Speleothems in Cova Des Pas De Vallgornera: Their Distribution And

Total Page:16

File Type:pdf, Size:1020Kb

Speleothems in Cova Des Pas De Vallgornera: Their Distribution And International Journal of Speleology 43 (2) 125-142 Tampa, FL (USA) May 2014 Available online at scholarcommons.usf.edu/ijs/ & www.ijs.speleo.it International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Speleothems in Cova des Pas de Vallgornera: their distribution and characteristics within an extensive coastal cave from the eogenetic karst of southern Mallorca (Western Mediterranean) Antoni Merino1*, Joaquín Ginés2, Paola Tuccimei3, Michele Soligo3, and Joan J. Fornós4 1 Grup Espeleològic de Llubí, Illes Balears, Spain 2 Federació Balear d’Espeleologia, Palma, Illes Balears, Spain 3 Università “Roma Tre”, Dipartimento di Scienze, Sezione di Scienze Geologiche, Largo San Leonardo Murialdo 1, 00146 Roma, Italy 4 Departament de Ciències de la Terra, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5, 07122 Palma, Illes Balears, Spain Abstract: The abundance and variety of speleothems are undoubtedly among the remarkable features of Cova des Pas de Vallgornera, the longest cave system in Mallorca Island developed in the eogenetic karst of its southern coast. Due to the monotonous carbonate lithology of the area, most of the speleothems are composed of calcite and in a few cases aragonite, although other minerals are also represented (e.g., gypsum, celestine, barite). However, in spite of the rather common mineralogy of the speleothems, its distribution results strongly mediated by the lithologic and textural variability linked to the architecture of the Upper Miocene reefal rocks. Apart from a vast majority of speleothem typologies that are ubiquitous all along the cave system, some particular types are restricted to specific sections of the cave. In its landward inner passages, formed in the low permeability back reef facies, a great variety of speleothems associated to perched freshwater accumulations stands out, as well as some non frequent crystallizations like for example cave rims. On the other hand, the seaward part of the cave (developed in the very porous reef front facies) hosts conspicuous phreatic overgrowths on speleothems (POS), which are discussed to show their applications to constrain sea level changes. The factors controlling the distribution of speleothems found in Cova des Pas de Vallgornera are discussed along the paper, focusing the attention on the lithologic, hydrogeologic, and speleogenetic conditionings; at the same time some uncommon speleothems, not found in any other cave in Mallorca, are also documented from this locality. Finally, a cognizant effort has been undertaken to illustrate with photographs the most remarkable speleothem types represented in the cave. Keywords: speleothems, carbonate crystallizations, phreatic overgrowths, coastal karst, southern Mallorca Received 5 October 2013; Revised 19 January 2014; Accepted 28 February 2014 Citation: Merino A., Ginés J., Tuccimei P., Soligo M. and Fornós J.J., 2014. Speleothems in Cova des Pas de Vallgornera: their distribution and characteristics within an extensive coastal cave from the eogenetic karst of southern Mallorca (Western Mediterranean). International Journal of Speleology, 43 (2) 125-142. Tampa, FL (USA) ISSN 0392-6672 http://dx.doi.org/10.5038/1827-806X.43.2.3 INTRODUCTION this peculiar profusion and exhibition of speleothems was first highlighted (Merino, 2000). But it is not until The importance of Cova des Pas de Vallgornera is the unexpected exploration breakthrough of 2004, not only related to the extension attained by the cave when the hitherto unknown Descobriments 2004 itself (over 74 km of development), but also for the series are discovered, that a full awareness for the exceptional richness, striking variety, and abundance spectacular display of speleothems is built (Merino et of speleothems. This wide exhibition of carbonate al., 2006). The discovery of abundant rimstone dams crystallizations is a common occurrence in Mallorcan (gours) hosting a great number of other subaqueous karst areas (Ginés, 1995; Merino et al., 2011), but types like shelfstones, cave rafts, cave cups, pool spar certainly this cave represents an exceptional case and, for instance, the existence of large areas of the regarding this topic. As early as 2000, with the discovery cave covered in numerous capillary crystallizations ― and exploration of the Noves Extensions series (Fig. 1), like filiform and vermiform helictites― were showing *[email protected] 126 Merino et al. a well-organized distribution of certain groups of the different sectors, main galleries, and chambers, a speleothems. The finding of uncommon typologies, comprehensive article including a detailed description like cave rims, cave bubbles, pool fingers, and U-loops of the cave is also published in this issue (Merino et (to mention just a few of them) greatly enlarged the al., 2014). The totality of photographs included in types of speleothems represented in Cova des Pas de the paper has been performed by one of the authors Vallgornera (Merino, 2007b, 2008; Merino & Fornós, (AM) with the helpful collaboration of cavers from 2010a), converting this cave in a unique locality several clubs integrated within the Federació Balear within the Mallorca’s endokarst. d’Espeleologia. Owing to the littoral character of the cave system, a special mention must be addressed to phreatic FACTORS THAT CONTROL THE overgrowths on speleothems (POS). These carbonate DISTRIBUTION OF SPELEOTHEMS IN THE encrustations have grown at the current sea-controlled STUDIED CAVE water table (Tuccimei et al., 2010), recording in the same way ancient sea level positions (Dorale et al., Mallorca is a mid-latitude island (39ºN) located in 2010; Ginés et al., 2012b). The data supplied by a bioclimatic setting typically Mediterranean, with an the coastal phreatic speleothems from this cave are annual average temperature of 16.6ºC and a mean discussed in order to constrain sea level history precipitation value near 600 mm/yr (Guijarro, 1995); during Pleistocene. Apart from the POS investigations, rainfall is markedly seasonal, showing its maximum the only geochronological and paleoclimatological in the autumn. The natural vegetation in the south data produced on speleothems from this cave are of the island is dominated by semi-arid shrubberies those supplied by Hodge (2004), who studied three and scarce forests that grow on thin calcareous soils. stalagmites whose chronology ranges from Middle In general terms the present-day bioclimatic context Pleistocene to Holocene. favors the processes that generate speleothems, a Regarding non-carbonate crystallizations, besides situation that is extensive to the whole Mediterranean the scarce gypsum cave flowers reported in the cave area. Furthermore, due to its position in the middle (Merino, 2007b), detailed observations on cave rims of the Western Mediterranean basin, Mallorca was shed light on a variety of unexpected minerals related not severely affected by the glacial periods during the to this particular morphological feature; strontianite, Pleistocene (Ginés et al., 2012a), when the climate celestine, barite, and nordstrandite were identified conditions were mostly mild but with important (Merino et al., 2009), in a morphogenetic setting that variation in precipitations. Although Th/U datings of points towards the actuation of hypogenic processes stalagmites or flowstones from Mallorca are scarce (Klimchouk, 2007). (Hodge, 2004; Ginés et al., 2011), the deposition of Classifications of speleothems have been usually speleothems during the cooler Pleistocene events established on the basis of its morphology and/or is clearly documented by the presence of abundant the genetic mechanisms involved (Sweeting, 1973; speleothems, formed during low-stand sea levels, that White, 1976; Gillieson, 1996; Hill & Forti, 1997; Ford are nowadays submerged in the present-day brackish & Williams, 2007; Palmer, 2007). So, it is a common pools of coastal caves like Cova des Pas de Vallgornera. practice to systematize these deposits according to Apart from climate dependent controls, the formation the characteristics of the water-flow that precipitates of speleothems is also conditioned by the lithologic them; in this respect, speleothems formed by dripping and textural characteristics of the rocks where the waters, flowing waters and capillary or seepage cave is located. Regarding their hydrogeological waters are distinguished together with subaqueous behavior, the Upper Miocene reefal carbonates that crystallizations. All these categories are very well- form the southern part of the island (Fornós et al., represented in this exceptional cave by means of 2002) are an example of eogenetic karst, as defined by a great diversity of speleothem types, but their Vacher & Mylroie (2002). The diagenetically immature enumeration or even description is not the goal of limestone rocks, hosting the coastal karst areas of this paper. In a more interpretative way, we will focus southern Mallorca, are characterized in general by on the localization pattern of speleothems within the high porosity and permeability values that certainly cave and on the factors that explain how they are have some influences on the speleothem formation distributed. processes. Commonly, all kinds of speleothems are present Another important factor, in this case intrinsic to throughout the cave, but not in a rambling way. The the cave, is the great development attained by Cova lithologic and textural characteristics of the rock des Pas de Vallgornera, with over 74 km of known where
Recommended publications
  • Podgrad, Sw Slovenia Speleogeneza in Sedimentaci
    COBISS: 1.01 SPELEOGENESIS AND DEPOSITIONAL HISTORY OF PALEOKARST PHREATIC CAVES/CAVITIES; PODGRAD, SW SLOVENIA SPELEOGENEZA IN SEDIMENTACIJSKA ZGODOVINA PALEOKRAŠKIH JAM/VOTLIN PREŽETE CONE; PODGRAD, JZ SLOVENIJA Bojan OTONIČAR1,* Abstract UDC 551.44:551.35(497.434) Izvleček UDK 551.44:551.35(497.434) Bojan Otoničar: Speleogenesis and depositional history of Bojan Otoničar: Speleogeneza in sedimentacijska zgodovina paleokarst phreatic caves/cavities; Podgrad, SW Slovenia paleokraških jam/votlin prežete cone; Podgrad, JZ Slovenija The studied paleokarst corresponds to an uplifted peripheral Raziskovani paleokras se je oblikoval na dvignjeni periferni foreland bulge when Upper Cretaceous diagenetically imma- izboklini, ko so bili diagenetsko nezreli zgornje kredni kar- ture eogenetic carbonates were subaerially exposed, karstified bonati dvignjeni nad morsko gladino in zakraseli. Kasneje je and subsequently overlain by upper Paleocene/lower Eocene bil ta zakraseli del periferne izbokline ponovno potopljen pod palustrine limestone. morsko gladino, paleokraško površje pa prekrito z zgornje pale- Among the subsurface paleokarstic features, both vadose and ocenskimi do spodnje eocenskimi palustrinimi apnenci. phreatic forms occur. The phreatic caves/cavities include fea- Na raziskovanem območju se pojavljajo podpovršinske tures characteristic of the mixing zone speleogenesis at the paleokraške oblike značilne tako za prežeto kot neprežeto interface between freshwater (brackish water) lenses and the hidrogeološko cono. Kraške jame in manjše votlinice prežete underlying seawater. They were found in various positions cone kažejo značilnosti speleogeneze v območju mešanja with respect to the paleokarstic surface, the deepest being meteorne in morske vode. Pojavljajo se v različnih nivo- about 75 m below the surface. Three indistinct horizons of jih glede na paleokraško površje, najgloblje približno 75 cavities/caves and intermediate vugs were recognized.
    [Show full text]
  • Museum of Natural History & Science Interpretation Guide for the Cavern
    Museum of Natural History & Science Interpretation Guide for The Cavern A cave is a naturally occurring hole in the ground large enough to be explored by humans. Caves can be found on every continent in the world. Caves, along with the objects found within them, are extremely fragile and take millions of years to form. They are home to unique organisms—many of which are still unknown to science; they are archaeological sites that preserve our cultural heritage; and geologic laboratories that demonstrate how water can both dissolve and deposit rock. Caves are a vital and non-renewable resource that must be conserved and protected. The Cavern is a recreation of a Kentucky limestone dissolution cave. It is the largest artificial cave in the United States—and some say the world—containing 535 feet of passage in an area 44 feet wide, 24 feet high and 64 feet long. Parts of the cave were modeled after two caves in Kentucky: Teamers Cave in Rockcastle County and Dyches Bridge Cave in Pulaski County. By modeling our cavern after these two caves, our dissolution cave has a realistic appearance. A dissolution cave is by far the most common type of cave. They can be found throughout the world if the right conditions present themselves. The formation of a dissolution cave requires four basic elements: rock, water, carbon dioxide and time. • Rock, especially carbonate rocks, such as limestone, is the first ingredient. These types of rocks were formed hundreds of millions of years ago. It is in the seas surrounding the continents that limestone is formed.
    [Show full text]
  • Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs
    ORIGINAL RESEARCH published: 28 April 2016 doi: 10.3389/feart.2016.00049 Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs Tomaso R. R. Bontognali 1*, Ilenia M. D’Angeli 2*, Nicola Tisato 1, 3, Crisogono Vasconcelos 1, Stefano M. Bernasconi 1, Esteban R. G. Gonzales 4 and Jo De Waele 2, 5 1 Department of Earth Sciences, ETH Zurich, Zurich, Switzerland, 2 Department of Biological, Geological and Environmental Sciences, Bologna University, Bologna, Italy, 3 Department of Geological Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX, USA, 4 Comité Espeleológico de Matanzas, Sociedad Espeleológica de Cuba, Matanzas, Cuba, 5 Associazione di Esplorazioni Geografiche la Venta, Treviso, Italy Unusual speleothems resembling giant mushrooms occur in Cueva Grande de Santa Catalina, Cuba. Although these mineral buildups are considered a natural heritage, their composition and formation mechanism remain poorly understood. Here we characterize their morphology and mineralogy and present a model for their genesis. We propose that the mushrooms, which are mainly comprised of calcite and aragonite, formed during four Edited by: different phases within an evolving cave environment. The stipe of the mushroom is an Karim Benzerara, assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts Centre National de la Recherche Scientifique, France that were subsequently encrusted by cave clouds (mammillaries). More peculiar is the Reviewed by: cap of the mushroom, which is morphologically similar to cerebroid stromatolites and Jakob Zopfi, thrombolites of microbial origin occurring in marine environments. Scanning electron University of Basel, Switzerland microscopy (SEM) investigations of this last unit revealed the presence of fossilized Michal Gradzinski, Jagiellonian University, Poland extracellular polymeric substances (EPS)—the constituents of biofilms and microbial *Correspondence: mats.
    [Show full text]
  • Karst Geology
    National Park Service Mammoth Cave U.S. Department of the Interior Mammoth Cave National Park Karst Geology Look Beneath Beneath the surface of South Central Kentucky lies a world characterized by miles of dark, seemingly endless passageways. The geological processes which formed this world referred to as Mammoth Cave began hundreds of millions of years ago and continue today. The Ancient World 350 million years ago the North American continent About 280 million years ago the sea level started to was located much closer to the equator. A shallow fall exposing the layers of limestone and sandstone. sea covered most of the southeastern United States, Additional tectonic forces caused the earth’s crust and its warm water supported a dense population of to slowly rise causing cracks to form in and between tiny organisms whose shells were made of calcium the limestone and sandstone formations. As the up- carbonate (CaCO3). As these creatures died, their lift continued, rivers developed which over millions shells accumulated by the billions on the sea fl oor. of years have created the sandstone-capped plateau In addition, calcium carbonate can precipitate from above the Green River and the low, almost fl at lime- the water itself. The build-up of material continued stone plain which extends southeast of I-65. for 70 million years accumulating seven hundred feet of limestone and shale followed by sixty feet of sandstone that was deposited over much of the area by a large river system fl owing into the sea from the north. “Acid Rain” Rain water, acidifi ed by carbon dioxide in the soil water, they enlarged faster.
    [Show full text]
  • Hypogenic Caves in Provence (France): Specific Features and Sediments
    Speleogenesis and Evolution of Karst Aquifers The Virtual Scientific Journal www.speleogenesis.info Hypogenic caves in Provence (France): Specific features and sediments Ph. Audra (1), J.-Y. Bigot (2) and L. Mocochain (3) (1)* Équipe Gestion et valorisation de l'environnement (GVE), UMR 6012 “ESPACE” du CNRS, Nice Sophia-Antipolis University, 98 boulevard Édouard Herriot, BP 209, FRANCE - 06204 NICE Cédex. E-mail: [email protected] (2) French caving federation. E-mail: [email protected] (3) Provence University, France. E-mail: [email protected] * Corresponding author Re-published by permission from: Acta Carsologica vol. 31, n.3, p.33-50. Abstract Two dry caves from French Provence (Adaouste and Champignons caves) were until now considered as “normal” caves, evolved under meteoric water flow conditions. A new approach gives evidence of a hypogenic origin from deep water uprising under artesian conditions. Specific morphologies and sediments associated with this hydrology are discussed. Keywords: hypogenic karst, hydrothermalism, subaqueous calcite deposits, condensation corrosion 1. Introduction Adaouste and Champignons caves are located in Provence, in strongly folded Jurassic limestone (Fig. 1). Most explored cave systems have evolved under The first opens at the top of Mirabeau cluse where the seeping meteoric water carrying biogenic CO2 under Durance River crosses it; the second is in the scarp of the gravity flow, torrential type in the vadose zone or under famous Sainte-Victoire Mountain. hydraulic charge in the phreatic zone (Ford and William, In the two caves, most of the morphological and 1988). Except for pseudokarsts resulting in processes sedimentary features related to classic gravific origin are other than solution, few minorities of cave systems find totally absent: their origin in artesian and hydrothermal settings.
    [Show full text]
  • Canyons & Caves
    CANYONS & CAVES A Newsletter from the Resource Management Offices Carlsbad Caverns National Park Issue No. 10 Fall 1998 HISTORIC ITEMS – Items of a historical nature continue to be moved around in Lower Cave and Slaughter Canyon Cave. Preserving America’s Natural and When items are moved, they are taken out of Cultural Heritage for future generations! context and information concerning their placement is lost. Moving an item also impacts the item and the cave floor. Please DO NOT move any historic item found in any cave. WELCOME to Steven Bekedam, a new SCA for Surface Edited by Dale L. Pate Resources. Steven EOD’s Oct. 1. TABLE OF CONTENTS WHAT’S HAPPENING IN SURFACE RESOURCES • Mountain Lion Transects begin again in October. The Resource News 1 dates for the transects are in the Calendar of Events. The Mystery of the Scattered Pearls 2 Contact David Roemer, ext. 373, if you’d like to Identifying Wetlands at Rattlesnake Springs 3 participate. Barite “Stalactites” in Lechuguilla 3 • The week of October 5 begins the field work to delineate Banner-tailed Kangaroo Rat 4 the active and historic wetlands boundaries at Rattlesnake Black-tailed Rattlesnake 4 Springs (see write up) Helictites and Subaqueous Helictites 5 • Renée Beymer and Diane Dobos-Bubno will attend two And the Times, They are a Change’n 5 back-to-back conferences in Albuquerque this November: Yes, We Have Algae 6 one focuses on vegetation management and one on Calendar of Events 8 riparian habitat and water use issues. RESOURCE NEWS CAVE RESOURCES VOLUNTEERS – Adios and thanks to Gosia Roemer and Jed Holmes for all the hard work they did SPRING AND SUMMER WEATHER – Hot and dry this summer.
    [Show full text]
  • Caves of Missouri
    CAVES OF MISSOURI J HARLEN BRETZ Vol. XXXIX, Second Series E P LU M R I U BU N S U 1956 STATE OF MISSOURI Department of Business and Administration Division of GEOLOGICAL SURVEY AND WATER RESOURCES T. R. B, State Geologist Rolla, Missouri vii CONTENT Page Abstract 1 Introduction 1 Acknowledgments 5 Origin of Missouri's caves 6 Cave patterns 13 Solutional features 14 Phreatic solutional features 15 Vadose solutional features 17 Topographic relations of caves 23 Cave "formations" 28 Deposits made in air 30 Deposits made at air-water contact 34 Deposits made under water 36 Rate of growth of cave formations 37 Missouri caves with provision for visitors 39 Alley Spring and Cave 40 Big Spring and Cave 41 Bluff Dwellers' Cave 44 Bridal Cave 49 Cameron Cave 55 Cathedral Cave 62 Cave Spring Onyx Caverns 72 Cherokee Cave 74 Crystal Cave 81 Crystal Caverns 89 Doling City Park Cave 94 Fairy Cave 96 Fantastic Caverns 104 Fisher Cave 111 Hahatonka, caves in the vicinity of 123 River Cave 124 Counterfeiters' Cave 128 Robbers' Cave 128 Island Cave 130 Honey Branch Cave 133 Inca Cave 135 Jacob's Cave 139 Keener Cave 147 Mark Twain Cave 151 Marvel Cave 157 Meramec Caverns 166 Mount Shira Cave 185 Mushroom Cave 189 Old Spanish Cave 191 Onondaga Cave 197 Ozark Caverns 212 Ozark Wonder Cave 217 Pike's Peak Cave 222 Roaring River Spring and Cave 229 Round Spring Cavern 232 Sequiota Spring and Cave 248 viii Table of Contents Smittle Cave 250 Stark Caverns 256 Truitt's Cave 261 Wonder Cave 270 Undeveloped and wild caves of Missouri 275 Barry County 275 Ash Cave
    [Show full text]
  • Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005
    193 INTRODUCTION TO THREE FIELD TRIP GUIDES: Karst Features in the Black Hills, Wyoming and South Dakota- Prepared for the Karst Interest Group Workshop, September 2005 By Jack B. Epstein1 and Larry D. Putnam2 1U.S. Geological Survey, National Center, MS 926A, Reston, VA 20192 2Hydrologist, U.S. Geological Survey, 1608 Mountain View Road, Rapid City, SD 57702. This years Karst Interest Group (KIG) field trips will demonstrate the varieties of karst to be seen in the semi-arid Black Hills of South Dakota and Wyoming, and will offer comparisons to karst seen in the two previous KIG trips in Florida (Tihansky and Knochenmus, 2001) and Virginia (Orndorff and Harlow, 2002) in the more humid eastern United States. The Black Hills comprise an irregularly shaped uplift, elongated in a northwest direction, and about 130 miles long and 60 miles wide (figure 1). Erosion, following tectonic uplift in the late Cretaceous, has exposed a core of Precambrian metamorphic and igneous rocks which are in turn rimmed by a series of sed- iments of Paleozoic and Mesozoic age which generally dip away from the center of the uplift. The homocli- nal dips are locally interrupted by monoclines, structural terraces, low-amplitude folds, faults, and igneous intrusions. These rocks are overlapped by Tertiary and Quaternary sediments and have been intruded by scattered Tertiary igneous rocks. The depositional environments of the Paleozoic and Mesozoic sedimen- tary rocks ranged from shallow marine to near shore-terrestrial. Study of the various sandstones, shales, siltstones, dolomites and limestones indicate that these rocks were deposited in shallow marine environ- ments, tidal flats, sand dunes, carbonate platforms, and by rivers.
    [Show full text]
  • Journal of Cave and Karst Studies
    September 2019 Volume 81, Number 3 JOURNAL OF ISSN 1090-6924 A Publication of the National CAVE AND KARST Speleological Society STUDIES DEDICATED TO THE ADVANCEMENT OF SCIENCE, EDUCATION, EXPLORATION, AND CONSERVATION Published By BOARD OF EDITORS The National Speleological Society Anthropology George Crothers http://caves.org/pub/journal University of Kentucky Lexington, KY Office [email protected] 6001 Pulaski Pike NW Huntsville, AL 35810 USA Conservation-Life Sciences Julian J. Lewis & Salisa L. Lewis Tel:256-852-1300 Lewis & Associates, LLC. [email protected] Borden, IN [email protected] Editor-in-Chief Earth Sciences Benjamin Schwartz Malcolm S. Field Texas State University National Center of Environmental San Marcos, TX Assessment (8623P) [email protected] Office of Research and Development U.S. Environmental Protection Agency Leslie A. North 1200 Pennsylvania Avenue NW Western Kentucky University Bowling Green, KY Washington, DC 20460-0001 [email protected] 703-347-8601 Voice 703-347-8692 Fax [email protected] Mario Parise University Aldo Moro Production Editor Bari, Italy [email protected] Scott A. Engel Knoxville, TN Carol Wicks 225-281-3914 Louisiana State University [email protected] Baton Rouge, LA [email protected] Journal Copy Editor Exploration Linda Starr Paul Burger Albuquerque, NM National Park Service Eagle River, Alaska [email protected] Microbiology Kathleen H. Lavoie State University of New York Plattsburgh, NY [email protected] Paleontology Greg McDonald National Park Service Fort Collins, CO The Journal of Cave and Karst Studies , ISSN 1090-6924, CPM [email protected] Number #40065056, is a multi-disciplinary, refereed journal pub- lished four times a year by the National Speleological Society.
    [Show full text]
  • Geologic Resources Inventory Report, Wind Cave National Park
    National Park Service U.S. Department of the Interior Natural Resource Program Center Wind Cave National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/087 THIS PAGE: Calcite Rafts record former water levels at the Deep End a remote pool discovered in January 2009. ON THE COVER: On the Candlelight Tour Route in Wind Cave boxwork protrudes from the ceiling in the Council Chamber. NPS Photos: cover photo by Dan Austin, inside photo by Even Blackstock Wind Cave National Park Geologic Resources Inventory Report Natural Resource Report NPS/NRPC/GRD/NRR—2009/087 Geologic Resources Division Natural Resource Program Center P.O. Box 25287 Denver, Colorado 80225 March 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Denver, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientific community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. Natural Resource Reports are the designated medium for disseminating high priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. Examples of the diverse array of reports published in this series include vital signs monitoring plans; "how to" resource management papers; proceedings of resource management workshops or conferences; annual reports of resource programs or divisions of the Natural Resource Program Center; resource action plans; fact sheets; and regularly-published newsletters.
    [Show full text]
  • Hypogene Speleogenesis and Speleothems of Sima De La Higuera Cave (Murcia, South-Eastern Spain)
    Karst and Caves in Carbonate Rocks, Salt and Gypsum – oral 2013 ICS Proceedings HYPOGENE SPELEOGENESIS AND SPELEOTHEMS OF SIMA DE LA HIGUERA CAVE (MURCIA, SOUTH-EASTERN SPAIN) Fernando Gázquez1,2, José-María Calaforra1 1Water Resources and Environmental Geology Research Group, Dept. of Hydrogeology and Analytical Chemistry – University of Almería, Crta.Sacramento s/n, 04120 La Cañada de San Urbano, Almería, Spain, [email protected], [email protected] 2Unidad Asociada UVA-CSIC al Centro de Astrobiología, University of Valladolid, Parque Tecnológico Boecillo, 47151, Valladolid (Spain) Sima de la Higuera Cave (Pliego, south-eastern Spain) has been recently adapted for speleological use. Nevertheless, knowledge of the hypogenic origin of this cavity is still quite limited. The peculiar genetic mechanisms could provide added value if the cave is exploited for speleotourism. By studying geomorphological features and speleothem characteristics, it has been possible to deduce the predominant speleogenetic mechanism (whether hypogenic or epigenic) that controlled the evolution of this cave. The hypogenic mechanism that gave rise to this cavity was associated with upflow of CO2-rich hydrothermal fluid from depth, and was unconnected to meteoric water seepage. In this paper we describe some of the geomorphological evidence and unusual speleothems in Sima de la Higuera Cave. Large scallops are found on the upper level (-74 m); these are related to the mechanism of hypogenic speleogenesis and generally indicate the direction of ascending flow. There are also corrosion crusts made of micritic calcite. In addition, bubble trails related to bubbles of rising CO2 have been identified. Centimetric calcite spar speleothems frequently fill fractures in the host rock.
    [Show full text]
  • 871 Definitions
    433.871 Definitions. As used in this chapter, the following words shall have the meanings stated unless the context requires otherwise: (1) "Cave" means any naturally occurring void, cavity, recess, or system of interconnecting passages beneath the surface of the earth containing a black zone including natural subterranean water and drainage systems, but not including any mine, tunnel, aqueduct, or other man-made excavation, which is large enough to permit a person to enter. The term "cave" includes or is synonymous with "cavern." (2) "Commercial cave" means any cave utilized by the owner for the purposes of exhibition to the general public, whether as a profit or nonprofit enterprise, wherein a fee for entry is collected. (3) "Gate" means any structure or device situated so as to limit or prohibit access or entry to any cave. (4) "Person" or "persons" means any individual, partnership, firm, association, trust, or corporation or other legal entity. (5) "Owner" means a person who owns title to land wherein a cave is located, including a person who owns title to a leasehold estate in the land and specifically including the Commonwealth and any of its agencies, departments, boards, bureaus, commissions, or authorities as well as counties, municipalities and other political subdivisions of the Commonwealth. (6) "Speleothem" means a natural mineral formation or deposit occurring in a cave. This shall include or be synonymous with, but not restricted to stalagmite, stalactite, helectite, shield, anthodite, gypsum flower and needle, angel's hair, soda straw, drapery, bacon, cave pearl, popcorn, coral, rimstone dam, column, palette, flowstone, et cetera.
    [Show full text]