States This growth phase is found to initiate well after MreB localizes at midcell, although it does Reviewed by: not require its presence at this subcellular location nor the action of key elongasome Saswat S. Mohapatra, Khallikote University, India components. Instead, the divisome component FtsZ seems to be required for elongation Michael J.
    [Show full text]
  • Cell Structure and Function in the Bacteria and Archaea
    4 Chapter Preview and Key Concepts 4.1 1.1 DiversityThe Beginnings among theof Microbiology Bacteria and Archaea 1.1. •The BacteriaThe are discovery classified of microorganismsinto several Cell Structure wasmajor dependent phyla. on observations made with 2. theThe microscope Archaea are currently classified into two 2. •major phyla.The emergence of experimental 4.2 Cellscience Shapes provided and Arrangements a means to test long held and Function beliefs and resolve controversies 3. Many bacterial cells have a rod, spherical, or 3. MicroInquiryspiral shape and1: Experimentation are organized into and a specific Scientificellular c arrangement. Inquiry in the Bacteria 4.31.2 AnMicroorganisms Overview to Bacterialand Disease and Transmission Archaeal 4.Cell • StructureEarly epidemiology studies suggested how diseases could be spread and 4. Bacterial and archaeal cells are organized at be controlled the cellular and molecular levels. 5. • Resistance to a disease can come and Archaea 4.4 External Cell Structures from exposure to and recovery from a mild 5.form Pili allowof (or cells a very to attach similar) to surfacesdisease or other cells. 1.3 The Classical Golden Age of Microbiology 6. Flagella provide motility. Our planet has always been in the “Age of Bacteria,” ever since the first 6. (1854-1914) 7. A glycocalyx protects against desiccation, fossils—bacteria of course—were entombed in rocks more than 3 billion 7. • The germ theory was based on the attaches cells to surfaces, and helps observations that different microorganisms years ago. On any possible, reasonable criterion, bacteria are—and always pathogens evade the immune system. have been—the dominant forms of life on Earth.
    [Show full text]
  • Structural and Genetic Analyses Reveal the Protein Sepf As a New
    Structural and genetic analyses reveal the protein PNAS PLUS SepF as a new membrane anchor for the Z ring Ramona Dumana,1, Shu Ishikawab,1, Ilkay Celikc,1, Henrik Strahlc, Naotake Ogasawarab, Paulina Troca, Jan Löwea,2, and Leendert W. Hamoenc,d,2 aMedical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; bGraduate School of Information Science Functional Genomics, Nara Institute of Science and Technology, Ikoma, Nara 630-0101, Japan; cCentre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle NE2 4AX, United Kingdom; and dSwammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands Edited by Richard Losick, Harvard University, Cambridge, MA, and approved October 11, 2013 (received for review July 26, 2013) A key step in bacterial cell division is the polymerization of the N-terminal transmembrane domain (13). The necessity for ZipA tubulin homolog FtsZ at midcell. FtsZ polymers are anchored to the can be bypassed by a gain-of-function mutation in FtsA (14). cell membrane by FtsA and are required for the assembly of all Gram-positive bacteria contain EzrA, which shows a similar to- other cell division proteins. In Gram-positive and cyanobacteria, pology to that of ZipA, with an N-terminal transmembrane helix FtsZ filaments are aligned by the protein SepF, which in vitro pol- and a large C-terminal domain that binds to the FtsZ C terminus ymerizes into large rings that bundle FtsZ filaments. Here we de- (15). It therefore seemed likely that EzrA functions as an al- scribe the crystal structure of the only globular domain of SepF, ternative membrane anchor for the Z ring in B.
    [Show full text]
  • Origin of the Chloroplast Division Mechanism by Iris Verhoek Supervisor: Ida Van Der Klei 06-01-2016
    Origin of the chloroplast division mechanism By Iris Verhoek Supervisor: Ida van der Klei 06-01-2016 Abstract The chloroplast division mechanism is similar to bacterial division. Considering chloroplasts are from bacterial origin, engulfed bacteria evolved and adapted to the eukaryotic host-cell. Parts of the bacterial division components were retained and parts of the eukaryotic host-cell were integrated. The chloroplast division complex consists of four contractile rings, while the bacterial division is only comprised of one contractile ring. The first contractile ring to assemble is of bacterial origin; the FtsZ ring. Then the inner PD ring, outer PD ring and ARC5/DRP5B ring follow. The contractile rings need to be tethered to the membranes and are regulated by other proteins. The contractile rings on the inner envelope membrane are regulated by the proteins ARC6 and PARC6 and the outer envelope membrane is managed by the proteins PDV1 and PDV2. It is also very important that the contractile rings are placed on the correct division site of the chloroplast. This is directed by the proteins ARC3, minD, minE and MCD1. The membranes need to be separated for the final segregation. Proteins that are thought to be involved in this process are CLMP1 and CRL. Certain factors of the division mechanism are still not fully understood and need to be investigated. Introduction Chloroplasts are vital components that are found in plants and algae. Chloroplasts are primary plastids that are responsible for the photosynthetic conversion of carbon dioxide into carbohydrates by using light. Chloroplasts are derived from cyanobacteria through endosymbiosis. The engulfed bacterium was retained by a eukaryotic host-cell, instead of being digested.
    [Show full text]
  • Gram Staining Staining & Acid Fast & Acid Fast Staining
    GRAM STAINING && AACCIIDD FFAASSTT SSTTAAIINNIINNGG Dr. R. Haritha Lecturer in Biotechnology Visakha Government Degree College for Women Visakhapatnam Staining Stains Principle Types Staining methods Smear Preparation Smear- Distribution of Bacterial cells on a slide Objective-To kill the microorganism & fix bacteria Method- Air Dry, Heat Fixation GRAM STAINING Gram staining is most widely Hans Christian Joachim Gram used differential staining in Microbiology. It classifies bacteria into two major groups: Gram positive Gram negative Appears violet Appears red after Gram’s stain after Gram’s stain REAGENTS 1. CRYSTAL VIOLET Primary stain Violet colored, stains all micro-organism 2. GRAM IODINE Mordant Forms Crystal violet iodine complexes 3. DECOLORIZER Acetone + Methanol Removes Crystal violet iodine complex from thin peptidoglycan layers 4. GRAM SAFRANINE Counter stain Red colored Step 1: Crystal Violet Step 2: Gram’’s Iodine Step 3: Decolorization (Aceton-Alcohol) Step 4: Safranin Red 7 PRINCIPLE : Composition of the cell wall Gram-positive bacteria Cell wall has a thick peptidoglycan layer The Crystal Violet stain gets trapped into this layer and the bacteria turned purple. Retains the color of the primary stain (crystal violet) after decolorization with alcohol. Gram-negative bacteria Cell wall has a thin peptidoglycan layer that does not retain crystal violet stain. Cell wall has a thick lipid layer which dissolves easily upon decoulorization with Aceton-Alcohol. Therefore, cells will be counterstained with safranin and turned red. Gram’s +ve Bacteria Gram’s -ve Bacteria 9 RESULT Bacteria that manage to keep the original purple are called Gram positive. Bacteria that lose the original purple dye and can therefore take up the second red dye are called Gram negative APPLICATIONS 1.Rapid preliminary diagnosis of diseases such as Bacterial meningitis.
    [Show full text]
  • Metabolic Flexibility of Enigmatic SAR324 Revealed Through
    bs_bs_banner Environmental Microbiology (2014) 16(1), 304–317 doi:10.1111/1462-2920.12165 Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics Cody S. Sheik,1 Sunit Jain1 and Gregory J. Dick1,2,3* deep ocean (ArÍstegui et al., 2009) is thought to constrain 1Department of Earth and Environmental Sciences and heterotrophic microbial activity. However, recent identifi- 2Center for Computational Medicine and Bioinformatics cation of carbon fixation genes in the dark ocean (> 200 m and 3Department of Ecology and Evolutionary Biology, below surface) (Swan et al., 2011) underscores auto- University of Michigan, Ann Arbor, MI 48109, USA. trophy as a metabolic strategy for many dark ocean- associated micro-organisms (Karl et al., 1984). Because autotrophy is energetically taxing (Hügler and Sievert, Summary 2011), organisms must couple carbon fixation to an Chemolithotrophy is a pervasive metabolic lifestyle electron-donating reaction such as the oxidation of for microorganisms in the dark ocean. The SAR324 ammonia, nitrite, sulfur, iron, methane, hydrogen or group of Deltaproteobacteria is ubiquitous in the formate. Yet such electron donors required to power ocean and has been implicated in sulfur oxidation and carbon fixation in the deep ocean are scarce (Reinthaler carbon fixation, but also contains genomic signatures and Van, 2010), suggesting that mixotrophy (Sorokin, of C1 utilization and heterotrophy. Here, we recon- 2003; Moran et al., 2004; Dick et al., 2008) may be nec- structed the metagenome and metatranscriptome of a essary for micro-organisms to persist until preferred population of SAR324 from a hydrothermal plume and energy sources are encountered. surrounding waters in the deep Gulf of California to Within the deep ocean, hydrothermal vents are crucial gain insight into the genetic capability and transcrip- sources of reduced compounds such as sulfur, ammonia, tional dynamics of this enigmatic group.
    [Show full text]