Communications Technology for Protection Systems

Total Page:16

File Type:pdf, Size:1020Kb

Communications Technology for Protection Systems January 14, 2013 Communications Technology for Protection Systems Power System Relaying Committee Relaying Communications Subcommittee Special report prepared by WG H9 Assignment Prepare a document that would assist engineers in understanding the communications technology for protective relaying. Members of the Working Group René Midence, Chair Moh Sachdev, Vice Chair Members Antonova, G. Ariza, J. Bell, T. Benou, M. Bolado, O. Brahma, S. Brettschneider, S. Castro, L. Chaparro, R. Chelmecki, Chris Dahlin, T. De La Quintana, A. Ebrecht, J. Gauci, A. Gers, J.M. Harada, R. Hamilton, R. Higinbotham, B. Huerta C. Iadonisi, D. Ince, B. Kwan, M. Li, T. Lu, Y. MacKie, B. McHale, E. McLaren, P. Murphy, J. Niemira, J. Nordell, D. Oba, E. Pathirana, V. Rizvi, I. Sambasivan, S. Sidhu, T. Simon, M. Thompson, S. Tournier, J.C. Ward, S. Yang, Y. Date Printed: 1/15/2013 Page 1 of 225 Table of Contents 1. Introduction ........................................................................................................................... 10 1.1 The Introduction of Digital Communications ............................................................... 13 1.2 Data Communications for Protection and Control........................................................ 13 1.3 Substation Automation Examples ................................................................................. 22 1.4 Substation Automation with Electromechanical Relays ............................................... 22 1.5 Substation Automation with Numerical Relays ............................................................ 26 1.5.1 Numerical Relays and Serial Communications RS-232 ........................................... 27 1.5.2 Numerical Relays and Serial Communications RS-485 ........................................... 28 1.5.3 Numerical Relays and Ethernet Networks ................................................................ 30 2. Analog and Discrete Signals ................................................................................................. 31 3. Synchronous communication ................................................................................................ 33 4. Asynchronous communication.............................................................................................. 34 5. Bit Error and Bit Error Correction ........................................................................................ 34 5.1 Bit Errors ....................................................................................................................... 34 5.2 Bit Error Correction ...................................................................................................... 35 5.3 Alarms ........................................................................................................................... 36 6. Channel Delay ....................................................................................................................... 36 6.1 Resynchronization......................................................................................................... 37 7. Jitter and wander ................................................................................................................... 37 7.1 Why jitter is important .................................................................................................. 38 7.2 Symptoms of Jitter/Wander Issues................................................................................ 38 8. Basic Considerations in Digital Communications ................................................................ 39 8.1 Speed / Delay ................................................................................................................ 39 8.2 Dependability and Security ........................................................................................... 41 8.3 Redundancy................................................................................................................... 41 8.4 Reliability and Availability of Communications Networks .......................................... 42 8.5 Noise ............................................................................................................................. 44 8.5.1 Noise in Digital Circuits ........................................................................................... 44 8.5.2 Noise in Analog Circuits ........................................................................................... 44 8.5.3 Power system coupled noise ..................................................................................... 45 8.5.4 Noise Detection ......................................................................................................... 45 9. OSI Protocol Model .............................................................................................................. 45 10. Multiplex Channel, SDH, PDH, SONET.......................................................................... 47 10.1 Multiplexing .................................................................................................................. 47 10.1.1 Frequency Division Multiplexing ......................................................................... 47 10.1.2 Wave Division Multiplexing................................................................................. 47 10.1.3 Time Division Multiplexing ................................................................................. 48 10.1.4 Code Division Multiplexing (Spread Spectrum) .................................................. 48 10.2 Digital Hierarchies ........................................................................................................ 48 10.2.1 PDH - Plesiochronous Digital Hierarchy .............................................................. 49 10.3 SONET (Synchronous Optical Network) and SDH (Synchronous Digital Hierarchy) 50 10.3.1 Basic SONET Signal............................................................................................. 51 10.3.2 Synchronous Digital Hierarchy (SDH) ................................................................. 51 10.3.3 SONET/SDH network topologies and network resilience .................................... 52 Date Printed: 1/15/2013 Page 2 of 225 10.3.4 GR-1230 4-Fiber Bi-directional Line Switched Ring (BLSR) ............................. 58 10.3.5 SONET Delay Characteristics .............................................................................. 58 10.3.6 SONET Restoration Characteristics ..................................................................... 58 10.4 SONET/SDH for power system protection................................................................... 59 10.4.1 PDH/SONET/SDH Networks ............................................................................... 59 10.5 SONET Synchronization .............................................................................................. 61 10.5.1 Stratum Clock Hierarchy ...................................................................................... 61 10.5.2 Synchronization Status Messages (SSM) ............................................................. 62 11. Physical Communications Media- Electrical .................................................................... 63 11.1 Serial Communications RS-232 .................................................................................... 63 11.1.1 Voltage levels ........................................................................................................ 64 11.1.2 RS-232 Data Structure .......................................................................................... 65 11.1.3 RS-232 Physical Properties ................................................................................... 66 11.1.4 Maximum cable lengths ........................................................................................ 66 11.1.5 Error detection ...................................................................................................... 68 11.1.6 Disadvantages of the parity system....................................................................... 68 11.2 Serial Communications RS-485 .................................................................................... 69 11.2.1 Uses of EIA-485 ................................................................................................... 70 11.2.2 Differential signals with RS-485 .......................................................................... 70 11.2.3 Network topology with RS-485 ............................................................................ 72 11.2.4 RS-485 functionality ............................................................................................. 73 11.3 Electrical Interfaces ...................................................................................................... 73 11.3.1 Metallic media (coax and twisted pair) ................................................................. 73 11.3.2 Digital Electrical Interfaces .................................................................................. 74 11.3.3 RS-232 Electrical Interface ................................................................................... 75 11.3.4 RS449 Electrical Interface .................................................................................... 75 11.3.5 V.35 Electrical Interface ....................................................................................... 77 11.3.6 G.703 Electrical Interface ....................................................................................
Recommended publications
  • Chapter – 3 Electrical Protection System
    CHAPTER – 3 ELECTRICAL PROTECTION SYSTEM 3.1 DESIGN CONSIDERATION Protection system adopted for securing protection and the protection scheme i.e. the coordinated arrangement of relays and accessories is discussed for the following elements of power system. i) Hydro Generators ii) Generator Transformers iii) H. V. Bus bars iv) Line Protection and Islanding Primary function of the protective system is to detect and isolate all failed or faulted components as quickly as possible, thereby minimizing the disruption to the remainder of the electric system. Accordingly the protection system should be dependable (operate when required), secure (not operate unnecessarily), selective (only the minimum number of devices should operate) and as fast as required. Without this primary requirement protection system would be largely ineffective and may even become liability. 3.1.1 Reliability of Protection Factors affecting reliability are as follows; i) Quality of relays ii) Component and circuits involved in fault clearance e.g. circuit breaker trip and control circuits, instrument transformers iii) Maintenance of protection equipment iv) Quality of maintenance operating staff Failure records indicate the following order of likelihood of relays failure, breaker, wiring, current transformers, voltage transformers and D C. battery. Accordingly local and remote back up arrangement are required to be provided. 3.1.2 Selectivity Selectivity is required to prevent unnecessary loss of plant and circuits. Protection should be provided in overlapping zones so that no part of the power system remains unprotected and faulty zone is disconnected and isolated. 3.1.3 Speed Factors affecting fault clearance time and speed of relay is as follows: i) Economic consideration ii) Selectivity iii) System stability iv) Equipment damage 3.1.4 Sensitivity Protection must be sufficiently sensitive to operate reliably under minimum fault conditions for a fault within its own zone while remaining stable under maximum load or through fault condition.
    [Show full text]
  • INNOVATIVE NUMERICAL PROTECTION RELAY DESIGN on the BASIS of SAMPLED MEASURED VALUES for SMART GRIDS Christophe Ghafari
    INNOVATIVE NUMERICAL PROTECTION RELAY DESIGN ON THE BASIS OF SAMPLED MEASURED VALUES FOR SMART GRIDS Christophe Ghafari To cite this version: Christophe Ghafari. INNOVATIVE NUMERICAL PROTECTION RELAY DESIGN ON THE BASIS OF SAMPLED MEASURED VALUES FOR SMART GRIDS. Electric power. Université Grenoble Alpes, 2016. English. tel-01570127 HAL Id: tel-01570127 https://hal.archives-ouvertes.fr/tel-01570127 Submitted on 28 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE LA COMMUNAUTÉ UNIVERSITÉ GRENOBLE ALPES Spécialité : Génie Électrique Arrêté ministériel : 7 août 2006 Présentée par Christophe GHAFARI Thèse dirigée par Nouredine HADJSAID et codirigée par Raphaël CAIRE et Bertrand RAISON préparée au sein du Laboratoire G2Elab dans l'École Doctorale EEATS Innovative Numerical Protection Relay Design on the basis of Sampled Measured Values for Smart Grids Thèse soutenue publiquement le 16 décembre 2016 , devant le jury composé de : M. Lars NORDSTROM Rapporteur, Professor, Royal Institute of Technology, Sweden M. Désiré Dauphin RASOLOMAMPIONONA Président, Professor, Warsaw University of Technology, Poland M. Peter CROSSLEY Examinateur, Professor, University of Manchester, United Kingdom M. Carlo Alberto NUCCI Examinateur, Professor, University of Bologna, Italy M.
    [Show full text]
  • 650 Series ANSI DNP3 Communication Protocol Manual
    Relion® Protection and Control 650 series ANSI DNP3 Communication Protocol Manual Document ID: 1MRK 511 257-UUS Issued: June 2012 Revision: A Product version: 1.2 © Copyright 2012 ABB. All rights reserved Copyright This document and parts thereof must not be reproduced or copied without written permission from ABB, and the contents thereof must not be imparted to a third party, nor used for any unauthorized purpose. The software and hardware described in this document is furnished under a license and may be used or disclosed only in accordance with the terms of such license. Trademarks ABB and Relion are registered trademarks of the ABB Group. All other brand or product names mentioned in this document may be trademarks or registered trademarks of their respective holders. Warranty Please inquire about the terms of warranty from your nearest ABB representative. ABB Inc. 1021 Main Campus Drive Raleigh, NC 27606, USA Toll Free: 1-800-HELP-365, menu option #8 ABB Inc. 3450 Harvester Road Burlington, ON L7N 3W5, Canada Toll Free: 1-800-HELP-365, menu option #8 ABB Mexico S.A. de C.V. Paseo de las Americas No. 31 Lomas Verdes 3a secc. 53125, Naucalpan, Estado De Mexico, MEXICO Phone: (+1) 440-585-7804, menu option #8 Disclaimer The data, examples and diagrams in this manual are included solely for the concept or product description and are not to be deemed as a statement of guaranteed properties. All persons responsible for applying the equipment addressed in this manual must satisfy themselves that each intended application is suitable and acceptable, including that any applicable safety or other operational requirements are complied with.
    [Show full text]
  • Multi-Processor Digital Control System NDC/P39814
    Multi-Processor Digital Control System NDC/P39814 Our digital control system enables success in modern reactive power compensation. The ultimate parallel processing power of the system tops even the most demanding requirements. In the heart of SVC control or Series Capacitor protection, there is no room for errors. Instant response of the system is always based on accurate data measurement and reliable real-time calculations. NDC supports a high order of redundancy with a hot-swapable secondary system. Both systems, primary and secondary, are always up to date with the latest system events and measurements. They are also both synchronised with a common system time with TrueTime GPS. High reliability and performance of our control system ensures maximum availability for your investment. Technical data • Up to four parallel CPUs, 2310 MIPS/CPU • CPU card: MVME5500 • MPC7455 PowerPC® processor 1GHz • 512MB 133 MHz SDRAM • 32MB and 8MB Flash memory • Dual independent 64-bit 66 MHz PCI buses and PMC sites • VME bus • Gigabit Ethernet interface • 10/100BaseTX Ethernet interface • GPS Clock Synchronisation • Fast I/O: - Programmable digital inputs and outputs - AD: 64 x 16 bit @ 10 kHz - DA: 8 x 16 bit @ 10 kHz • Parallel HMI PC units • Data Concentrator / SCADA Gateway • Device Protocols • NDC SW Tool Chain: - INTERBUS - Compiler - EtherCAT - Configurator - IRIG-B - Simulator - IEC-60870-5-101 - System Debugger - IEC-60870-5-104 - Runtime - DNP3.0 - HMI RAD Tool Competence at your service Competence Map • Project Management • Electrical Engineering
    [Show full text]
  • PREVENT DER CHAOS: a Guide to Selecting the Right Communications Protocols for DER Management
    PREVENT DER CHAOS: A Guide to Selecting the Right Communications Protocols for DER Management Published January 2020 DISCLAIMERS Why QualityLogic’s Recommendations QualityLogic occupies a unique role in the development and implementation of communications protocols for DER management by vendors and utilities. Developing and supporting test tools for DER protocols provides an unparalleled knowledge of both the technologies and eco-systems working with the technologies. We have the privilege of advising utilities, vendors, alliances, research labs and regulators on the capabilities and implementation of specific DER protocol standards. We are constantly asked for both training and recommendations for the selection of a standard for specific applications. The increasing interest in the monitoring and management of DER resources begs for the type of analysis and guidance QualityLogic provides in this Guide. These Recommendations are a Starting Point The recommendations contained in this guide are those of QualityLogic and do not represent any other organization, alliance, company or government entity. The Recommendations should be viewed as a starting point and are based on models for use cases and deployment strategies. For specific applications an independent analysis should be conducted which may yield different results. The Recommendations also use a “snapshot” of the current state and adoption of protocols which is subject to change over time and may lead to different results than included here. To find out more about how recommendations were developed, or how to conduct an analyis for your situation contact us at [email protected]. ACKNOWLEDGEMENT QualityLogic would like to thank our long-time associate, Mark T. Osborn, for his major contribution to this white paper.
    [Show full text]
  • IEEE-SA STANDARDS BOARD (SASB) MEETING MINUTES 07 November 2019 IEEE Operations Center, Piscataway, New Jersey, USA 9:00 A.M
    IEEE-SA STANDARDS BOARD (SASB) MEETING MINUTES 07 November 2019 IEEE Operations Center, Piscataway, New Jersey, USA 9:00 a.m. – 5:00 p.m. Attendees Chair: Gary Hoffman Vice Chair: Ted Burse Past Chair: Jean-Philippe Faure Secretary: Konstantinos Karachalios Members: Stephen Dukes, TAB Rep. Travis Griffith Guido Hiertz Christel Hunter Thomas Koshy John Kulick David Law Joseph Levy Xiaohui Liu Kevin Lu Daleep Mohla Andrew Myles Annette Reilly Dorothy Stanley Philip Winston Howard Wolfman Feng Wu Jingyi Zhou Members Absent: Masayuki Ariyoshi Howard Li Sha Wei Phil Wennblom Joe Koepfinger, Member Emeritus IEEE Staff: Julie Alessi Tina Alston Melissa Aranzamendez Christy Bahn Ian Barbour Adrien Barmaksiz Christina Bellottie Christina Boyce Kim Breitfelder Justin Caso Matthew Ceglia Ravindra Desai Karen Evangelista Josh Gay Jonathan Goldberg Jodi Haasz Mary Ellen Hanntz Yvette Ho Sang Karen Kenney Soo Kim Michael Kipness Vanessa Lalitte Juanita Lewis Greg Marchini Karen McCabe Patrick McCarren Ashley Moran Luigi Napoli Mary Lynne Nielsen Nikoi Nikoi Lauren Rava Dave Ringle, Recording Secretary Pat Roder Anasthasie Sainvilus Gil Santiago Rudi Schubert Sam Sciacca Alpesh Shah Tanya Steinhauser Tom Thompson Lisa Weisser Jonathan Wiggins Malia Zaman Meng Zhao IEEE Outside Legal Counsel: Claire Topp – Dorsey & Whitney LLP IEEE Government Engagement Program on Standards (GEPS) Representatives: Ramy Ahmed Fathy – Egypt, National Telecom Regulatory Authority (NTRA) Simon Hicks – United Kingdom, Department for Digital, Culture, Media & Sport (DCMS)
    [Show full text]
  • Mgate W5108/W5208 Series Modbus/DNP3 Gateway User's
    MGate W5108/W5208 Series Modbus/DNP3 Gateway User’s Manual Edition 3.0, December 2017 www.moxa.com/product © 2017 Moxa Inc. All rights reserved. MGate W5108/W5208 Series Modbus/DNP3 Gateway User’s Manual The software described in this manual is furnished under a license agreement and may be used only in accordance with the terms of that agreement. Copyright Notice © 2017 Moxa Inc. All rights reserved. Trademarks The MOXA logo is a registered trademark of Moxa Inc. All other trademarks or registered marks in this manual belong to their respective manufacturers. Disclaimer Information in this document is subject to change without notice and does not represent a commitment on the part of Moxa. Moxa provides this document as is, without warranty of any kind, either expressed or implied, including, but not limited to, its particular purpose. Moxa reserves the right to make improvements and/or changes to this manual, or to the products and/or the programs described in this manual, at any time. Information provided in this manual is intended to be accurate and reliable. However, Moxa assumes no responsibility for its use, or for any infringements on the rights of third parties that may result from its use. This product might include unintentional technical or typographical errors. Changes are periodically made to the information herein to correct such errors, and these changes are incorporated into new editions of the publication. Technical Support Contact Information www.moxa.com/support Moxa Americas Moxa China (Shanghai office) Toll-free: 1-888-669-2872 Toll-free: 800-820-5036 Tel: +1-714-528-6777 Tel: +86-21-5258-9955 Fax: +1-714-528-6778 Fax: +86-21-5258-5505 Moxa Europe Moxa Asia-Pacific Tel: +49-89-3 70 03 99-0 Tel: +886-2-8919-1230 Fax: +49-89-3 70 03 99-99 Fax: +886-2-8919-1231 Moxa India Tel: +91-80-4172-9088 Fax: +91-80-4132-1045 Table of Contents 1.
    [Show full text]
  • ECSO State of the Art Syllabus V1 ABOUT ECSO
    STATE OF THE ART SYLLABUS Overview of existing Cybersecurity standards and certification schemes WG1 I Standardisation, certification, labelling and supply chain management JUNE 2017 ECSO State of the Art Syllabus v1 ABOUT ECSO The European Cyber Security Organisation (ECSO) ASBL is a fully self-financed non-for-profit organisation under the Belgian law, established in June 2016. ECSO represents the contractual counterpart to the European Commission for the implementation of the Cyber Security contractual Public-Private Partnership (cPPP). ECSO members include a wide variety of stakeholders across EU Member States, EEA / EFTA Countries and H2020 associated countries, such as large companies, SMEs and Start-ups, research centres, universities, end-users, operators, clusters and association as well as European Member State’s local, regional and national administrations. More information about ECSO and its work can be found at www.ecs-org.eu. Contact For queries in relation to this document, please use [email protected]. For media enquiries about this document, please use [email protected]. Disclaimer The document was intended for reference purposes by ECSO WG1 and was allowed to be distributed outside ECSO. Despite the authors’ best efforts, no guarantee is given that the information in this document is complete and accurate. Readers of this document are encouraged to send any missing information or corrections to the ECSO WG1, please use [email protected]. This document integrates the contributions received from ECSO members until April 2017. Cybersecurity is a very dynamic field. As a result, standards and schemes for assessing Cybersecurity are being developed and updated frequently.
    [Show full text]
  • Innovative Numerical Protection Relay Design on the Basis of Sampled Measured Values for Smartgrids Christophe Ghafari
    Innovative numerical protection relay design on the basis of sampled measured values for smartgrids Christophe Ghafari To cite this version: Christophe Ghafari. Innovative numerical protection relay design on the basis of sampled mea- sured values for smartgrids. Electric power. Université Grenoble Alpes, 2016. English. NNT : 2016GREAT113. tel-01819664 HAL Id: tel-01819664 https://tel.archives-ouvertes.fr/tel-01819664 Submitted on 20 Jun 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES Spécialité : Génie Electrique Arrêté ministériel : 7 août 2006 Présentée par Christophe GHAFARI Thèse dirigée par Nouredine HADJSAID et co-encadrée par Raphaël CAIRE et Bertrand RAISON préparée au sein du G2ELab dans l'École Doctorale EEATS Innovative Numerical Protection Relay Design on the basis of Sampled Measured Values for Smart Grids Thèse soutenue publiquement le 16 Décembre 2016, devant le jury composé de M. Lars NORDSTROM Rapporteur, Professor, Royal Institute of Technology, Sweden M. Désiré Dauphin RASOLOMAMPIONONA Président, Professor, Warsaw University of Technology, Poland M. Peter CROSSLEY Examinateur, Professor, University of Manchester, United Kingdom M. Carlo Alberto NUCCI Examinateur, Professor, University of Bologna, Italy M.
    [Show full text]
  • 2021 Product and Solutions Guide
    PRODUCT AND SOLUTION GUIDE +1.509.332.1890 [email protected] selinc.com Making Electric Power Safer, More Reliable, and More Economical 385-0080 2021 Technology Highlights Example Popular Models for the SEL-2411P Pump Automation Controller For a complete popular models listing, visit selinc.com/products/popular Select models typically ship in 2 days Application Details Item No. Price Ultra-High-Speed Protection Capacitor Bank Control Advanced Generator Protection Meet the SEL-T401L Ultra-High-Speed Enhance your distribution system Provide advanced generator, bus, trans- Line Relay, which combines time-domain using the new SEL-734W Capacitor former, and auxiliary system protection Simplex, duplex, and triplex pump control for float switch level control 2411#GJ44 $2,130 USD technologies and high-performance Bank Control with wireless current for hydro, thermal, and pumped-storage and integration with SCADA. distance elements for a complete pro- sensors to improve power quality. applications with the new SEL-400G. tection and monitoring system. Simplex, duplex, and triplex pump control for float switch level control 2411#BGCG $2,490 USD and/or analog level control and integration with SCADA. Fault Transmitter and Receiver Synchrowave® Operations Time-Domain Link (TiDL®) Technology Apply the SEL-FT50 and SEL-FR12 Software Convert data using a TiDL merging unit and Simplex, duplex, and triplex pump control for float switch level control and/or analog level control, integration with SCADA, and ac voltage 2411#M9HF $2,700 USD Fault Transmitter and Receiver System Increase grid safety and reliability transport them via fiber to as many as four phase monitoring with diagnostic waveform event reports.
    [Show full text]
  • Experimental Study of Numerical Relay for Over-Current Protection in Solar Panel for Securing the Hydrogen Production
    E3S Web of Conferences 61, 00005 (2018) https://doi.org/10.1051/e3sconf/2018610000 5 ICREN 2018 Experimental Study of Numerical Relay for Over-current Protection in Solar Panel for Securing the Hydrogen production. Chawki Ameur menad1,*, M. Bouchahdane2, and Rabah Gomri1 1University Frères Mentouri Constantine 1, Faculty of Sciences and Technology, Department of Génie Climatique, 25000 Constatine, Algeria 2Department of Power and control Institute of Electrical and Electronic Engineering, IGEE Boumerdes, Algeria Abstract.. Every electrical system in solar panel can fail during electrical faults. In this incidence, high fault current can occur. Such current must be interrupted by a protective system. The research was supported by experimental tests. In work conditions close to real, the numerical relay REF542plus was tested for both instantaneous and extremely inverse definite minimum time IDMT over-current protection functions with the help of CMC 365 injection and test equipment associated to Test Universe software. Protecting hybrid solar panels generating by different renewable energy sources for hydrogen production from over-current is very important for improving the energy efficiency in one hand, and securing the function in critical condition from damage of the solar cells in second hand. The contribution of this research is controlling the over-current in the solar panel for securing the continuation of the hydrogen production from renewable energy sources in short time. The obtained results allowed the observation of the relay’s behavior when subjected to certain faults; where the solar panel keeps producing the hydrogen. 1 INTRODUCTION Due to the impact of the safety in solar systems on the energy efficiency in critical situation, an experimental proposal research project was studied for understanding the most important problem which is the over-current in solar systems in Algerian Climate.
    [Show full text]
  • HP Switch Zl2 Modules Installation Guide
    HP Switch zl2 Modules Installation Guide Part Number: 5998-5076a Published: July 2016 Edition: 2 © Copyright 2014, 2016 Hewlett Packard Enterprise Development LP The information contained herein is subject to change without notice. The only warranties for Hewlett Packard Enterprise products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. Hewlett Packard Enterprise shall not be liable for technical or editorial errors or omissions contained herein. Confidential computer software. Valid license from Hewlett Packard Enterprise required for possession, use, or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard commercial license. Links to third-party websites take you outside the Hewlett Packard Enterprise website. Hewlett Packard Enterprise has no control over and is not responsible for information outside the Hewlett Packard Enterprise website. Acknowledgments Intel®, Itanium®, Pentium®, Intel Inside®, and the Intel Inside logo are trademarks of Intel Corporation in the United States and other countries. Microsoft® and Windows® are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. Adobe® and Acrobat® are trademarks of Adobe Systems Incorporated. Java® and Oracle® are registered trademarks of
    [Show full text]