Geometric Problems on Maxima and Minima

Total Page:16

File Type:pdf, Size:1020Kb

Geometric Problems on Maxima and Minima Titu Andreescu Oleg Mushkarov Luchezar Stoyanov Geometric Problems on Maxima and Minima Birkhauser¨ Boston • Basel • Berlin Titu Andreescu Oleg Mushkarov The University of Texas at Dallas Bulgarian Academy of Sciences Department of Science/ Institute of Mathematics and Informatics Mathematics Education 1113 Sofia Richardson, TX 75083 Bulgaria USA Luchezar Stoyanov The University of Western Australia School of Mathematics and Statistics Crawley, Perth WA 6009 Australia Cover design by Mary Burgess. Mathematics Subject Classification (2000): 00A07, 00A05, 00A06 Library of Congress Control Number: 2005935987 ISBN-10 0-8176-3517-3 eISBN 0-8176-4473-3 ISBN-13 978-0-8176-3517-6 Printed on acid-free paper. c 2006 Birkhauser¨ Boston Based on the original Bulgarian edition, Ekstremalni zadachi v geometriata, Narodna Prosveta, Sofia, 1989 All rights reserved. This work may not be translated or copied in whole or in part without the writ- ten permission of the publisher (Birkhauser¨ Boston, c/o Springer Science+Business Media Inc., 233 Spring Street, New York, NY 10013, USA) and the author, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and re- trieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed in the United States of America. (KeS/MP) 987654321 www.birkhauser.com Contents Preface vii 1 Methods for Finding Geometric Extrema 1 1.1 Employing Geometric Transformations . ............ 1 1.2 Employing Algebraic Inequalities ................. 19 1.3EmployingCalculus......................... 27 1.4 The Method of Partial Variation .................. 38 1.5TheTangencyPrinciple....................... 48 2 Selected Types of Geometric Extremum Problems 63 2.1 Isoperimetric Problems ....................... 63 2.2ExtremalPointsinTriangleandTetrahedron............ 72 2.3 Malfatti’s Problems . ....................... 80 2.4ExtremalCombinatorialGeometryProblems........... 88 3 Miscellaneous 95 3.1 Triangle Inequality . ....................... 95 3.2 Selected Geometric Inequalities .................. 96 3.3MaxMinandMinMax........................ 98 3.4AreaandPerimeter......................... 99 3.5 Polygons in a Square . ....................... 101 3.6BrokenLines............................ 101 3.7 Distribution of Points . ....................... 102 3.8Coverings.............................. 104 4 Hints and Solutions to the Exercises 105 4.1 Employing Geometric Transformations . ............ 105 4.2 Employing Algebraic Inequalities ................. 124 4.3EmployingCalculus......................... 136 4.4 The Method of Partial Variation .................. 151 vi Contents 4.5TheTangencyPrinciple....................... 161 4.6 Isoperimetric Problems ....................... 169 4.7ExtremalPointsinTriangleandTetrahedron............ 176 4.8 Malfatti’s Problems . ....................... 185 4.9ExtremalCombinatorialGeometryProblems........... 188 4.10 Triangle Inequality . ....................... 197 4.11 Selected Geometric Inequalities .................. 200 4.12MaxMinandMinMax........................ 212 4.13AreaandPerimeter......................... 215 4.14 Polygons in a Square . ....................... 233 4.15BrokenLines............................ 237 4.16 Distribution of Points . ....................... 240 4.17Coverings.............................. 250 Notation 255 Glossary of Terms 257 Bibliography 263 Preface Problems on maxima and minima arise naturally not only in science and engi- neering and their applications but also in daily life. A great variety of these have geometric nature: finding the shortest path between two objects satisfying certain conditions or a figure of minimal perimeter, area, or volume is a type of problem frequently met. Not surprisingly, people have been dealing with such problems for a very long time. Some of them, now regarded as famous, were dealt with by the ancient Greeks, whose intuition allowed them to discover the solutions of these problems even though for many of them they did not have the mathematical tools to provide rigorous proofs. For example, one might mention here Heron’s (first century CE) discovery that the light ray in space incoming from a point A and outgoing through a point B after reflection at a mirror α travels the shortest possible path from A to B having a common point with α. Another famous problem, the so-called isoperimetric problem, was considered for example by Descartes (1596–1650): Of all plane figures with a given perime- ter, find the one with greatest area. That the “perfect figure” solving the problem is the circle was known to Descartes (and possibly much earlier); however, a rig- orous proof that this is indeed the solution was first given by Jacob Steiner in the nineteenth century. A slightly different isoperimetric problem is attributed to Dido, the legendary queen of Carthage. She was allowed by the natives to purchase a piece of land on the coast of Africa “not larger than what an oxhide can surround.” Cutting the oxhide into narrow strips, she made a long string with which she was supposed to surround as large as possible area on the seashore. How to do this in an optimal way is a problem closely related to the previous one, and in fact a solution is easily found once one knows the maximizing property of the circle. Another problem that is both interesting and easy to state was posed in 1775 by I. F. Fagnano: Inscribe a triangle of minimal perimeter in a given acute-angled triangle. An elegant solution to this relatively simple “network problem” was given by Hermann Schwarz (1843–1921). viii Preface Most of these classical problems are discussed in Chapter 1, which presents several different methods for solving geometric problems on maxima and minima. One of these concerns applications of geometric transformations, e.g., reflection through a line or plane, rotation. The second is about appropriate use of inequali- ties. Another analytic method is the application of tools from the differential cal- culus. The last two methods considered in Chapter 1 are more geometric in nature; these are the method of partial variation and the tangency principle. Their names speak for themselves. Chapter 2 is devoted to several types of geometric problems on maxima and minima that are frequently met. Here for example we discuss a variety of isoperi- metric problems similar in nature to the ones mentioned above. Various distin- guished points in the triangle and the tetrahedron can be described as the solutions of some specific problems on maxima or minima. Section 2.2 considers examples of this kind. An interesting type of problem, called Malfatti’s problems, are con- tained in Section 2.3; these concern the positioning of several disks in a given figure in the plane so that the sum of the areas of the disks is maximal. Section 2.4 deals with some problems on maxima and minima arising in combinatorial geometry. Chapter 3 collects some geometric problems on maxima and minima that could not be put into any of the first two chapters. Finally, Chapter 4 provides solutions and hints to all problems considered in the first three chapters. Each section in the book is augmented by exercises and more solid problems for individual work. To make it easier to follow the arguments in the book a large number of figures is provided. The present book is partly based on its Bulgarian version Extremal Problems in Geometry, written by O. Mushkarov and L. Stoyanov and published in 1989 (see [16]). This new version retains about half of the contents of the old one. Altogether the book contains hundreds of geometric problems on maxima or minima. Despite the great variety of problems considered—from very old and classical ones like the ones mentioned above to problems discussed very recently in journal articles or used in various mathematics competitions around the world— the whole exposition of the book is kept at a sufficiently elementary level so that it can be understood by high-school students. Apart from trying to be comprehensive in terms of types of problems and tech- niques for their solutions, we have also tried to offer various different levels of difficulty, thus making the book possible to use by people with different interests in mathematics, different abilities, and of different age groups. We hope we have achieved this to a reasonable extent. The book reflects the experience of the authors as university teachers and as people who have been deeply involved in various mathematics competitions in different parts of the world for more than 25 years. The authors hope that the book Preface ix will appeal to a wide audience of high-school students and mathematics teachers, graduate students, professional mathematicians, and puzzle enthusiasts. The book will be particularly useful to students involved in mathematics competitions around the world. We are grateful to Svetoslav Savchev and Nevena Sabeva for helping us during the preparation of this book, and to David Kramer for the corrections and improve- ments he made when editing the text for publication. Titu Andreescu Oleg Mushkarov Luchezar Stoyanov September, 2005 Geometric Problems on Maxima and Minima Chapter 1 Methods for Finding Geometric Extrema 1.1 Employing
Recommended publications
  • EXAM QUESTIONS (Part Two)
    Created by T. Madas MATRICES EXAM QUESTIONS (Part Two) Created by T. Madas Created by T. Madas Question 1 (**) Find the eigenvalues and the corresponding eigenvectors of the following 2× 2 matrix. 7 6 A = . 6 2 2 3 λ= −2, u = α , λ=11, u = β −3 2 Question 2 (**) A transformation in three dimensional space is defined by the following 3× 3 matrix, where x is a scalar constant. 2− 2 4 C =5x − 2 2 . −1 3 x Show that C is non singular for all values of x . FP1-N , proof Created by T. Madas Created by T. Madas Question 3 (**) The 2× 2 matrix A is given below. 1 8 A = . 8− 11 a) Find the eigenvalues of A . b) Determine an eigenvector for each of the corresponding eigenvalues of A . c) Find a 2× 2 matrix P , so that λ1 0 PT AP = , 0 λ2 where λ1 and λ2 are the eigenvalues of A , with λ1< λ 2 . 1 2 1 2 5 5 λ1= −15, λ 2 = 5 , u= , v = , P = − 2 1 − 2 1 5 5 Created by T. Madas Created by T. Madas Question 4 (**) Describe fully the transformation given by the following 3× 3 matrix. 0.28− 0.96 0 0.96 0.28 0 . 0 0 1 rotation in the z axis, anticlockwise, by arcsin() 0.96 Question 5 (**) A transformation in three dimensional space is defined by the following 3× 3 matrix, where k is a scalar constant. 1− 2 k A = k 2 0 . 2 3 1 Show that the transformation defined by A can be inverted for all values of k .
    [Show full text]
  • Two-Dimensional Geometric Transformations
    Two-Dimensional Geometric Transformations 1 Basic Two-Dimensional Geometric Transformations 2 Matrix Representations and Homogeneous Coordinates 3 Inverse Transformations 4 Two-Dimensional Composite Transformations 5 Other Two-Dimensional Transformations 6 Raster Methods for Geometric Transformations 7 OpenGL Raster Transformations 8 Transformations between Two-Dimensional Coordinate Systems 9 OpenGL Functions for Two-Dimensional Geometric Transformations 10 OpenGL Geometric-Transformation o far, we have seen how we can describe a scene in Programming Examples S 11 Summary terms of graphics primitives, such as line segments and fill areas, and the attributes associated with these primitives. Also, we have explored the scan-line algorithms for displaying output primitives on a raster device. Now, we take a look at transformation operations that we can apply to objects to reposition or resize them. These operations are also used in the viewing routines that convert a world-coordinate scene description to a display for an output device. In addition, they are used in a variety of other applications, such as computer-aided design (CAD) and computer animation. An architect, for example, creates a layout by arranging the orientation and size of the component parts of a design, and a computer animator develops a video sequence by moving the “camera” position or the objects in a scene along specified paths. Operations that are applied to the geometric description of an object to change its position, orientation, or size are called geometric transformations. Sometimes geometric transformations are also referred to as modeling transformations, but some graphics packages make a From Chapter 7 of Computer Graphics with OpenGL®, Fourth Edition, Donald Hearn, M.
    [Show full text]
  • Feature Matching and Heat Flow in Centro-Affine Geometry
    Symmetry, Integrability and Geometry: Methods and Applications SIGMA 16 (2020), 093, 22 pages Feature Matching and Heat Flow in Centro-Affine Geometry Peter J. OLVER y, Changzheng QU z and Yun YANG x y School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA E-mail: [email protected] URL: http://www.math.umn.edu/~olver/ z School of Mathematics and Statistics, Ningbo University, Ningbo 315211, P.R. China E-mail: [email protected] x Department of Mathematics, Northeastern University, Shenyang, 110819, P.R. China E-mail: [email protected] Received April 02, 2020, in final form September 14, 2020; Published online September 29, 2020 https://doi.org/10.3842/SIGMA.2020.093 Abstract. In this paper, we study the differential invariants and the invariant heat flow in centro-affine geometry, proving that the latter is equivalent to the inviscid Burgers' equa- tion. Furthermore, we apply the centro-affine invariants to develop an invariant algorithm to match features of objects appearing in images. We show that the resulting algorithm com- pares favorably with the widely applied scale-invariant feature transform (SIFT), speeded up robust features (SURF), and affine-SIFT (ASIFT) methods. Key words: centro-affine geometry; equivariant moving frames; heat flow; inviscid Burgers' equation; differential invariant; edge matching 2020 Mathematics Subject Classification: 53A15; 53A55 1 Introduction The main objective in this paper is to study differential invariants and invariant curve flows { in particular the heat flow { in centro-affine geometry. In addition, we will present some basic applications to feature matching in camera images of three-dimensional objects, comparing our method with other popular algorithms.
    [Show full text]
  • Geometric Transformation Techniques for Digital I~Iages: a Survey
    GEOMETRIC TRANSFORMATION TECHNIQUES FOR DIGITAL I~IAGES: A SURVEY George Walberg Department of Computer Science Columbia University New York, NY 10027 [email protected] December 1988 Technical Report CUCS-390-88 ABSTRACT This survey presents a wide collection of algorithms for the geometric transformation of digital images. Efficient image transformation algorithms are critically important to the remote sensing, medical imaging, computer vision, and computer graphics communities. We review the growth of this field and compare all the described algorithms. Since this subject is interdisci­ plinary, emphasis is placed on the unification of the terminology, motivation, and contributions of each technique to yield a single coherent framework. This paper attempts to serve a dual role as a survey and a tutorial. It is comprehensive in scope and detailed in style. The primary focus centers on the three components that comprise all geometric transformations: spatial transformations, resampling, and antialiasing. In addition, considerable attention is directed to the dramatic progress made in the development of separable algorithms. The text is supplemented with numerous examples and an extensive bibliography. This work was supponed in part by NSF grant CDR-84-21402. 6.5.1 Pyramids 68 6.5.2 Summed-Area Tables 70 6.6 FREQUENCY CLAMPING 71 6.7 ANTIALIASED LINES AND TEXT 71 6.8 DISCUSSION 72 SECTION 7 SEPARABLE GEOMETRIC TRANSFORMATION ALGORITHMS 7.1 INTRODUCTION 73 7.1.1 Forward Mapping 73 7.1.2 Inverse Mapping 73 7.1.3 Separable Mapping 74 7.2 2-PASS TRANSFORMS 75 7.2.1 Catmull and Smith, 1980 75 7.2.1.1 First Pass 75 7.2.1.2 Second Pass 75 7.2.1.3 2-Pass Algorithm 77 7.2.1.4 An Example: Rotation 77 7.2.1.5 Bottleneck Problem 78 7.2.1.6 Foldover Problem 79 7.2.2 Fraser, Schowengerdt, and Briggs, 1985 80 7.2.3 Fant, 1986 81 7.2.4 Smith, 1987 82 7.3 ROTATION 83 7.3.1 Braccini and Marino, 1980 83 7.3.2 Weiman, 1980 84 7.3.3 Paeth, 1986/ Tanaka.
    [Show full text]
  • Transformation Groups in Non-Riemannian Geometry Charles Frances
    Transformation groups in non-Riemannian geometry Charles Frances To cite this version: Charles Frances. Transformation groups in non-Riemannian geometry. Sophus Lie and Felix Klein: The Erlangen Program and Its Impact in Mathematics and Physics, European Mathematical Society Publishing House, pp.191-216, 2015, 10.4171/148-1/7. hal-03195050 HAL Id: hal-03195050 https://hal.archives-ouvertes.fr/hal-03195050 Submitted on 10 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Transformation groups in non-Riemannian geometry Charles Frances Laboratoire de Math´ematiques,Universit´eParis-Sud 91405 ORSAY Cedex, France email: [email protected] 2000 Mathematics Subject Classification: 22F50, 53C05, 53C10, 53C50. Keywords: Transformation groups, rigid geometric structures, Cartan geometries. Contents 1 Introduction . 2 2 Rigid geometric structures . 5 2.1 Cartan geometries . 5 2.1.1 Classical examples of Cartan geometries . 7 2.1.2 Rigidity of Cartan geometries . 8 2.2 G-structures . 9 3 The conformal group of a Riemannian manifold . 12 3.1 The theorem of Obata and Ferrand . 12 3.2 Ideas of the proof of the Ferrand-Obata theorem . 13 3.3 Generalizations to rank one parabolic geometries .
    [Show full text]
  • Geometric Transformation of Finite Element Methods: Theory and Applications
    GEOMETRIC TRANSFORMATION OF FINITE ELEMENT METHODS: THEORY AND APPLICATIONS MICHAEL HOLST AND MARTIN LICHT Abstract. We present a new technique to apply finite element methods to partial differential equations over curved domains. A change of variables along a coordinate transformation satisfying only low regularity assumptions can translate a Poisson problem over a curved physical domain to a Poisson prob- lem over a polyhedral parametric domain. This greatly simplifies both the geo- metric setting and the practical implementation, at the cost of having globally rough non-trivial coefficients and data in the parametric Poisson problem. Our main result is that a recently developed broken Bramble-Hilbert lemma is key in harnessing regularity in the physical problem to prove higher-order finite el- ement convergence rates for the parametric problem. Numerical experiments are given which confirm the predictions of our theory. 1. Introduction The computational theory of partial differential equations has been in a paradoxi- cal situation from its very inception: partial differential equations over domains with curved boundaries are of theoretical and practical interest, but numerical methods are generally conceived only for polyhedral domains. Overcoming this geomet- ric gap continues to inspire much ongoing research in computational mathematics for treating partial differential equations with geometric features. Computational methods for partial differential equations over curved domains commonly adhere to the philosophy of approximating the physical domain of the partial differential equation by a parametric domain. We mention isoparametric finite element meth- ods [2], surface finite element methods [10, 8, 3], or isogeometric analysis [14] as examples, which describe the parametric domain by a polyhedral mesh whose cells are piecewise distorted to approximate the physical domain closely or exactly.
    [Show full text]
  • MATH 9 HOMEWORK ASSIGNMENT GIVEN on FEBRUARY 3, 2019. CIRCLE INVERSION Circle Inversion Circle Inversion (Or Simply Inversion) I
    MATH 9 HOMEWORK ASSIGNMENT GIVEN ON FEBRUARY 3, 2019. CIRCLE INVERSION Circle inversion Circle inversion (or simply inversion) is a geometric transformation of the plane. One can think of the inversion as of reflection with respect to a circle which is analogous to a reflection with respect to a straight line. See wikipedia article on Inversive geometry. Definition of inversion Definition. Given a circle S with the center at point O and having a radius R consider the transformation of the plane taking each point P to a point P 0 such that (i) the image P 0 belongs to a ray OP (ii) the distance jOP 0j satisfies jOP j · jOP 0j = R2. Remark. Strictly speaking the inversion is the transformation not of the whole plane but a plane without point O. The point O does not have an image. It is convenient to think of an “infinitely remote" point O0 added to a euclidian plane so that O and O0 are mapped to each other by the inversion. Basic properties of inversion We formulated and proved some basic properties of the inversion. The most important properties are that the inversion • maps circles and straight lines onto circles and straight lines • preserves angles These properties are stated as homework problems below. Try to prove them indepen- dently. In the following we denote the center of inversion as O, the circle of inversion as S and we use prime to denote the images of various objects under inversion. Classwork Problems The properties presented in problems 1-3 are almost obvious.
    [Show full text]
  • Geometric Transformations
    Chapter 4 Geometric transformations • geometric transformations deal with “moving pixels around” !Fig. 4.1 Fig. 4.1: Some examples for geometric transformations: Rotations, mirroring, distortion, map projection. – shift – rotation – scaling – other distortions • Note: pixels of a digital image must be in a regular (Cartesian, equidistant) grid – i.e., pixel coordinates must be integer 22 Chapter 4. Geometric transformations • BUT: transformation might cause pixels to end up in a different grid – non-integer pixel coordinates !Fig. 4.2 Fig. 4.2: Pixels of rotated image (red) are between the positions of the original pixels (blue) – in other words, they have non-integer pixel coordinates. ) interpolation needed to get new pixels in a new regular grid with integer coordinates ) Geometric transformation of digital images = two separate operations: 1. spatial transformation: rotation, shift, scaling etc. 2. grey-level interpolation: f (x;y) : input image (original image) g(x;y) : output image (resulting image after transformation) x,y: integers (pixel coordinates) g(x;y) = f (x0;y0) = f (a(x;y);b(x;y)) (4.1) i.e., x0 = a(x;y) (4.2) y0 = b(x;y) (4.3) 4.1 Grey level interpolation “Grey level” = pixel value There are two ways to solve the interpolation problem: 1. forward-mapping approach (pixel carry-over): V0.9.93, April 19, 2017 page 23 Melsheimer/Spreen Digital Image Processing Summer 2017 • if a pixel from input image f maps to non-integer coordinates (between four integer pixel positions): divide its grey-level among these four pixels !Fig. 4.3 Fig. 4.3: Pixel carry-over (from Castleman, 1996, Fig.
    [Show full text]
  • Article Which He Wrote for the five-Volume Entsik- Lopedia Elementarnoy Matematiki
    A CURIOUS GEOMETRIC TRANSFORMATION NIKOLAI IVANOV BELUHOV Abstract. An expansion is a little-known geometric transformation which maps directed circles to directed circles. We explore the applications of ex- pansion to the solution of various problems in geometry by elementary means. In his book Geometricheskie Preobrazovaniya, Isaac Moiseevich Yaglom de- scribes one curious geometric transformation called expansion 1. A few years after coming across this transformation, the author of the present paper was rather surprised to discover that it leads to quite appealing geometrical solutions of a number of problems otherwise very difficult to treat by elementary means. Most of these originated in Japanese sangaku – wooden votive tablets which Japanese mathematicians of the Edo period painted with the beautiful and extraordinary theorems they discovered and then hung in Buddhist temples and Shinto shrines. Researching the available literature prior to compiling this paper brought an- other surprise: that expansion was not mentioned in almost any other books on geometry. Only two references were uncovered – one more book by I. M. Ya- glom [7] and an encyclopedia article which he wrote for the five-volume Entsik- lopedia Elementarnoy Matematiki. Therefore, we begin our presentation with an informal introduction to expan- sion and the geometry of cycles and rays. 1. Introduction We call an oriented circle a cycle. Whenever a circle k of radius R is oriented positively (i.e., counterclockwise), we label the resulting cycle k+ and say that it is of radius R. Whenever k is oriented negatively (i.e., clockwise), we label the resulting cycle k− and say that it is of radius R.
    [Show full text]
  • Meeting in Mathematics
    226159-CP-1-2005-1-AT-COMENIUS-C21 527269-LLP-1-2012-1-AT-COMENIUS-CAM Pavel Boytchev Hannes Hohenwarter Evgenia Sendova Neli Dimitrova Emil Kostadinov Andreas Ulovec Vladimir Georgiev Arne Mogensen Henning Westphael Oleg Mushkarov MEETING IN MATHEMATICS 2nd edition • Universität Wien • Dipartimento di Matematica, Universita' di Pisà • VIA University College – Læreruddannelsen i Århus • Институт по математика и информатика , Българска академия на науките Authors Pavel Boytchev, Neli Dimitrova, Vladimir Georgiev, Hannes Hohenwarter, Emil Kostadinov, Arne Mogensen, Oleg Mushkarov, Evgenia Sendova, Andreas Ulovec, Henning Westphael Editors Evgenia Sendova Andreas Ulovec Project Evaluator Jarmila Novotná, Charles University, Prague, Czech Republic Reviewers Jarmila Novotná, Charles University, Prague, Czech Republic Nicholas Mousoulides, University of Nicosia, Cyprus Cover design by Pavel Boytchev Cartoons by Yovko Kolarov All Rights Reserved © 2013 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the authors. For educational purposes only (i.e. for use in schools, teaching, teacher training etc.), you may use this work or parts of it under the “Attribution Non-Commercial Share Alike” license according to Creative Commons, as detailed in http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode. This project has been funded with support from the European Commission. This publication reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. Published by Demetra Publishing House, Sofia, Bulgaria ISBN 978-954-9526-49-3 iii Contents PREFACE..................................................................................................................
    [Show full text]
  • The Malfatti Problem
    Forum Geometricorum b Volume 1 (2001) 43–50. bbb FORUM GEOM ISSN 1534-1178 The Malfatti Problem Oene Bottema Abstract. A solution is given of Steiner’s variation of the classical Malfatti problem in which the triangle is replaced by three circles mutually tangent to each other externally. The two circles tangent to the three given ones, presently known as Soddy’s circles, are encountered as well. In this well known problem, construction is sought for three circles C1, C2 and C3, tangent to each other pairwise, and of which C1 is tangent to the sides A1A2 and A1A3 of a given triangle A1A2A3, while C2 is tangent to A2A3 and A2A1 and C3 to A3A1 and A3A2. The problem was posed by Malfatti in 1803 and solved by him with the help of an algebraic analysis. Very well known is the extraordinarily elegant geometric solution that Steiner announced without proof in 1826. This solution, together with the proof Hart gave in 1857, one can find in various textbooks.1 Steiner has also considered extensions of the problem and given solutions. The first is the one where the lines A2A3, A3A1 and A1A2 are replaced by circles. Further generalizations concern the figures of three circles on a sphere, and of three conic sections on a quadric surface. In the nineteenth century many mathematicians have worked on this problem. Among these were Cayley (1852) 2, Schellbach (who in 1853 published a very nice goniometric solution), and Clebsch (who in 1857 extended Schellbach’s solution to three conic sections on a quadric surface, and for that he made use of elliptic functions).
    [Show full text]
  • Lecture 5 Geometric Transformations and Image Registration
    Lecture 5 Geometric Transformations and Image Registration Lin ZHANG, PhD School of Software Engineering Tongji University Spring 2014 Lin ZHANG, SSE, 2014 Contents • Transforming points •Hierarchy of geometric transformations • Applying geometric transformations to images •Image registration Lin ZHANG, SSE, 2014 Transforming Points •Geometric transformations modify the spatial relationship between pixels in an image •The images can be shifted, rotated, or stretched in a variety of ways •Geometric transformations can be used to •create thumbnail views • change digital video resolution • correct distortions caused by viewing geometry • align multiple images of the same scene Lin ZHANG, SSE, 2014 Transforming Points Suppose (w, z) and (x, y) are two spatial coordinate systems input space output space A geometric transformation T that maps the input space to output space (,x yTwz ) ( ,) T is called a forward transformation or forward mapping (,)wz T1 (,) xy T-1 is called a inverse transformation or inverse mapping Lin ZHANG, SSE, 2014 Transforming Points z (,x yTwz ) ( ,) y (,)wz T1 (,) xy w x Lin ZHANG, SSE, 2014 Transforming Points An example (,xy ) T ( wz ,) ( w /2,/2) z (,)wz T1 (,) xy (2,2) x y Lin ZHANG, SSE, 2014 Contents • Transforming points •Hierarchy of geometric transformations • Applying geometric transformations to images •Image Registration Lin ZHANG, SSE, 2014 Hierarchy of Geometric Transformations • Class I: Isometry transformation If only rotation and translation are considered xx' cos sin t 1 ' y sin cos yt2 In homogeneous
    [Show full text]