Scientific Computing

Total Page:16

File Type:pdf, Size:1020Kb

Scientific Computing Scientific Computing (PHYS 2109/Ast 3100 H) I. Scientific Software Development SciNet HPC Consortium University of Toronto Winter 2014/2015 Lecture 8: DATA STRUCTURES I Basic Types I structures I linked List, Stacks/Queues I binary Trees I Hash tables (maps) Basic Types in C++ \Primitive" types * boolean: bool * integer type: [unsigned] short, int, long, long long * floating point type: float, double, long double, std::complex<float>, ... * character or string of characters: char, char*, std::string \Composite" types / \Abstract" Data Structures * array, pointer * class, structure, enumerated type, union Structures Classes/Objects Recall Erik's StoneWt example: Starting Point... Pointers Classes/Objects Recall Erik's StoneWt example: Starting Point... Structures Pointers Starting Point... Structures Pointers Classes/Objects Recall Erik's StoneWt example: pmovie->title ≡ (*pmovie).title 6= *pmovie.title ∼ *(pmovie.title) ≡ (*pmovie).title 6= *pmovie.title ∼ *(pmovie.title) pmovie->title 6= *pmovie.title ∼ *(pmovie.title) pmovie->title ≡ (*pmovie).title pmovie->title ≡ (*pmovie).title 6= *pmovie.title ∼ *(pmovie.title) Structure w/pointer: Pointer to a structure: Ptr to a structure w/ptr: List Structures: Structure w/pointer: Ptr to a structure w/ptr: List Structures: Pointer to a structure: Ptr to a structure w/ptr: List Structure w/pointer: Structures: Pointer to a structure: List Structure w/pointer: Structures: Pointer to a structure: Ptr to a structure w/ptr: Structure w/pointer: Structures: Pointer to a structure: Ptr to a structure w/ptr: List H Queue H Stack I lifo I fifo H Other examples: double linked lists, circular lists, double-ended queues, ... Linear Data Structures Lists / Stacks / Queues H Linked Lists H Queue I fifo H Other examples: double linked lists, circular lists, double-ended queues, ... Linear Data Structures Lists / Stacks / Queues H Linked Lists H Stack I lifo H Other examples: double linked lists, circular lists, double-ended queues, ... Linear Data Structures Lists / Stacks / Queues H Queue H Linked Lists H Stack I lifo I fifo Linear Data Structures Lists / Stacks / Queues H Queue H Linked Lists H Stack I lifo I fifo H Other examples: double linked lists, circular lists, double-ended queues, ... stack { implementation, from scratch stack { implementation, from scratch stack { implementation, from scratch stack/queue { implementation, using the C++ STL The C++ Standard Template Library generic collection of class templates and algorithms H Container class templates: I std::deque, double-ended queue I std::forward list, singly linked list I std::list, doubly linked list I std::stack<int> myStack; I std::map/multimap, sorted associative array and multimap I Functions (stack: top, push, pop, size) I std::queue, single-ended queue (std::priority queue) I Alogrithms I std::stack, stack I Modifiers I std::unordered map/multimap, unordered map/multimap, hash tables I std::vector, resizable array Binary Trees ± abstract data structure, such each node has at most two \children" « linked abstract data structure composed of nodes « each node contains a field and one or more pointers to other nodes « recursive structures « a linear list is trivially a tree « graph theory Hash Table (map) ± abstract data structure used to implement an associative array « map keys to values « uses a hash function to compute an index into an array of buckets or slots, from which the correct value can be found « aka dictionary or map Data Structures & Algorithms.
Recommended publications
  • Application of TRIE Data Structure and Corresponding Associative Algorithms for Process Optimization in GRID Environment
    Application of TRIE data structure and corresponding associative algorithms for process optimization in GRID environment V. V. Kashanskya, I. L. Kaftannikovb South Ural State University (National Research University), 76, Lenin prospekt, Chelyabinsk, 454080, Russia E-mail: a [email protected], b [email protected] Growing interest around different BOINC powered projects made volunteer GRID model widely used last years, arranging lots of computational resources in different environments. There are many revealed problems of Big Data and horizontally scalable multiuser systems. This paper provides an analysis of TRIE data structure and possibilities of its application in contemporary volunteer GRID networks, including routing (L3 OSI) and spe- cialized key-value storage engine (L7 OSI). The main goal is to show how TRIE mechanisms can influence de- livery process of the corresponding GRID environment resources and services at different layers of networking abstraction. The relevance of the optimization topic is ensured by the fact that with increasing data flow intensi- ty, the latency of the various linear algorithm based subsystems as well increases. This leads to the general ef- fects, such as unacceptably high transmission time and processing instability. Logically paper can be divided into three parts with summary. The first part provides definition of TRIE and asymptotic estimates of corresponding algorithms (searching, deletion, insertion). The second part is devoted to the problem of routing time reduction by applying TRIE data structure. In particular, we analyze Cisco IOS switching services based on Bitwise TRIE and 256 way TRIE data structures. The third part contains general BOINC architecture review and recommenda- tions for highly-loaded projects.
    [Show full text]
  • An Alternative to Fibonacci Heaps with Worst Case Rather Than Amortized Time Bounds∗
    Relaxed Fibonacci heaps: An alternative to Fibonacci heaps with worst case rather than amortized time bounds¤ Chandrasekhar Boyapati C. Pandu Rangan Department of Computer Science and Engineering Indian Institute of Technology, Madras 600036, India Email: [email protected] November 1995 Abstract We present a new data structure called relaxed Fibonacci heaps for implementing priority queues on a RAM. Relaxed Fibonacci heaps support the operations find minimum, insert, decrease key and meld, each in O(1) worst case time and delete and delete min in O(log n) worst case time. Introduction The implementation of priority queues is a classical problem in data structures. Priority queues find applications in a variety of network problems like single source shortest paths, all pairs shortest paths, minimum spanning tree, weighted bipartite matching etc. [1] [2] [3] [4] [5] In the amortized sense, the best performance is achieved by the well known Fibonacci heaps. They support delete and delete min in amortized O(log n) time and find min, insert, decrease key and meld in amortized constant time. Fast meldable priority queues described in [1] achieve all the above time bounds in worst case rather than amortized time, except for the decrease key operation which takes O(log n) worst case time. On the other hand, relaxed heaps described in [2] achieve in the worst case all the time bounds of the Fi- bonacci heaps except for the meld operation, which takes O(log n) worst case ¤Please see Errata at the end of the paper. 1 time. The problem that was posed in [1] was to consider if it is possible to support both decrease key and meld simultaneously in constant worst case time.
    [Show full text]
  • CS 106X, Lecture 21 Tries; Graphs
    CS 106X, Lecture 21 Tries; Graphs reading: Programming Abstractions in C++, Chapter 18 This document is copyright (C) Stanford Computer Science and Nick Troccoli, licensed under Creative Commons Attribution 2.5 License. All rights reserved. Based on slides created by Keith Schwarz, Julie Zelenski, Jerry Cain, Eric Roberts, Mehran Sahami, Stuart Reges, Cynthia Lee, Marty Stepp, Ashley Taylor and others. Plan For Today • Tries • Announcements • Graphs • Implementing a Graph • Representing Data with Graphs 2 Plan For Today • Tries • Announcements • Graphs • Implementing a Graph • Representing Data with Graphs 3 The Lexicon • Lexicons are good for storing words – contains – containsPrefix – add 4 The Lexicon root the art we all arts you artsy 5 The Lexicon root the contains? art we containsPrefix? add? all arts you artsy 6 The Lexicon S T A R T L I N G S T A R T 7 The Lexicon • We want to model a set of words as a tree of some kind • The tree should be sorted in some way for efficient lookup • The tree should take advantage of words containing each other to save space and time 8 Tries trie ("try"): A tree structure optimized for "prefix" searches struct TrieNode { bool isWord; TrieNode* children[26]; // depends on the alphabet }; 9 Tries isWord: false a b c d e … “” isWord: true a b c d e … “a” isWord: false a b c d e … “ac” isWord: true a b c d e … “ace” 10 Reading Words Yellow = word in the trie A E H S / A E H S A E H S A E H S / / / / / / / / A E H S A E H S A E H S A E H S / / / / / / / / / / / / A E H S A E H S A E H S / / / / / / /
    [Show full text]
  • Lecture 04 Linear Structures Sort
    Algorithmics (6EAP) MTAT.03.238 Linear structures, sorting, searching, etc Jaak Vilo 2018 Fall Jaak Vilo 1 Big-Oh notation classes Class Informal Intuition Analogy f(n) ∈ ο ( g(n) ) f is dominated by g Strictly below < f(n) ∈ O( g(n) ) Bounded from above Upper bound ≤ f(n) ∈ Θ( g(n) ) Bounded from “equal to” = above and below f(n) ∈ Ω( g(n) ) Bounded from below Lower bound ≥ f(n) ∈ ω( g(n) ) f dominates g Strictly above > Conclusions • Algorithm complexity deals with the behavior in the long-term – worst case -- typical – average case -- quite hard – best case -- bogus, cheating • In practice, long-term sometimes not necessary – E.g. for sorting 20 elements, you dont need fancy algorithms… Linear, sequential, ordered, list … Memory, disk, tape etc – is an ordered sequentially addressed media. Physical ordered list ~ array • Memory /address/ – Garbage collection • Files (character/byte list/lines in text file,…) • Disk – Disk fragmentation Linear data structures: Arrays • Array • Hashed array tree • Bidirectional map • Heightmap • Bit array • Lookup table • Bit field • Matrix • Bitboard • Parallel array • Bitmap • Sorted array • Circular buffer • Sparse array • Control table • Sparse matrix • Image • Iliffe vector • Dynamic array • Variable-length array • Gap buffer Linear data structures: Lists • Doubly linked list • Array list • Xor linked list • Linked list • Zipper • Self-organizing list • Doubly connected edge • Skip list list • Unrolled linked list • Difference list • VList Lists: Array 0 1 size MAX_SIZE-1 3 6 7 5 2 L = int[MAX_SIZE]
    [Show full text]
  • Introduction to Linked List: Review
    Introduction to Linked List: Review Source: http://www.geeksforgeeks.org/data-structures/linked-list/ Linked List • Fundamental data structures in C • Like arrays, linked list is a linear data structure • Unlike arrays, linked list elements are not stored at contiguous location, the elements are linked using pointers Array vs Linked List Why Linked List-1 • Advantages over arrays • Dynamic size • Ease of insertion or deletion • Inserting a new element in an array of elements is expensive, because room has to be created for the new elements and to create room existing elements have to be shifted For example, in a system if we maintain a sorted list of IDs in an array id[]. id[] = [1000, 1010, 1050, 2000, 2040] If we want to insert a new ID 1005, then to maintain the sorted order, we have to move all the elements after 1000 • Deletion is also expensive with arrays until unless some special techniques are used. For example, to delete 1010 in id[], everything after 1010 has to be moved Why Linked List-2 • Drawbacks of Linked List • Random access is not allowed. • Need to access elements sequentially starting from the first node. So we cannot do binary search with linked lists • Extra memory space for a pointer is required with each element of the list Representation in C • A linked list is represented by a pointer to the first node of the linked list • The first node is called head • If the linked list is empty, then the value of head is null • Each node in a list consists of at least two parts 1.
    [Show full text]
  • Priority Queues and Binary Heaps Chapter 6.5
    Priority Queues and Binary Heaps Chapter 6.5 1 Some animals are more equal than others • A queue is a FIFO data structure • the first element in is the first element out • which of course means the last one in is the last one out • But sometimes we want to sort of have a queue but we want to order items according to some characteristic the item has. 107 - Trees 2 Priorities • We call the ordering characteristic the priority. • When we pull something from this “queue” we always get the element with the best priority (sometimes best means lowest). • It is really common in Operating Systems to use priority to schedule when something happens. e.g. • the most important process should run before a process which isn’t so important • data off disk should be retrieved for more important processes first 107 - Trees 3 Priority Queue • A priority queue always produces the element with the best priority when queried. • You can do this in many ways • keep the list sorted • or search the list for the minimum value (if like the textbook - and Unix actually - you take the smallest value to be the best) • You should be able to estimate the Big O values for implementations like this. e.g. O(n) for choosing the minimum value of an unsorted list. • There is a clever data structure which allows all operations on a priority queue to be done in O(log n). 107 - Trees 4 Binary Heap Actually binary min heap • Shape property - a complete binary tree - all levels except the last full.
    [Show full text]
  • Assignment 3: Kdtree ______Due June 4, 11:59 PM
    CS106L Handout #04 Spring 2014 May 15, 2014 Assignment 3: KDTree _________________________________________________________________________________________________________ Due June 4, 11:59 PM Over the past seven weeks, we've explored a wide array of STL container classes. You've seen the linear vector and deque, along with the associative map and set. One property common to all these containers is that they are exact. An element is either in a set or it isn't. A value either ap- pears at a particular position in a vector or it does not. For most applications, this is exactly what we want. However, in some cases we may be interested not in the question “is X in this container,” but rather “what value in the container is X most similar to?” Queries of this sort often arise in data mining, machine learning, and computational geometry. In this assignment, you will implement a special data structure called a kd-tree (short for “k-dimensional tree”) that efficiently supports this operation. At a high level, a kd-tree is a generalization of a binary search tree that stores points in k-dimen- sional space. That is, you could use a kd-tree to store a collection of points in the Cartesian plane, in three-dimensional space, etc. You could also use a kd-tree to store biometric data, for example, by representing the data as an ordered tuple, perhaps (height, weight, blood pressure, cholesterol). However, a kd-tree cannot be used to store collections of other data types, such as strings. Also note that while it's possible to build a kd-tree to hold data of any dimension, all of the data stored in a kd-tree must have the same dimension.
    [Show full text]
  • University of Cape Town Declaration
    The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgementTown of the source. The thesis is to be used for private study or non- commercial research purposes only. Cape Published by the University ofof Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University Automated Gateware Discovery Using Open Firmware Shanly Rajan Supervisor: Prof. M.R. Inggs Co-supervisor: Dr M. Welz University of Cape Town Declaration I understand the meaning of plagiarism and declare that all work in the dissertation, save for that which is properly acknowledged, is my own. It is being submitted for the degree of Master of Science in Engineering in the University of Cape Town. It has not been submitted before for any degree or examination in any other university. Signature of Author . Cape Town South Africa May 12, 2013 University of Cape Town i Abstract This dissertation describes the design and implementation of a mechanism that automates gateware1 device detection for reconfigurable hardware. The research facilitates the pro- cess of identifying and operating on gateware images by extending the existing infrastruc- ture of probing devices in traditional software by using the chosen technology. An automated gateware detection mechanism was devised in an effort to build a software system with the goal to improve performance and reduce software development time spent on operating gateware pieces by reusing existing device drivers in the framework of the chosen technology. This dissertation first investigates the system design to see how each of the user specifica- tions set for the KAT (Karoo Array Telescope) project in [28] could be achieved in terms of design decisions, toolchain selection and software modifications.
    [Show full text]
  • Rethinking Host Network Stack Architecture Using a Dataflow Modeling Approach
    DISS.ETH NO. 23474 Rethinking host network stack architecture using a dataflow modeling approach A thesis submitted to attain the degree of DOCTOR OF SCIENCES of ETH ZURICH (Dr. sc. ETH Zurich) presented by Pravin Shinde Master of Science, Vrije Universiteit, Amsterdam born on 15.10.1982 citizen of Republic of India accepted on the recommendation of Prof. Dr. Timothy Roscoe, examiner Prof. Dr. Gustavo Alonso, co-examiner Dr. Kornilios Kourtis, co-examiner Dr. Andrew Moore, co-examiner 2016 Abstract As the gap between the speed of networks and processor cores increases, the software alone will not be able to handle all incoming data without additional assistance from the hardware. The network interface controllers (NICs) evolve and add supporting features which could help the system increase its scalability with respect to incoming packets, provide Quality of Service (QoS) guarantees and reduce the CPU load. However, modern operating systems are ill suited to both efficiently exploit and effectively manage the hardware resources of state-of-the-art NICs. The main problem is the layered architecture of the network stack and the rigid interfaces. This dissertation argues that in order to effectively use the diverse and complex NIC hardware features, we need (i) a hardware agnostic representation of the packet processing capabilities of the NICs, and (ii) a flexible interface to share this information with different layers of the network stack. This work presents the Dataflow graph based model to capture both the hardware capabilities for packet processing of the NIC and the state of the network stack, in order to enable automated reasoning about the NIC features in a hardware-agnostic way.
    [Show full text]
  • Priorityqueue
    CSE 373 Java Collection Framework, Part 2: Priority Queue, Map slides created by Marty Stepp http://www.cs.washington.edu/373/ © University of Washington, all rights reserved. 1 Priority queue ADT • priority queue : a collection of ordered elements that provides fast access to the minimum (or maximum) element usually implemented using a tree structure called a heap • priority queue operations: add adds in order; O(log N) worst peek returns minimum value; O(1) always remove removes/returns minimum value; O(log N) worst isEmpty , clear , size , iterator O(1) always 2 Java's PriorityQueue class public class PriorityQueue< E> implements Queue< E> Method/Constructor Description Runtime PriorityQueue< E>() constructs new empty queue O(1) add( E value) adds value in sorted order O(log N ) clear() removes all elements O(1) iterator() returns iterator over elements O(1) peek() returns minimum element O(1) remove() removes/returns min element O(log N ) Queue<String> pq = new PriorityQueue <String>(); pq.add("Stuart"); pq.add("Marty"); ... 3 Priority queue ordering • For a priority queue to work, elements must have an ordering in Java, this means implementing the Comparable interface • many existing types (Integer, String, etc.) already implement this • if you store objects of your own types in a PQ, you must implement it TreeSet and TreeMap also require Comparable types public class Foo implements Comparable<Foo> { … public int compareTo(Foo other) { // Return > 0 if this object is > other // Return < 0 if this object is < other // Return 0 if this object == other } } 4 The Map ADT • map : Holds a set of unique keys and a collection of values , where each key is associated with one value.
    [Show full text]
  • The Hitchhiker's Guide to Data Structures
    The Hitchhiker’s Guide to Data Structures University of Rochester Nathan Contino March 2, 2017 Abstract Introductory computer science students often have considerable difficulty extracting infor- mation from data structures textbooks with rather dense writing styles. These textbooks are usually intended to cover subjects comprehensively, but seldom focus on keeping content comprehensible. While this commitment to data preservation is admirable at heart, the author of this paper feels that we can do a better job for introductory students by attempting to balance comprehensibility and comprehensiveness. The Hitchhiker’s Guide to Data Structures is an attempt to present data structures to introductory computer science students in this more friendly manner. Contents 1 Forward 2 2 Introduction 2 2.1 A Note on Running Time . .3 2.2 A Note on Pointers and Values. .5 3 The Proto-Structures 6 3.1 Nodes . .6 3.2 Linked Lists . .8 3.3 Arrays . 13 3.4 Strings . 16 4 Where Things Start to Get Complicated 18 4.1 Doubly-Linked Lists . 18 4.2 Stacks . 22 4.3 Queues . 25 4.4 Trees . 28 4.5 Binary Search Trees . 33 5 Advanced Data Structures 37 5.1 AVL Trees . 37 5.2 Binary Heaps . 40 5.3 Graphs . 42 5.4 Hash Tables . 45 6 Summary 47 1 1 Forward While the purpose of this work seems simple, it has actually turned out to be rather difficult to convey. So we’ll try to illustrate it clearly here in a single brief sentence: this paper is designed specifically as a guide to data structures for keen, interested students at the introductory level of computer science.
    [Show full text]
  • Programmatic Testing of the Standard Template Library Containers
    Programmatic Testing of the Standard Template Library Containers y z Jason McDonald Daniel Ho man Paul Stro op er May 11, 1998 Abstract In 1968, McIlroy prop osed a software industry based on reusable comp onents, serv- ing roughly the same role that chips do in the hardware industry. After 30 years, McIlroy's vision is b ecoming a reality. In particular, the C++ Standard Template Library STL is an ANSI standard and is b eing shipp ed with C++ compilers. While considerable attention has b een given to techniques for developing comp onents, little is known ab out testing these comp onents. This pap er describ es an STL conformance test suite currently under development. Test suites for all of the STL containers have b een written, demonstrating the feasi- bility of thorough and highly automated testing of industrial comp onent libraries. We describ e a ordable test suites that provide go o d co de and b oundary value coverage, including the thousands of cases that naturally o ccur from combinations of b oundary values. We showhowtwo simple oracles can provide fully automated output checking for all the containers. We re ne the traditional categories of black-b ox and white-b ox testing to sp eci cation-based, implementation-based and implementation-dep endent testing, and showhow these three categories highlight the key cost/thoroughness trade- o s. 1 Intro duction Our testing fo cuses on container classes |those providing sets, queues, trees, etc.|rather than on graphical user interface classes. Our approach is based on programmatic testing where the number of inputs is typically very large and b oth the input generation and output checking are under program control.
    [Show full text]