Vector Space and Dual Vector Space Let V Be a Finite Dimensional Vector
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Bicoset of a Bivector Space
International J.Math. Combin. Vol.4 (2009), 01-08 On the Bicoset of a Bivector Space Agboola A.A.A.† and Akinola L.S.‡ † Department of Mathematics, University of Agriculture, Abeokuta, Nigeria ‡ Department of Mathematics and computer Science, Fountain University, Osogbo, Nigeria E-mail: [email protected], [email protected] Abstract: The study of bivector spaces was first intiated by Vasantha Kandasamy in [1]. The objective of this paper is to present the concept of bicoset of a bivector space and obtain some of its elementary properties. Key Words: bigroup, bivector space, bicoset, bisum, direct bisum, inner biproduct space, biprojection. AMS(2000): 20Kxx, 20L05. §1. Introduction and Preliminaries The study of bialgebraic structures is a new development in the field of abstract algebra. Some of the bialgebraic structures already developed and studied and now available in several literature include: bigroups, bisemi-groups, biloops, bigroupoids, birings, binear-rings, bisemi- rings, biseminear-rings, bivector spaces and a host of others. Since the concept of bialgebraic structure is pivoted on the union of two non-empty subsets of a given algebraic structure for example a group, the usual problem arising from the union of two substructures of such an algebraic structure which generally do not form any algebraic structure has been resolved. With this new concept, several interesting algebraic properties could be obtained which are not present in the parent algebraic structure. In [1], Vasantha Kandasamy initiated the study of bivector spaces. Further studies on bivector spaces were presented by Vasantha Kandasamy and others in [2], [4] and [5]. In the present work however, we look at the bicoset of a bivector space and obtain some of its elementary properties. -
Introduction to Linear Bialgebra
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of New Mexico University of New Mexico UNM Digital Repository Mathematics and Statistics Faculty and Staff Publications Academic Department Resources 2005 INTRODUCTION TO LINEAR BIALGEBRA Florentin Smarandache University of New Mexico, [email protected] W.B. Vasantha Kandasamy K. Ilanthenral Follow this and additional works at: https://digitalrepository.unm.edu/math_fsp Part of the Algebra Commons, Analysis Commons, Discrete Mathematics and Combinatorics Commons, and the Other Mathematics Commons Recommended Citation Smarandache, Florentin; W.B. Vasantha Kandasamy; and K. Ilanthenral. "INTRODUCTION TO LINEAR BIALGEBRA." (2005). https://digitalrepository.unm.edu/math_fsp/232 This Book is brought to you for free and open access by the Academic Department Resources at UNM Digital Repository. It has been accepted for inclusion in Mathematics and Statistics Faculty and Staff Publications by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected], [email protected], [email protected]. INTRODUCTION TO LINEAR BIALGEBRA W. B. Vasantha Kandasamy Department of Mathematics Indian Institute of Technology, Madras Chennai – 600036, India e-mail: [email protected] web: http://mat.iitm.ac.in/~wbv Florentin Smarandache Department of Mathematics University of New Mexico Gallup, NM 87301, USA e-mail: [email protected] K. Ilanthenral Editor, Maths Tiger, Quarterly Journal Flat No.11, Mayura Park, 16, Kazhikundram Main Road, Tharamani, Chennai – 600 113, India e-mail: [email protected] HEXIS Phoenix, Arizona 2005 1 This book can be ordered in a paper bound reprint from: Books on Demand ProQuest Information & Learning (University of Microfilm International) 300 N. -
A Guide to Symplectic Geometry
OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK A GUIDE TO SYMPLECTIC GEOMETRY IVO TEREK* These are lecture notes for the SYMPLECTIC GEOMETRY CRASH COURSE held at The Ohio State University during the summer term of 2021, as our first attempt for a series of mini-courses run by graduate students for graduate students. Due to time and space constraints, many things will have to be omitted, but this should serve as a quick introduction to the subject, as courses on Symplectic Geometry are not currently offered at OSU. There will be many exercises scattered throughout these notes, most of them routine ones or just really remarks, not only useful to give the reader a working knowledge about the basic definitions and results, but also to serve as a self-study guide. And as far as references go, arXiv.org links as well as links for authors’ webpages were provided whenever possible. Columbus, May 2021 *[email protected] Page i OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK Contents 1 Symplectic Linear Algebra1 1.1 Symplectic spaces and their subspaces....................1 1.2 Symplectomorphisms..............................6 1.3 Local linear forms................................ 11 2 Symplectic Manifolds 13 2.1 Definitions and examples........................... 13 2.2 Symplectomorphisms (redux)......................... 17 2.3 Hamiltonian fields............................... 21 2.4 Submanifolds and local forms......................... 30 3 Hamiltonian Actions 39 3.1 Poisson Manifolds................................ 39 3.2 Group actions on manifolds.......................... 46 3.3 Moment maps and Noether’s Theorem................... 53 3.4 Marsden-Weinstein reduction......................... 63 Where to go from here? 74 References 78 Index 82 Page ii OSU — SYMPLECTIC GEOMETRY CRASH COURSE IVO TEREK 1 Symplectic Linear Algebra 1.1 Symplectic spaces and their subspaces There is nothing more natural than starting a text on Symplecic Geometry1 with the definition of a symplectic vector space. -
Bornologically Isomorphic Representations of Tensor Distributions
Bornologically isomorphic representations of distributions on manifolds E. Nigsch Thursday 15th November, 2018 Abstract Distributional tensor fields can be regarded as multilinear mappings with distributional values or as (classical) tensor fields with distribu- tional coefficients. We show that the corresponding isomorphisms hold also in the bornological setting. 1 Introduction ′ ′ ′r s ′ Let D (M) := Γc(M, Vol(M)) and Ds (M) := Γc(M, Tr(M) ⊗ Vol(M)) be the strong duals of the space of compactly supported sections of the volume s bundle Vol(M) and of its tensor product with the tensor bundle Tr(M) over a manifold; these are the spaces of scalar and tensor distributions on M as defined in [?, ?]. A property of the space of tensor distributions which is fundamental in distributional geometry is given by the C∞(M)-module isomorphisms ′r ∼ s ′ ∼ r ′ Ds (M) = LC∞(M)(Tr (M), D (M)) = Ts (M) ⊗C∞(M) D (M) (1) (cf. [?, Theorem 3.1.12 and Corollary 3.1.15]) where C∞(M) is the space of smooth functions on M. In[?] a space of Colombeau-type nonlinear generalized tensor fields was constructed. This involved handling smooth functions (in the sense of convenient calculus as developed in [?]) in par- arXiv:1105.1642v1 [math.FA] 9 May 2011 ∞ r ′ ticular on the C (M)-module tensor products Ts (M) ⊗C∞(M) D (M) and Γ(E) ⊗C∞(M) Γ(F ), where Γ(E) denotes the space of smooth sections of a vector bundle E over M. In[?], however, only minor attention was paid to questions of topology on these tensor products. -
Bases for Infinite Dimensional Vector Spaces Math 513 Linear Algebra Supplement
BASES FOR INFINITE DIMENSIONAL VECTOR SPACES MATH 513 LINEAR ALGEBRA SUPPLEMENT Professor Karen E. Smith We have proven that every finitely generated vector space has a basis. But what about vector spaces that are not finitely generated, such as the space of all continuous real valued functions on the interval [0; 1]? Does such a vector space have a basis? By definition, a basis for a vector space V is a linearly independent set which generates V . But we must be careful what we mean by linear combinations from an infinite set of vectors. The definition of a vector space gives us a rule for adding two vectors, but not for adding together infinitely many vectors. By successive additions, such as (v1 + v2) + v3, it makes sense to add any finite set of vectors, but in general, there is no way to ascribe meaning to an infinite sum of vectors in a vector space. Therefore, when we say that a vector space V is generated by or spanned by an infinite set of vectors fv1; v2;::: g, we mean that each vector v in V is a finite linear combination λi1 vi1 + ··· + λin vin of the vi's. Likewise, an infinite set of vectors fv1; v2;::: g is said to be linearly independent if the only finite linear combination of the vi's that is zero is the trivial linear combination. So a set fv1; v2; v3;:::; g is a basis for V if and only if every element of V can be be written in a unique way as a finite linear combination of elements from the set. -
Solution: the First Element of the Dual Basis Is the Linear Function Α
Homework assignment 7 pp. 105 3 Exercise 2. Let B = f®1; ®2; ®3g be the basis for C defined by ®1 = (1; 0; ¡1) ®2 = (1; 1; 1) ®3 = (2; 2; 0): Find the dual basis of B. Solution: ¤ The first element of the dual basis is the linear function ®1 such ¤ ¤ ¤ that ®1(®1) = 1; ®1(®2) = 0 and ®1(®3) = 0. To describe such a function more explicitly we need to find its values on the standard basis vectors e1, e2 and e3. To do this express e1; e2; e3 through ®1; ®2; ®3 (refer to the solution of Exercise 1 pp. 54-55 from Homework 6). For each i = 1; 2; 3 you will find the numbers ai; bi; ci such that e1 = ai®1 + bi®2 + ci®3 (i.e. the coordinates of ei relative to the ¤ ¤ ¤ basis ®1; ®2; ®3). Then by linearity of ®1 we get that ®1(ei) = ai. Then ®2(ei) = bi, ¤ and ®3(ei) = ci. This is the answer. It can also be reformulated as follows. If P is the transition matrix from the standard basis e1; e2; e3 to ®1; ®2; ®3, i.e. ¡1 t (®1; ®2; ®3) = (e1; e2; e3)P , then (P ) is the transition matrix from the dual basis ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¤ ¡1 t e1; e2; e3 to the dual basis ®1; ®2; a3, i.e. (®1; ®2; a3) = (e1; e2; e3)(P ) . Note that this problem is basically the change of coordinates problem: e.g. ¤ 3 the value of ®1 on the vector v 2 C is the first coordinate of v relative to the basis ®1; ®2; ®3. -
Vectors and Dual Vectors
Vectors By now you have a pretty good experience with \vectors". Usually, a vector is defined as a quantity that has a direction and a magnitude, such as a position vector, velocity vector, acceleration vector, etc. However, the notion of a vector has a considerably wider realm of applicability than these examples might suggest. The set of all real numbers forms a vector space, as does the set of all complex numbers. The set of functions on a set (e.g., functions of one variable, f(x)) form a vector space. Solutions of linear homogeneous equations form a vector space. We begin by giving the abstract rules for forming a space of vectors, also known as a vector space. A vector space V is a set equipped with an operation of \addition" and an additive identity. The elements of the set are called vectors, which we shall denote as ~u, ~v, ~w, etc. For now, you can think of them as position vectors in order to keep yourself sane. Addition, is an operation in which two vectors, say ~u and ~v, can be combined to make another vector, say, ~w. We denote this operation by the symbol \+": ~u + ~v = ~w: (1) Do not be fooled by this simple notation. The \addition" of vectors may be quite a different operation than ordinary arithmetic addition. For example, if we view position vectors in the x-y plane as \arrows" drawn from the origin, the addition of vectors is defined by the parallelogram rule. Clearly this rule is quite different than ordinary \addition". -
Duality, Part 1: Dual Bases and Dual Maps Notation
Duality, part 1: Dual Bases and Dual Maps Notation F denotes either R or C. V and W denote vector spaces over F. Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Examples: Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). n n Fix (b1;:::; bn) 2 C . Define ': C ! C by '(z1;:::; zn) = b1z1 + ··· + bnzn: Then ' is a linear functional on Cn. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. Then ' is a linear functional on P(R). Linear Functionals Definition: linear functional A linear functional on V is a linear map from V to F. In other words, a linear functional is an element of L(V; F). Examples: Define ': R3 ! R by '(x; y; z) = 4x − 5y + 2z. Then ' is a linear functional on R3. Define ': P(R) ! R by '(p) = 3p00(5) + 7p(4). Then ' is a linear functional on P(R). R 1 Define ': P(R) ! R by '(p) = 0 p(x) dx. -
Book: Lectures on Differential Geometry
Lectures on Differential geometry John W. Barrett 1 October 5, 2017 1Copyright c John W. Barrett 2006-2014 ii Contents Preface .................... vii 1 Differential forms 1 1.1 Differential forms in Rn ........... 1 1.2 Theexteriorderivative . 3 2 Integration 7 2.1 Integrationandorientation . 7 2.2 Pull-backs................... 9 2.3 Integrationonachain . 11 2.4 Changeofvariablestheorem. 11 3 Manifolds 15 3.1 Surfaces .................... 15 3.2 Topologicalmanifolds . 19 3.3 Smoothmanifolds . 22 iii iv CONTENTS 3.4 Smoothmapsofmanifolds. 23 4 Tangent vectors 27 4.1 Vectorsasderivatives . 27 4.2 Tangentvectorsonmanifolds . 30 4.3 Thetangentspace . 32 4.4 Push-forwards of tangent vectors . 33 5 Topology 37 5.1 Opensubsets ................. 37 5.2 Topologicalspaces . 40 5.3 Thedefinitionofamanifold . 42 6 Vector Fields 45 6.1 Vectorsfieldsasderivatives . 45 6.2 Velocityvectorfields . 47 6.3 Push-forwardsofvectorfields . 50 7 Examples of manifolds 55 7.1 Submanifolds . 55 7.2 Quotients ................... 59 7.2.1 Projectivespace . 62 7.3 Products.................... 65 8 Forms on manifolds 69 8.1 Thedefinition. 69 CONTENTS v 8.2 dθ ....................... 72 8.3 One-formsandtangentvectors . 73 8.4 Pairingwithvectorfields . 76 8.5 Closedandexactforms . 77 9 Lie Groups 81 9.1 Groups..................... 81 9.2 Liegroups................... 83 9.3 Homomorphisms . 86 9.4 Therotationgroup . 87 9.5 Complexmatrixgroups . 88 10 Tensors 93 10.1 Thecotangentspace . 93 10.2 Thetensorproduct. 95 10.3 Tensorfields. 97 10.3.1 Contraction . 98 10.3.2 Einstein summation convention . 100 10.3.3 Differential forms as tensor fields . 100 11 The metric 105 11.1 Thepull-backmetric . 107 11.2 Thesignature . 108 12 The Lie derivative 115 12.1 Commutator of vector fields . -
A Some Basic Rules of Tensor Calculus
A Some Basic Rules of Tensor Calculus The tensor calculus is a powerful tool for the description of the fundamentals in con- tinuum mechanics and the derivation of the governing equations for applied prob- lems. In general, there are two possibilities for the representation of the tensors and the tensorial equations: – the direct (symbolic) notation and – the index (component) notation The direct notation operates with scalars, vectors and tensors as physical objects defined in the three dimensional space. A vector (first rank tensor) a is considered as a directed line segment rather than a triple of numbers (coordinates). A second rank tensor A is any finite sum of ordered vector pairs A = a b + ... +c d. The scalars, vectors and tensors are handled as invariant (independent⊗ from the choice⊗ of the coordinate system) objects. This is the reason for the use of the direct notation in the modern literature of mechanics and rheology, e.g. [29, 32, 49, 123, 131, 199, 246, 313, 334] among others. The index notation deals with components or coordinates of vectors and tensors. For a selected basis, e.g. gi, i = 1, 2, 3 one can write a = aig , A = aibj + ... + cidj g g i i ⊗ j Here the Einstein’s summation convention is used: in one expression the twice re- peated indices are summed up from 1 to 3, e.g. 3 3 k k ik ik a gk ∑ a gk, A bk ∑ A bk ≡ k=1 ≡ k=1 In the above examples k is a so-called dummy index. Within the index notation the basic operations with tensors are defined with respect to their coordinates, e. -
Multilinear Algebra
Appendix A Multilinear Algebra This chapter presents concepts from multilinear algebra based on the basic properties of finite dimensional vector spaces and linear maps. The primary aim of the chapter is to give a concise introduction to alternating tensors which are necessary to define differential forms on manifolds. Many of the stated definitions and propositions can be found in Lee [1], Chaps. 11, 12 and 14. Some definitions and propositions are complemented by short and simple examples. First, in Sect. A.1 dual and bidual vector spaces are discussed. Subsequently, in Sects. A.2–A.4, tensors and alternating tensors together with operations such as the tensor and wedge product are introduced. Lastly, in Sect. A.5, the concepts which are necessary to introduce the wedge product are summarized in eight steps. A.1 The Dual Space Let V be a real vector space of finite dimension dim V = n.Let(e1,...,en) be a basis of V . Then every v ∈ V can be uniquely represented as a linear combination i v = v ei , (A.1) where summation convention over repeated indices is applied. The coefficients vi ∈ R arereferredtoascomponents of the vector v. Throughout the whole chapter, only finite dimensional real vector spaces, typically denoted by V , are treated. When not stated differently, summation convention is applied. Definition A.1 (Dual Space)Thedual space of V is the set of real-valued linear functionals ∗ V := {ω : V → R : ω linear} . (A.2) The elements of the dual space V ∗ are called linear forms on V . © Springer International Publishing Switzerland 2015 123 S.R. -
MAT 531 Geometry/Topology II Introduction to Smooth Manifolds
MAT 531 Geometry/Topology II Introduction to Smooth Manifolds Claude LeBrun Stony Brook University April 9, 2020 1 Dual of a vector space: 2 Dual of a vector space: Let V be a real, finite-dimensional vector space. 3 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be 4 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be ∗ V := fLinear maps V ! Rg: 5 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be ∗ V := fLinear maps V ! Rg: ∗ Proposition. V is finite-dimensional vector space, too, and 6 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be ∗ V := fLinear maps V ! Rg: ∗ Proposition. V is finite-dimensional vector space, too, and ∗ dimV = dimV: 7 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be ∗ V := fLinear maps V ! Rg: ∗ Proposition. V is finite-dimensional vector space, too, and ∗ dimV = dimV: ∗ ∼ In particular, V = V as vector spaces. 8 Dual of a vector space: Let V be a real, finite-dimensional vector space. Then the dual vector space of V is defined to be ∗ V := fLinear maps V ! Rg: ∗ Proposition. V is finite-dimensional vector space, too, and ∗ dimV = dimV: ∗ ∼ In particular, V = V as vector spaces.