Section 6: the Flexibility Method - Beams

Total Page:16

File Type:pdf, Size:1020Kb

Section 6: the Flexibility Method - Beams Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Preliminaries: Beam Deflections – Virtual Work There are several methods available to calculate deformations (displacements and rotations) in beams. They include: • Formulating moment equations and then integrating to find rotations and displacements • Moment area theorems for either rotations and/or displacements • Virtual work methods Since structural analysis based on finite element methods is usually based on a potential energy method, we will tend to use virtual work methods to compute beam deflections. The theory that supports calculating deflections using virtual work will be reviewed and several examples are presented. 1 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Consider the following arbitrarily loaded beam Identify M M(x) Moment at any section in the beam due to external loads m m(x) Moment at any section in the beam due to a unit action m y ~ I Stress acting on dA due to a unit action 2 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The force acting on the differential area dA due to a unit action is ~ f ~ dA m y dA I The stress due to external loads is M y I The displacement of a differential segment dA by dx along the length of the beam is dx dx E M y dx E I 3 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The work done by the force acting on the differential area dA due to a unit action as the differential segment of the beam (dA by dx) displaces along the length of the beam by an amount is ~ dW f m y M y dA dx I E I M m y2 dA dx 2 E I The work done within a differential segment (now A by dx) due to a unit action applied to the beam is the integration of the expression above with respect to dA, i.e., c T M m y2 dW dA dx 2 E I A cB cT Mm 2 Wdiffernetialsegment 2 y dA dx EI cB Mm Mm 2 I dx dx EI EI 4 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The internal work done along the entire length of the beam due to a unit action applied to the beam is the integration of the last expression with respect to x, i.e., L M x mx W dx Internal 0 EI The external work done along the entire length of the beam due to a unit action applied to the beam is WExternal 1D With WExternal WInternal L M x mx 1 D dx 0 EI L M x mx D dx 0 EI or the deformation (D) of the a beam at the point of application of a unit action (force or moment) is given by the integral on the right. 5 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Example 6.1 6 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Example 6.2 Flexibility Coefficients by virtual work 7 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Perspectives on the Flexibility Method In 1864 James Clerk Maxwell published the first consistent treatment of the flexibility method for indeterminate structures. His method was based on considering deflections, but the presentation was rather brief and attracted little attention. Ten years later Otto Mohr independently extended Maxwell’s theory to the present day treatment. The flexibility method will sometimes be referred to in the literature as Maxwell-Mohr method. With the flexibility method equations of compatibility involving displacements at each of the redundant forces in the structure are introduced to provide the additional equations needed for solution. This method is somewhat useful in analyzing beams, frames and trusses that are statically indeterminate to the first or second degree. For structures with a high degree of static indeterminacy such as multi-story buildings and large complex trusses stiffness methods are more appropriate. Nevertheless flexibility methods provide an understanding of the behavior of statically indeterminate structures. 8 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The fundamental concepts that underpin the flexibility method will be illustrated by the study of a two span beam. The procedure is as follows 1. Pick a sufficient number of redundants corresponding to the degree of indeterminacy 2. Remove the redundants 3. Determine displacements at the redundants on released structure due to external or imposed actions 4. Determine displacements due to unit loads at the redundants on the released structure 5. Employ equation of compatibility, e.g., if a pin reaction is removed as a redundant the compatibility equation could be the summation of vertical displacements in the released structure must add to zero. 9 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Example 6.3 The beam to the left is statically indeterminate to the first degree. The reaction at the middle support RB is chosen as the redundant. The released beam is also shown. Under the external loads the released beam deflects an amount DB. A second beam is considered where the released redundant is treated as an external load and the corresponding deflection at the redundant is set equal to DB. 5 RB w L 8 10 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering A more general approach consists in finding the displacement at B caused by a unit load in the direction of RB. Then this displacement can be multiplied by RB to determine the total displacement Also in a more general approach a consistent sign convention for actions and displacements must be adopted. The displacements in the released structure at B are positive when they are in the direction of the action released, i.e., upwards is positive here. The displacement at B caused by the unit action is L3 B 48EI The displacement at B caused by RB is δB RB. The displacement caused by the uniform load w acting on the released structure is 5 w L4 D B 384 EI Thus by the compatibility equation D 5 D R 0 R B w L B B B B 11 B 8 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering Example 6.4 If a structure is statically indeterminate to more than one degree, the approach used in the preceeding example must be further organized and more generalized notation is introduced. Consider the beam to the left. The beam is statically indeterminate to the second degree. A statically determinate structure can be obtained by releasing two redundant reactions. Four possible released structures are shown. 12 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The redundants chosen are at B and C. The redundant reactions are designated Q1 and Q2. The released structure is shown at the left with all external and internal redundants shown. DQL1 is the displacement corresponding to Q1 and caused by only external actions on the released structure DQL2 is the displacement corresponding to Q2 caused by only external actions on the released structure. Both displacements are shown in their assumed positive direction. 13 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering We can now write the compatibility equations for this structure. The displacements corresponding to Q1 and Q2 will be zero. These are labeled DQ1 and DQ2 respectively DQ1 DQL1 F11Q1 F12Q2 0 DQ2 DQL2 F21Q1 F22Q2 0 In some cases DQ1 and DQ2 would be nonzero then we would write DQ1 DQL1 F11Q1 F12Q2 DQ2 DQL2 F21Q1 F22Q2 14 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The equations from the previous page can be written in matrix format as DQ DQL FQ where: {DQ } - vector of actual displacements corresponding to the redundant {DQL } - vector of displacements in the released structure corresponding to the redundant action [Q] and due to the loads [F] - flexibility matrix for the released structure corresponding to the redundant actions [Q] {Q} - vector of redundants DQ1 DQL1 Q1 DQ DQL Q D D Q2 QL2 Q2 F11 F12 F F21 F22 15 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The vector {Q} of redundants can be found by solving for them from the matrix equation on the previous overhead. FQ DQ DQL 1 Q F DQ DQL To see how this works consider the previous beam with a constant flexural rigidity EI. If we identify actions on the beam as P1 2P M PL P2 P P3 P Since there are no displacements imposed on the structure corresponding to Q1 and Q2, then 0 DQ 0 16 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The vector [DQL] represents the displacements in the released structure corresponding to the redundant loads. These displacements are 13PL3 97PL3 D D QL1 24EI QL2 48EI The positive signs indicate that both displacements are upward. In a matrix format PL3 26 DQL 48EI 97 17 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The flexibility matrix [F ] is obtained by subjecting the beam to unit load corresponding to Q1 and computing the following displacements L3 5L3 F F 11 3EI 21 6EI Similarly subjecting the beam to unit load corresponding to Q2 and computing the following displacements 5L3 8L3 F F 12 6EI 22 3EI 18 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The flexibility matrix is L3 2 5 F 6EI 5 16 The inverse of the flexibility matrix is 1 6EI 16 5 F 3 7L 5 2 As a final step the redundants [Q] can be found as follows Q1 1 Q F DQ DQL Q2 6EI 16 5 0 PL3 26 3 7L 5 2 0 48EI 97 P 69 56 64 19 Section 6: The Flexibility Method - Beams Washkewicz College of Engineering The redundants have been obtained.
Recommended publications
  • CE301 BASIC THEORY of STRUCTURES Teaching Scheme
    CE301 BASIC THEORY OF STRUCTURES Teaching Scheme: 03L+ 00 T, Total: 03 Credit: 03 Evaluation Scheme: 15 ISE1 +15 ISE2 + 10 ISA + 60 ESE Total Marks: 100 Duration of ESE: 03Hrs --------------------------------------------------------------------------------------------------------------------- Deflection of Beams: Relation between bending moment, slope and defection, introduction to double integration method, concept of moment area method, Mohr's theorems, use of moment area method to calculate slope and deflections of beams such as simply supported, over hanging and of uniform cross sections and different cross sections. Conjugate beam method, application of conjugate beam method to simply supported, overhanging and compound beams. Slope and Deflection: Castiglione’s first theorem and its application to find slope and deflection of simple beams and frames, deflection in determinate trusses. Analysis of redundant trusses by Castiglione’s second theorem, lack of fit and temperature changes in members, sinking of supports (degree of indeterminacy up to 2) Fixed Beams:- Concept, advantages and disadvantages, nature of bending moment diagrams, fixed end moment due to various types of loads such as point, uniformly distributed, uniformly varying, couples for beams, effect of sinking of support, plotting of bending moment and shear force diagrams. Continuous Beams:- Analysis of continuous beam by three moment (Clapyeron's theorem) up to three unknowns, effect of sinking of supports, plotting of bending moment and shear force. Three Hinged Arch: - Concept of three hinged arch as a hunched beam, support reactions, B.M., S.F. and axial thrust diagrams for circular and parabolic three hinged arches. Two Hinged Arches:- Horizontal thrust at supports. shear, normal thrust and BM at a point, BM diagrams for parabolic arch due to concentrated load and uniformly distributed load.
    [Show full text]
  • Use of Principle of Contra-Gradience for Developing Flexibility Matrix [ ]
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 01 | Jan-2018 www.irjet.net p-ISSN: 2395-0072 Use of Principle of Contra-Gradience for Developing Flexibility Matrix Vasudha Chendake1, Jayant Patankar2 1 Assistant Professor, Applied Mechanics Department, Walchand College of Engineering, Maharashtra, India 2 Professor, Applied Mechanics Department, Walchand College of Engineering, Maharashtra, India ---------------------------------------------------------------------***--------------------------------------------------------------------- Abstract - Flexibility method and stiffness method are the computer program based of flexibility method is increased two basic matrix methods of structural analysis. Linear because the procedure of the direct stiffness method is so simultaneous equations written in matrix form are always mechanical that it risks being used without much easy to solve. Also when computers are used, matrix algebra is understanding of the structural behaviours. very convenient. Matrix algebra required in new approach of flexibility method When static degree of indeterminacy is less than the kinematic is also very simple. So the time required for manual degree of indeterminacy, flexibility method is advantageous in calculations can be reduced by using MATLAB software. structural analysis. The final step in flexibility method is to develop total structural flexibility matrix. The new approach 1.1 Principle of Contra-gradience to develop total structural flexibility matrix, requires force– deformation relation, transformation matrix and principal of Consider the two co-ordinate systems O and O’ as shown in Contra-gradience. Subsequently compatibility equations are fig 1. The forces acting at co-ordinate system O are F , F required to get the value of unknown redundants. This new X Y approach while using flexibility method is useful because and M and the forces acting at co-ordinate system O’ are ' ' ' simple matrix multiplications are required as well as order of FX , FY and M .
    [Show full text]
  • Analysis of Statically Indeterminate Structures by Matrix Force Method
    Module 2 Analysis of Statically Indeterminate Structures by the Matrix Force Method Version 2 CE IIT, Kharagpur Lesson 7 The Force Method of Analysis: An Introduction Version 2 CE IIT, Kharagpur Since twentieth century, indeterminate structures are being widely used for its obvious merits. It may be recalled that, in the case of indeterminate structures either the reactions or the internal forces cannot be determined from equations of statics alone. In such structures, the number of reactions or the number of internal forces exceeds the number of static equilibrium equations. In addition to equilibrium equations, compatibility equations are used to evaluate the unknown reactions and internal forces in statically indeterminate structure. In the analysis of indeterminate structure it is necessary to satisfy the equilibrium equations (implying that the structure is in equilibrium) compatibility equations (requirement if for assuring the continuity of the structure without any breaks) and force displacement equations (the way in which displacement are related to forces). We have two distinct method of analysis for statically indeterminate structure depending upon how the above equations are satisfied: 1. Force method of analysis (also known as flexibility method of analysis, method of consistent deformation, flexibility matrix method) 2. Displacement method of analysis (also known as stiffness matrix method). In the force method of analysis, primary unknown are forces. In this method compatibility equations are written for displacement and rotations (which are calculated by force displacement equations). Solving these equations, redundant forces are calculated. Once the redundant forces are calculated, the remaining reactions are evaluated by equations of equilibrium. In the displacement method of analysis, the primary unknowns are the displacements.
    [Show full text]
  • Structural Analysis.Pdf
    Contents:C Ccc Module 1.Energy Methods in Structural Analysis.........................5 Lesson 1. General Introduction Lesson 2. Principle of Superposition, Strain Energy Lesson 3. Castigliano’s Theorems Lesson 4. Theorem of Least Work Lesson 5. Virtual Work Lesson 6. Engesser’s Theorem and Truss Deflections by Virtual Work Principles Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method................................................................107 Lesson 7. The Force Method of Analysis: An Introduction Lesson 8. The Force Method of Analysis: Beams Lesson 9. The Force Method of Analysis: Beams (Continued) Lesson 10. The Force Method of Analysis: Trusses Lesson 11. The Force Method of Analysis: Frames Lesson 12. Three-Moment Equations-I Lesson 13. The Three-Moment Equations-Ii Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method..............................................................227 Lesson 14. The Slope-Deflection Method: An Introduction Lesson 15. The Slope-Deflection Method: Beams (Continued) Lesson 16. The Slope-Deflection Method: Frames Without Sidesway Lesson 17. The Slope-Deflection Method: Frames with Sidesway Lesson 18. The Moment-Distribution Method: Introduction Lesson 19. The Moment-Distribution Method: Statically Indeterminate Beams With Support Settlements Lesson 20. Moment-Distribution Method: Frames without Sidesway Lesson 21. The Moment-Distribution Method: Frames with Sidesway Lesson 22. The Multistory Frames with Sidesway Module 4. Analysis of Statically Indeterminate Structures by the Direct Stiffness Method...........................................................398 Lesson 23. The Direct Stiffness Method: An Introduction Lesson 24. The Direct Stiffness Method: Truss Analysis Lesson 25. The Direct Stiffness Method: Truss Analysis (Continued) Lesson 26. The Direct Stiffness Method: Temperature Changes and Fabrication Errors in Truss Analysis Lesson 27.
    [Show full text]
  • Introduction to Matrix Methods Module I
    Structural Analysis - III Introduction to Matrix Methods Module I Matrix analysis of structures • Definition of flexibility and stiffness influence coefficients – development of flexibility matrices by physical approach & energy principle. Flexibility method • Flexibility matrices for truss, beam and frame elements – load transformation matrix-development of total flexibility matrix of the structure –analysis of simple structures – plane truss, continuous beam and plane frame- nodal loads and element loads – lack of fit and temperature effects. 2 Force method and Displacement method • These methods are applicable to discretized structures of all types • Force method (Flexibility method) • Actions are the primary unknowns • Static indeterminacy: excess of unknown actions than the available number of equations of static equilibrium • Displacement method (Stiffness method) •Displacements of the joints are the primary unknowns •Kinematic indeterminacy: number of independent translations and rotations (the unknown joint displacements) • More suitable for computer programming Types of Framed Structures a. Beams: may support bending moment, shear force and axial force b. Plane trusses: hinge joints; In addition to axial forces, a member CAN have bending moments and shear forces if it has loads directly acting on them, in addition to joint loads c. Space trusses: hinge joints; any couple acting on a member should have moment vector perpendicular to the axis of the member, since a truss member is incapable of supporting a twisting moment d. Plane frames: Joints are rigid; all forces in the plane of the frame, all couples normal to the plane of the frame e. G rids: all forces normal to the plane of the grid, all couples in the plane of the grid (includes bending and torsion) f.
    [Show full text]
  • UNIT-1 FLEXIBILITY MATRIX METHODS Since Twentieth Century, Indeterminate Structures Are Being Widely Used for Its Obvious Merits
    WWW.VIDYARTHIPLUS.COM UNIT-1 FLEXIBILITY MATRIX METHODS Since twentieth century, indeterminate structures are being widely used for its obvious merits. It may be recalled that, in the case of indeterminate structures either the reactions or the internal forces cannot be determined from equations of statics alone. In such structures, the number of reactions or the number of internal forces exceeds the number of static equilibrium equations. In addition to equilibrium equations, compatibility equations are used to evaluate the unknown reactions and internal forces in statically indeterminate structure. In the analysis of indeterminate structure it is necessary to satisfy the equilibrium equations (implying that the structure is in equilibrium) compatibility equations (requirement if for assuring the continuity of the structure without any breaks) and force displacement equations (the way in which displacement are related to forces). We have two distinct method of analysis for statically indeterminate structure depending upon how the above equations are satisfied: 1. Force method of analysis (also known as flexibility method of analysis, method of consistent deformation, flexibility matrix method) 2. Displacement method of analysis (also known as stiffness matrix method). In the force method of analysis, primary unknown are forces. In this method compatibility equations are written for displacement and rotations (which are calculated by force displacement equations). Solving these equations, redundant forces are calculated. Once the redundant forces are calculated, the remaining reactions are evaluated by equations of equilibrium. In the displacement method of analysis, the primary unknowns are the displacements. In this method, first force -displacement relations are computed and subsequently equations are written satisfying the equilibrium conditions of the structure.
    [Show full text]
  • Unit – Iv Flexibilty and Stiffness Method
    QUESTION BANK 2016 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Course & Branch: B.Tech – CE Year & Sem: III-B.Tech & I-Sem Regulation: R13 UNIT – IV FLEXIBILTY AND STIFFNESS METHOD 1. Analyse the beam shown in figure using flexibility matrix method if the support B’ sinks by 50 mm. E = 25X103 MPa, I = 140X103 cm4. 10M 2. Analyze the continuous beam shown in figure below. Assume EI is constant. Use matrix flexibility method. 10M 3. Analyze the continuous beam as shown in figure below, if the beam undergoes settlement of supports B and C by 200/EI and 100/EI respectively. Use flexibility method. 10M Structural Analysis-II Page 1 QUESTION BANK 2016 4. A two span continuous beam ABC rests on simple supports at A,B and C.All the three supports are at same level. The span AB=7m and span BC=5m. The span AB carries a uniformly distributed load of 30kN/m and span BC carries a central point load of 30kN. EI is constant for the whole beam. Find the moments and reactions at all the support using flexibility method. 10M 5. A two span continuous beam ABC is fixed at A and C and rests on simple support at B. All the three supports are at same level. The span AB=4.5m and span BC=6.3m. The span AB carries a uniformly distributed load of 48kN/m and span BC carries a central point load of 75kN. EI is constant for the whole beam.
    [Show full text]
  • Structural Analysis II (011X16)
    MUZAFFARPUR INSTITUTE OF TECHNOLOGY, Muzaffarpur COURSE FILE OF Structural analysis II (011X16) Faculty Name: Mr. Vijay Kumar Assistant Professor, Department of Civil Engineering Mr. Pushkar Shivechchhu Assistant Professor, Department of Civil Engineering Content S.No. Topic Page No. 1 Vision of department 2 Mission of department 3 PEO’s 4 PO’s 5 Course objectives and course outcomes(Co) 6 Mapping of CO’s with PO’s 7 Course syllabus and GATE syllabus 8 Time table 9 Student list 10 Lecture plans 11 Assignments 12 Tutorial sheets 13 Seasonal question paper 14 University question paper 15 Question bank 16 Course materials 17 Result 18 Result analysis 19 Quality measurement sheets VISION OF DEPARTMENT To get recognized as prestigious civil engineering program at national and international level through continuous education, research and innovation. MISSION OF DEPARTMENT To create the environment for innovative and smart ideas for generation of professionals to serve the nation and world with latest technologies in Civil Engineering. To develop intellectual professionals with skill for work in industry, acedamia and public sector organizations and entrepreneur with their technical capabilities to succeed in their fields. To build up competitiveness, leadership, moral, ethical and managerial skill. PROGRAMME EDUCATIONAL OBJECTIVES (PEOs): Graduates are expected to attain Program Educational Objectives within three to four years after the graduation. Following PEOs of Department of Civil Engineering have been laid down based on the needs of the programs constituencies: PEO1: Contribute to the development of civil engineering projects being undertaken by Govt. and private or any other sector companies. PEO2: Pursue higher education and contribute to teaching, research and development of civil engineering and related field.
    [Show full text]
  • Mathematical Model of Influence Lines for Indeterminate Beams
    1615 Mathematical Model of Influence Lines for Indeterminate Beams Dr. Moujalli Hourani Associate Professor Department of Civil Engineering Manhattan College Riverdale, NY 10471 Abstract The purpose of this paper is to present an improved and easy way for dealing with the influence lines for indeterminate beams. This paper describes the approach used to teach the topic of influence lines for indeterminate beams in the structural analysis and design courses, in the Civil Engineering Department at Manhattan College. This paper will present a simple method for teaching influence lines for indeterminate beams based on a mathematical model derived from the fundamental use of the flexibility method. The mathematical model is based on describing the forces and the deformations of the beam as mathematical functions related by consecutive integration processes. Introduction Many civil engineering students have difficulties dealing with the effects of live loads on structures because of the lack of knowledge of influence lines in general, and in particular, of the influence lines for indeterminate beams. These difficulties are perhaps due to the minimal amount of time spent on covering this very important topic in a structural analysis course, or due to unclear and confusing methods used to present the topic of influence lines. Several textbooks,1,2,3,4 cover the topic of influence lines, theories, examples dealing with determinate structures. Since these textbooks put little emphasis on indeterminate beams, this paper will focus on this topic. Two years ago, while the faculty of the Civil Engineering Department at Manhattan College, were conducting the assessment of the topics covered in the structural analysis courses, we found out that there was a great concern from our students about their capabilities to deal with influences lines for indeterminate beams.
    [Show full text]
  • Lecture Notes On
    LECTURE NOTES ON ADVANCED STRUCTURAL ANALYSIS (BSTB01) M.Tech - I Semester (IARE-R16) PREPARED BY Dr. VENU M PROFESSOR Department of Civil Engineering INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal – 500 043, Hyderabad. 1 UNIT-I INFLUENCE COEFFICIENTS INTRODUCTION: Indeterminate structures are being widely used for its obvious merits. It may be recalled that, in the case of indeterminate structures either the reactions or the internal forces cannot be determined from equations of statics alone. In such structures, the number of reactions or the number of internal forces exceeds the number of static equilibrium equations. In addition to equilibrium equations, compatibility equations are used to evaluate the unknown reactions and internal forces in statically indeterminate structure. In the analysis of indeterminate structure it is necessary to satisfy the equilibrium equations (implying that the structure is in equilibrium) compatibility equations (requirement if for assuring the continuity of the structure without any breaks) and force displacement equations (the way in which displacement are related to forces). We have two distinct method of analysis for statically indeterminate structure depending upon how the above equations are satisfied: 1. Force method of analysis (also known as flexibility method of analysis, method of consistent deformation, flexibility matrix method) 2. Displacement method of analysis (also known as stiffness matrix method). In the force method of analysis, primary unknown are forces. In this method compatibility equations are written for displacement and rotations (which are calculated by force displacement equations). Solving these equations, redundant forces are calculated. Once the redundant forces are calculated, the remaining reactions are evaluated by equations of equilibrium.
    [Show full text]
  • Slope Deflection Method Frame Examples
    Slope Deflection Method Frame Examples Full-mouthedJulio contangos Rudolf patrilineally. usually interbreedingOral Florian sometimes some Strine fillip or hisphosphorise whitlow theretofore subjectively. and work-harden so apocalyptically! In this case the frame is symmetrical but not the loading. Then end moments of individual members can be calculated. The distribution factor for fixed supports is equal to zero since any moment is resisted by an equal and opposite moment within the support and no balancing is required. This is necessary to ensure that the structural members satisfy the safety and the serviceability requirements of the local building code and Structural Members There are several types of civil engineering structures, then your chances of hitting the ball correctly will go up dramatically. The distributed factor is a factor used to determine the proportion of the unbalanced moment carried by each of the members meeting at a joint. The general purpose of Structural Analysis is to understand how a structure behaves under loads. This means that you need to make sure that your wrists are loose but still exerting a lot of pressure. The pattern used in Eq. Solution: is the largest value this should be used to determine the value of p using the Perry strut formula. HD and HF are towards from the deflected shape at top as tension side is on left. In this case since the I term is deoutside the integral as a constant. The roof load is transmitted to each of the purlins over simply supported sections of the roof decking. Using the equivalent UDL method to estimate the maximum deflection in each case gives: Note: The estimated deflection is more accurate for beams which are predominantly loaded with distributed loads.
    [Show full text]
  • Plane Trusses
    Section 7: Flexibility Method - Trusses Washkewicz College of Engineering Plane Trusses A plane truss is defined as a two- dimensional framework of straight prismatic members connected at their ends by frictionless hinged joints, and subjected to loads and reactions that act only at the joints and lie in the plane of the structure. The members of a plane truss are subjected to axial compressive or tensile forces. The objective is to develop the analysis of plane trusses using matrix methods. The analysis must be general in the sense that it can be applied to statically determinate, as well as indeterminate plane trusses. Methods of analysis will be presented based on both global and local coordinate systems. 1 Section 7: Flexibility Method - Trusses Washkewicz College of Engineering Applied loads may consist of point loads applied at the joints as well as loads that act on individual truss members. Loads that are applied directly to individual truss members can be replaced by statically equivalent loads acting at the joints. In addition to the axial loads typically computed for individual truss members bending moments and shear forces will be present in truss members where point loads are applied directly to the member. Whereas numerous methods are available to compute elastic deformations for structures in general, i.e., 1. Virtual work method (dummy load) 2. Castigliano’s theorem 3. Conjugate beam method 4. Moment area theorems 5. Double integration method only the first two are applicable to trusses. So we begin with a review of computing joint displacements in a truss using virtual work.
    [Show full text]