ARTICLE © by the Fukui Prefectural Dinosaur Museum
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Valérie Martin, Varavudh Suteethorn & Eric Buffetaut, Description of the Type and Referred Material of Phuwiangosaurus
ORYCTOS, V ol . 2 : 39 - 91, Décembre 1999 DESCRIPTION OF THE TYPE AND REFERRED MATERIAL OF PHUWIANGOSAURUS SIRINDHORNAE MARTIN, BUFFETAUT AND SUTEETHORN, 1994, A SAUROPOD FROM THE LOWER CRETACEOUS OF THAILAND Valérie MARTIN 1, Varavudh SUTEETHORN 2 and Eric BUFFETAUT 3 1 Musée des Dinosaures, 11260 Espéraza, France 2 Geological Survey Division, Department of Mineral Resources, Rama VI Road, 10400 Bangkok, Thailand 3 CNRS (UMR 5561), 16 cour du Liégat, 75013 Paris, France Abstract : The type specimen of P. sirindhornae Martin, Buffetaut and Suteethorn, 1994 is an incomplete, partly articulated, skeleton discovered in the Phu Wiang area of northeastern Thailand). Most of the abundant sauropod material from the Sao Khua Formation (Early Cretaceous), collected on the Khorat Plateau, in northeastern Thailand, is referable to this species. Phuwiangosaurus is a middle-sized sauropod, which is clearly different from the Jurassic Chinese sauropods (Euhelopodidae). On the basis of a few jaw elements and teeth, P. sirindhornae may be considered as an early representative of the family Nemegtosauridae. Key words : Sauropoda, Osteology, Early Cretaceous, Thailand Description du type et du matériel rapporté de Phuwiangosaurus sirindhornae Martin, Buffetaut et Suteethorn, 1994, un sauropode du Crétacé inférieur de Thaïlande Résumé : Le spécimen type de Phuwiangosaurus sirindhornae est un squelette incomplet, partiellement articulé, découvert dans la région de Phu Wiang (Nord-Est de la Thaïlande). Phuwiangosaurus est un sauropode de taille moyenne (15 à 20 m de longueur) très différent des sauropodes du Jurassique chinois. La majeure partie de l’abondant matériel de sauropodes, récolté sur le Plateau de Khorat (Formation Sao Khua, Crétacé inférieur), est rap - portée à cette espèce. -
Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex
Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex By Karen E. Poole B.A. in Geology, May 2004, University of Pennsylvania M.A. in Earth and Planetary Sciences, August 2008, Washington University in St. Louis A Dissertation submitted to The Faculty of The Columbian College of Arts and Sciences of The George Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 31, 2015 Dissertation Directed by Catherine Forster Professor of Biology The Columbian College of Arts and Sciences of The George Washington University certifies that Karen Poole has passed the Final Examination for the degree of Doctor of Philosophy as of August 10th, 2015. This is the final and approved form of the dissertation. Phylogeny and Biogeography of Iguanodontian Dinosaurs, with Implications from Ontogeny and an Examination of the Function of the Fused Carpal-Digit I Complex Karen E. Poole Dissertation Research Committee: Catherine A. Forster, Professor of Biology, Dissertation Director James M. Clark, Ronald Weintraub Professor of Biology, Committee Member R. Alexander Pyron, Robert F. Griggs Assistant Professor of Biology, Committee Member ii © Copyright 2015 by Karen Poole All rights reserved iii Dedication To Joseph Theis, for his unending support, and for always reminding me what matters most in life. To my parents, who have always encouraged me to pursue my dreams, even those they didn’t understand. iv Acknowledgements First, a heartfelt thank you is due to my advisor, Cathy Forster, for giving me free reign in this dissertation, but always providing valuable commentary on any piece of writing I sent her, no matter how messy. -
Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda)
Inferring Body Mass in Extinct Terrestrial Vertebrates and the Evolution of Body Size in a Model-Clade of Dinosaurs (Ornithopoda) by Nicolás Ernesto José Campione Ruben A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto © Copyright by Nicolás Ernesto José Campione Ruben 2013 Inferring body mass in extinct terrestrial vertebrates and the evolution of body size in a model-clade of dinosaurs (Ornithopoda) Nicolás E. J. Campione Ruben Doctor of Philosophy Ecology and Evolutionary Biology University of Toronto 2013 Abstract Organismal body size correlates with almost all aspects of ecology and physiology. As a result, the ability to infer body size in the fossil record offers an opportunity to interpret extinct species within a biological, rather than simply a systematic, context. Various methods have been proposed by which to estimate body mass (the standard measure of body size) that center on two main approaches: volumetric reconstructions and extant scaling. The latter are particularly contentious when applied to extinct terrestrial vertebrates, particularly stem-based taxa for which living relatives are difficult to constrain, such as non-avian dinosaurs and non-therapsid synapsids, resulting in the use of volumetric models that are highly influenced by researcher bias. However, criticisms of scaling models have not been tested within a comprehensive extant dataset. Based on limb measurements of 200 mammals and 47 reptiles, linear models were generated between limb measurements (length and circumference) and body mass to test the hypotheses that phylogenetic history, limb posture, and gait drive the relationship between stylopodial circumference and body mass as critics suggest. -
Reference Site Taphofacies Lithology Paleontology Weathering Transport
Reference Site Taphofacies Lithology Paleontology Weathering Transport Groups Allosaurus Ceratosaurus Torvosaurus Small Theropod Camarosaurus Apatosaurus Barasaurus Diplodocus Haplocathosaurus Brachyosaurus Mymo Stegosaurus Dryosaurus Heterodontosaurus Camptosaurus Pterosaurus Crocodiles Turtle Frogs Fish Lizards Sphenodont Mammals Snails Unionids coarse grained sand- articulated partial conglomerate, trough skeletons, associated cross-bedding, fining by largegly Kirkland, 2006 FPA Channel sandstone upward sequences disarticulated X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulations, Dodson, 1980 Bone Cabin Quarry Channel sandstone common, poorly to mostly disarticulated X X X X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulations, Dodson, 1980 Quarry 13 Channel sandstone common, poorly to mostly disarticulated X X X X X X fine to coarse sand with mud and Mass accumulation, I - 17; II - 30; III - 60; carbonate clasts, mixed high to low scrap -37 (Layton Dodson, 1980 Dinosaur NM Channel sandstone common, poorly to articulation 0-1 (Fiorillo, 1994) (1977) X X X X X X X X X X fine to coarse sand with mud and Mass accumulation, I - 1205, II - 712, III - carbonate clasts, mixed high to low 279 (Richmond and Richmond and Morrison,Dry 1998 Mesa Channel sandstone common, poorly to articulation Morrison) X X X X X X X X X X X X X X X X fine to coarse sand with mud and carbonate clasts, Mass accumulation, Evanoff and Carpenter, Felch1998 Quarry 1 Channel sandstone common, poorly to mostly -
From the Early Cretaceous of Laos
Naturwissenschaften DOI 10.1007/s00114-012-0911-7 ORIGINAL PAPER The first definitive Asian spinosaurid (Dinosauria: Theropoda) from the early cretaceous of Laos Ronan Allain & Tiengkham Xaisanavong & Philippe Richir & Bounsou Khentavong Received: 25 November 2011 /Revised: 19 March 2012 /Accepted: 22 March 2012 # Springer-Verlag 2012 Abstract Spinosaurids are among the largest and most spe- from Asia. Cladistic analysis identifies Ichthyovenator as a cialized carnivorous dinosaurs. The morphology of their member of the sub-clade Baryonychinae and suggests a crocodile-like skull, stomach contents, and oxygen isotopic widespread distribution of this clade at the end of the Early composition of the bones suggest they had a predominantly Cretaceous. Chilantaisaurus tashouikensis from the Creta- piscivorous diet. Even if close relationships between spino- ceous of Inner Mongolia, and an ungual phalanx from the saurids and Middle Jurassic megalosaurs seem well estab- Upper Jurassic of Colorado are also referred to spinosaurids, lished, very little is known about the transition from a extending both the stratigraphical and geographical range of generalized large basal tetanuran to the specialized morphol- this clade. ogy of spinosaurids. Spinosaurid remains were previously known from the Early to Late Cretaceous of North Africa, Keywords Cretaceous . Savannakhet basin . Theropoda . Europe, and South America. Here, we report the discovery Spinosauridae . Asia of a new spinosaurid theropod from the late Early Creta- ceous Savannakhet Basin in Laos, which is distinguished by an autapomorphic sinusoidal dorsosacral sail. This new Introduction taxon, Ichthyovenator laosensis gen. et sp. nov., includes well-preserved and partially articulated postcranial remains. The spinosaurids are among the most bizarre dinosaurs. The Although possible spinosaurid teeth have been reported morphology of their superficially crocodile-like skull from various Early Cretaceous localities in Asia, the new (Taquet 1984; Charig and Milner 1997; Sereno et al. -
Dinosaurs Found at Cleveland-Lloyd Dinosaur
WHAT DINOSAUR DID THESE BONES COME FROM? STUDENT RESOURCE 2019•2020 DINOSAURS FOUND AT CLEVELAND-LLOYD DINOSAUR QUARRY In the charts below you will find important information about the different types and species of dinosaur fossils excavated between 1960-1990 at the Cleveland-Lloyd Dinosaur Quarry in Emery County, Utah. ORNITHISCHIA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Camptosaurus dispar Hoof-like claws Toothless beak and Herbivore 24 feet long, 1,500 lbs. 10-20 inches long 4 feet tall on their hands small teeth along the and feet sides of its mouth. Stegosaurus armatus Hoof-like claws Toothless beak and Herbivore 30 feet long, 6,048 lbs. 15-25 inches long 9 feet tall on their hands small teeth along the and feet sides of its mouth. SAURISCHIA THEROPODA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Allosaurus fragilis Carnivore 35 feet long, 3,136 lbs. 15-25 inches long Sharp, clawed Sharp, pointed 16 feet tall hands teeth Ceratosaurus nasicornis Carnivore 20 feet long, 2,192 lbs. 12-20 inches long Sharp, clawed Sharp, pointed 6 feet tall hands teeth Stokesosaurus clevelandi Carnivore 13.5 feet long, 771 lbs. 26 inches long Sharp, clawed Sharp, pointed 6 feet tall hands teeth Torvosaurus tanneri Carnivore 33 feet long, 8,800 lbs. Unknown Sharp, clawed Sharp, pointed 14 feet tall hands teeth Marshosaurus bicentesimus Carnivore 20 feet long, 2,240 lbs. 21 inches long Sharp, clawed Sharp, pointed 8 feet tall hands teeth SAUROPODA SPECIES DIET SIZE WEIGHT ADULT FEMUR CLAWS JAW Barosaurus lentus 5 claws on each of its Herbivore 85 feet long, 44,000 lbs. -
Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A. -
Dinosaur Footprint Assemblage from the Lower Cretaceous Khok Kruat Formation, Khorat Group, Northeastern Thailand
Geoscience Frontiers 8 (2017) 1479e1493 HOSTED BY Contents lists available at ScienceDirect China University of Geosciences (Beijing) Geoscience Frontiers journal homepage: www.elsevier.com/locate/gsf Research Paper Dinosaur footprint assemblage from the Lower Cretaceous Khok Kruat Formation, Khorat Group, northeastern Thailand Shohei Kozu a,*, Apsorn Sardsud b, Doungrutai Saesaengseerung b, Cherdchan Pothichaiya b, Sachiko Agematsu a, Katsuo Sashida a a Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan b Department of Mineral Resources, Ministry of Natural Resources and Environment, Thailand article info abstract Article history: The Khok Kruat Formation is the upper part of the Khorat Group, which consists of upper Lower Received 30 November 2016 Cretaceous non-marine sedimentary rocks in northeastern Thailand. Many dinosaur footprints have been Received in revised form known from the upper Lower Cretaceous (AptianeAlbian) Khok Kruat Formation at the Huai Dam Chum 19 January 2017 (Tha Uthen) site, northeastern Thailand. Approximately 600 tracks occur in thin mudstone layer of the Accepted 3 February 2017 northern part of the outcrop at the Huai Dam Chum track site. Two types of footprints, small-sized Available online 2 March 2017 Handling Editor: X.Q. Wan theropod and crocodylomorph are imprinted with mud cracks and ripple marks on the thin mud layer. Most of footprints are referred to cf. Asianopodus, and are imprinted by small-sized theropoda, Keywords: probably ornithomimosauria. Theropod tracks are mainly separated into two groups, Group A and Group Dinosaur footprint assemblage B. From ichnological viewpoints, the small-sized theropod track assemblage indicates the herd behaviour Cretaceous and its idiosyncratic group composition. -
A Century of Spinosaurs - a Review and Revision of the Spinosauridae
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online A century of spinosaurs - a review and revision of the Spinosauridae with comments on their ecology HONE David William Elliott1, * HOLTZ Thomas Richard Jnr2 1 School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK 2 Department of Geology, University of Maryland, College Park, MD 20742 USA Abstract: The spinosaurids represent an enigmatic and highly unusual form of large tetanuran theropods that were first identified in 1915. A recent flurry of discoveries and taxonomic revisions of this important and interesting clade had added greatly to our knowledge, however, spinosaur body fossils are generally rare and most species are known from only limited skeletal remains. Their unusual anatomical adaptations to the skull, limbs and axial column all differ from other large theropods and point to an unusual ecological niche and a lifestyle intimately linked to water. Keywords: Theropoda, Megalosauroidea, Baryonychinae, Spinosaurinae, palaeoecology E-mail: [email protected] 1 Introduction The Spinosauridae is an enigmatic clade of large and carnivorous theropods from the Jurassic and Cretaceous that are known from both Gondwana and Laurasia (Holtz et al., 2004). Despite their wide temporal and geographic distribution, the clade is known primarily from teeth and the body fossil record is extremely limited (Bertin, 2010). As such, relatively little is known about this group of animals, although their unusual morphology with regard to skull shape, dentition, dorsal neural spines and other features mark them out as divergent from the essential bauplan of other non-tetanuran theropods (Fig 1). -
506 Kellner.Pmd
Arquivos do Museu Nacional, Rio de Janeiro, v.62, n.3, p.309-320, jul./set.2004 ISSN 0365-4508 ON A SEQUENCE OF SACROCAUDAL THEROPOD DINOSAUR VERTEBRAE FROM THE LOWER CRETACEOUS SANTANA FORMATION, NORTHEASTERN BRAZIL 1 (With 14 figures) JONATHAS DE SOUZA BITTENCOURT 2, 3 ALEXANDER WILHELM ARMIN KELLNER 2, 4 ABSTRACT: Besides being rare, most theropod remains from fossil deposits of Brazil are incomplete. Up to date the Romualdo Member (Aptian/Albian) of the Santana Formation yielded six theropod specimens. To those we add the description of a sequence of three posterior sacral and six anterior caudal vertebrae with three chevrons (MN 4743-V). Differences between MN 4743-V and members of the major theropod clades such as Ceratosauria, Allosauroidea and Coelorusauria do not allow its assignment to one of those groups. Instead, MN 4743-V is referred to the Spinosauroidea (Spinosauridae plus Torvosauridae), based on the presence of three robust laminae below the transverse process of the anterior caudals, which delimit three fossae. The lack of paired processes on the chevrons suggest that within Spinosauroidea MN 4743-V is a member of the Spinosauridae. This is congruent with previous findings of spinosaurids in the Romualdo Member. MN 4743-V differs from the remaining specimens that present sacrocaudal elements indicating the co-existence of at least five theropod species in this deposit. Key words: Spinosauroidea, Dinosauria, Santana Formation, Lower Cretaceous, Brazil. RESUMO: Sobre uma seqüência de vértebras sacrocaudais de um dinossauro terópode da Formação Santana, Cretáceo Inferior, Nordeste do Brasil. Restos de terópodes de depósitos fossilíferos brasileiros são raros, sendo a maioria dos espécimens incompletos. -
A Dinosaur Tail Vertebra Leads Researchers on the Right Track 2 April 2021
A dinosaur tail vertebra leads researchers on the right track 2 April 2021 journal Historical Biology, and now an updated version has been published. Spinosaurs (family Spinosauridae) are large to giant carnivorous dinosaurs that have been familiar to a wide audience since the third film in the Jurassic Park series at the latest. Spinosaurs were often larger than Tyrannosaurus rex! They have a long crocodile-like skull and conical teeth that are also reminiscent of crocodiles. The animals probably ate large fish but also other dinosaurs. Spinosaurs were found almost all over the world, and so some time ago teeth were found in Thailand, which were named Siamosaurus suteethorni. Teeth are, however, hardly suitable for determining the species and so the validity of this spinosaur species has often been questioned since the remains of the skeleton have never been discovered. "When I was a doctoral student at the University of Bonn, I found a tail piece made of eight vertebrae lying unnoticed in a drawer in the Sirindhorn Museum in Thailand," says Dr. Adun Samathi, head of the project. The vertebra looks similar to that of Camarillasaurus from Spain. Camarillasaurus was originally assigned to the so-called ceratosaurs, which also includes Ceratosaurus and Carnotaurus. "But this assignment of Camarillasaurus was problematic because its morphology is more similar Credit: Pixabay/CC0 Public Domain to spinosaurids, including Thai material, than to ceratosaurs," says Samathi. Therefore, Camarillasaurus has been re-examined to better understand the Thai dinosaur. Scientists from Mahasarakham University (Thailand) and the University of Bonn have Things became clearer when Prof. -
A New Clade of Archaic Large-Bodied Predatory Dinosaurs (Theropoda: Allosauroidea) That Survived to the Latest Mesozoic
Naturwissenschaften (2010) 97:71–78 DOI 10.1007/s00114-009-0614-x ORIGINAL PAPER A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic Roger B. J. Benson & Matthew T. Carrano & Stephen L. Brusatte Received: 26 August 2009 /Revised: 27 September 2009 /Accepted: 29 September 2009 /Published online: 14 October 2009 # Springer-Verlag 2009 Abstract Non-avian theropod dinosaurs attained large Neovenatoridae includes a derived group (Megaraptora, body sizes, monopolising terrestrial apex predator niches new clade) that developed long, raptorial forelimbs, in the Jurassic–Cretaceous. From the Middle Jurassic cursorial hind limbs, appendicular pneumaticity and small onwards, Allosauroidea and Megalosauroidea comprised size, features acquired convergently in bird-line theropods. almost all large-bodied predators for 85 million years. Neovenatorids thus occupied a 14-fold adult size range Despite their enormous success, however, they are usually from 175 kg (Fukuiraptor) to approximately 2,500 kg considered absent from terminal Cretaceous ecosystems, (Chilantaisaurus). Recognition of this major allosauroid replaced by tyrannosaurids and abelisaurids. We demon- radiation has implications for Gondwanan paleobiogeog- strate that the problematic allosauroids Aerosteon, Austral- raphy: The distribution of early Cretaceous allosauroids ovenator, Fukuiraptor and Neovenator form a previously does not strongly support the vicariant hypothesis of unrecognised but ecologically diverse and globally distrib- southern dinosaur evolution or any particular continental uted clade (Neovenatoridae, new clade) with the hitherto breakup sequence or dispersal scenario. Instead, clades enigmatic theropods Chilantaisaurus, Megaraptor and the were nearly cosmopolitan in their early history, and later Maastrichtian Orkoraptor. This refutes the notion that distributions are explained by sampling failure or local allosauroid extinction pre-dated the end of the Mesozoic.