Ant Diversity, Function and Services Across

Total Page:16

File Type:pdf, Size:1020Kb

Ant Diversity, Function and Services Across ANT DIVERSITY, FUNCTION AND SERVICES ACROSS TROPICAL LAND-USE SYSTEMS IN INDONESIA Dissertation for the award of the degree “Doctor of Philosophy” (Ph.D. Division of Mathematics and Natural Sciences) of the Georg-August-Universität Göttingen within the doctoral program: Biodiversity and Ecology submitted by M.Sc. Lisa Helen Denmead from Blenheim (New Zealand) Göttingen, 2016 Thesis Committee Prof. Dr. Teja Tscharntke (Dept. Crop Sciences / Agroecology) Prof. Dr. Stefan Vidal (Dept. of Crop Sciences / Agroentomology) Prof. Dr. Kerstin Wiegand (Dept. of Ecosystem Modelling/ A.-v.-H. Institute for Plant Sciences) Members of the Examination Board Prof. Dr. Teja Tscharntke (Dept. Crop Sciences / Agroecology) Prof. Dr. Stefan Vidal (Dept. of Crop Sciences / Agroentomology) Prof. Dr. Kerstin Wiegand (Dept. of Ecosystem Modelling/ A.-v.-H. Institute for Plant Sciences) Dr Yann Clough (Dept. Crop Sciences / Agroecology and Centre for Environmental and Climate Research, Lund University) Prof. Dr. Holger Kreft (Free Floater Research Group – Biodiversity, Macroecology & Conservation Biogeography Group) Prof. Dr Hermann Behling (Dept. of Palynology and Climate Dynamics) Date of the oral examination: 17.03.2016 Table of contents Summary .................................................................................................................................... 1 Chapter 1: General Introduction ................................................................................................. 3 1.1 Land-use change in the tropics ........................................................................................ 4 1.2 Consequences of land-use change on biodiversity and ecosystem functioning .............. 5 1.3 Potential factors influencing maintenance of biodiversity and ecosystem functions in land-use systems .................................................................................................................... 6 1.4 The role of ants in ecosystems ......................................................................................... 8 1.5 Project framework (EFForTs) .......................................................................................... 8 1.6 Thesis objectives .............................................................................................................. 9 Chapter 2: Agricultural land use alters species composition but not species richness of ant communities ............................................................................................................................. 13 2.1 Introduction ................................................................................................................... 14 2.2 Materials and methods ................................................................................................... 14 2.3 Results ........................................................................................................................... 16 2.4 Discussion ...................................................................................................................... 20 2.5 Supplementary material ................................................................................................. 22 Chapter 3: Single- and multi-trait measures reveal widespread functional diversity loss in human-modified tropical landscapes ........................................................................................ 27 3.1 Introduction ................................................................................................................... 28 3.2 Materials and Methods .................................................................................................. 29 3.3 Results ........................................................................................................................... 33 3.4 Discussion ...................................................................................................................... 36 3.5 Supplementary material ................................................................................................. 40 Chapter 4: Local and landscape drivers of arthropod diversity and decomposition processes in oil palm leaf axils ..................................................................................................................... 51 4.1 Introduction ................................................................................................................... 52 4.2 Materials and methods ................................................................................................... 53 4.3 Results ........................................................................................................................... 56 4.4 Discussion ...................................................................................................................... 60 4.5 Supplementary material ................................................................................................. 63 Chapter 5: Biological control in oil palm is enhanced by landscape context ........................... 73 5.1 Introduction ................................................................................................................... 74 5.2 Materials and methods .................................................................................................. 75 5.3 Results ........................................................................................................................... 79 5.4 Discussion ..................................................................................................................... 82 5.4 Supplementary material ................................................................................................. 85 Chapter 6: Ants affect belowground invertebrate communities and associated functions across tropical land-use systems ......................................................................................................... 95 6.1 Introduction ................................................................................................................... 96 6.2 Materials and methods .................................................................................................. 97 6.3 Results ......................................................................................................................... 100 6.4 Discussion ................................................................................................................... 108 6.5 Supplementary material ............................................................................................... 112 Chapter 7: The role of ants, birds and bats for ecosystem functions and services in oil palm plantations ............................................................................................................................ 123 7.1 Introduction ................................................................................................................. 124 7.2 Materials and methods ................................................................................................ 125 7.3 Results ......................................................................................................................... 131 7.4 Discussion ................................................................................................................... 134 7.5 Supplementary material ............................................................................................... 137 Chapter 8: Synthesis................................................................................................................ 151 8.1 Objective 1: Understand ant taxonomic and functional diversity responses to land-use change ............................................................................................................................. 151 8.2 Objective 2: Investigate the response of ant communities and associated functions to landscape context and local management in oil palm plantations..................................... 152 8.3 Objective 3: Examine the role of ant communities in shaping arthropod communities and associated ecosystem functions and services .................................................................... 153 8.4 Overall conclusions ..................................................................................................... 154 Bibliography............................................................................................................................ 157 Acknowledgements ................................................................................................................. 171 Declaration .............................................................................................................................. 173 Curriculum Vitae..................................................................................................................... 175 Publication list......................................................................................................................... 177 Summary Land-use change due to agricultural expansion is one of the greatest global threats to biodiversity and associated ecosystem functions and services. In the tropics in particular, conversion of forest and agroforests into monoculture agriculture such as oil palm is happening at an extremely rapid rate, leading to highly simplified landscapes. In Indonesia, currently the world’s leading palm oil producer,
Recommended publications
  • In Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis Geminata
    The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. By Rebecca L. Sandidge A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Neil D. Tsutsui, Chair Professor Brian Fisher Professor Rosemary Gillespie Professor Ellen Simms Fall 2018 The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. © 2018 By Rebecca L. Sandidge 1 Abstract The Community Ecology of Ants (Formicidae) in Indonesian Grasslands with Special Focus on the Tropical Fire Ant, Solenopsis geminata. by Rebecca L. Sandidge Doctor of Philosophy in Environmental Science Policy and Management, Berkeley Professor Neil Tsutsui, Chair Invasive species and habitat destruction are considered to be the leading causes of biodiversity decline, signaling declining ecosystem health on a global scale. Ants (Formicidae) include some on the most widespread and impactful invasive species capable of establishing in high numbers in new habitats. The tropical grasslands of Indonesia are home to several invasive species of ants. Invasive ants are transported in shipped goods, causing many species to be of global concern. My dissertation explores ant communities in the grasslands of southeastern Indonesia. Communities are described for the first time with a special focus on the Tropical Fire Ant, Solenopsis geminata, which consumes grass seeds and can have negative ecological impacts in invaded areas. The first chapter describes grassland ant communities in both disturbed and undisturbed grasslands.
    [Show full text]
  • Global Generic Richness and Distribution: New Maps of the World of Ants with Examples of Their Use in the Context of Asia
    ASIAN MYRMECOLOGY Volume 3, 21–28, 2010 ISSN 1985-1944 ©BENOIT GUÉNARD, MICHAEL D. WEISER AND ROBERT R. DUNN Global generic richness and distribution: new maps of the world of ants with examples of their use in the context of Asia BENOIT GUÉNARD, MICHAEL D. WEISER AND ROBERT R. DUNN Department of Biology, North Carolina State University, Raleigh, NC, 27607, USA ABSTRACT. Knowledge of the biogeographic distribution of ants is central to our understanding of ant ecology, evolution, taxonomy and conservation. Here, we introduce a novel global biogeographic database for ant genera and an associated website with maps showing the known distribution of all extant ant genera. We use this database to consider knowledge of the distribution of ant genera in Asia, a hotspot of ant diversity and biological diversity more generally. We find that, although ant systematists and ecologists are now active in Asia, much remains to be learned about the distribution of Asian ant genera. We highlight areas where additional research would be particularly useful. In Asia, as elsewhere, ants are ecologically In this article, we describe briefly a new dominant and conspicuous actors in most resource for myrmecologists: online maps of the ecosystems: as predators (Steghaus-Kovac & known distribution of all extant ant genera. We Maschwitz 1993; Berghoff et al. 2002), mutualist focus, in this first paper, on Asia, because it is not partners with other insects (Way 1963; Maschwitz only a region of very active ant research and high & Hänel 1985; Pierce et al. 2002; Pfeiffer & generic richness (Fisher 2009), but also because Linsenmair 2007) or plants (Fiala et al.
    [Show full text]
  • Ants in French Polynesia and the Pacific: Species Distributions and Conservation Concerns
    Ants in French Polynesia and the Pacific: species distributions and conservation concerns Paul Krushelnycky Dept of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii Hervé Jourdan Centre de Biologie et de Gestion des Populations, INRA/IRD, Nouméa, New Caledonia The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) Photos © Alex Wild The importance of ants • In most ecosystems, form a substantial portion of a communities’ biomass (1/3 of animal biomass and ¾ of insect biomass in Amazon rainforest) • Involved in many important ecosystem processes: predator/prey relationships herbivory seed dispersal soil turning mutualisms Photos © Alex Wild The importance of ants • Important in shaping evolution of biotic communities and ecosystems Photos © Alex Wild Ants in the Pacific • Pacific archipelagoes the most remote in the world • Implications for understanding ant biogeography (patterns of dispersal, species/area relationships, community assembly) • Evolution of faunas with depauperate ant communities • Consequent effects of ant introductions Hypoponera zwaluwenburgi Ants in the Amblyopone zwaluwenburgi Pacific – current picture Ponera bableti Indigenous ants in the Pacific? Approx. 30 - 37 species have been labeled “wide-ranging Pacific natives”: Adelomyrmex hirsutus Ponera incerta Anochetus graeffei Ponera loi Camponotus chloroticus Ponera swezeyi Camponotus navigator Ponera tenuis Camponotus rufifrons
    [Show full text]
  • ACANTHOMYRMEX Basispinosus
    ACANTHOMYRMEX basispinosus. Acanthomyrmex basispinosus Moffett, 1986c: 67, figs. 8A, 9-14 (s.w.) INDONESIA (Sulawesi). Status as species: Bolton, 1995b: 53; Yamada, Ito, et al. 2018: 10. careoscrobis. Acanthomyrmex careoscrobis Moffett, 1986c: 78, figs. 39A, 40-43 (w.) BORNEO (East Malaysia: Sarawak). Yamada, Ito, et al. 2018: 7, 18 (s. ergatoid q., m.). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 15 (redescription). concavus. Acanthomyrmex concavus Moffett, 1986c: 80, figs. 39B-C, 44-47 (w.) BORNEO (East Malaysia: Sarawak, Sabah). Status as species: Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. crassispinus. Acanthomyrmex crassispina Wheeler, W.M. 1930a: 101, fig. 2 (w.) TAIWAN. Moffett, 1986c: 69 (s.). Status as species: Chapman & Capco, 1951: 114; Moffett, 1986c: 69 (redescription); Bolton, 1995b: 53; Lin & Wu, 1998: 86 (redescription); Lin & Wu, 2003: 64; Terayama, 2009: 187; Yamada, Ito, et al. 2018: 10. dusun. Acanthomyrmex dusun Wheeler, W.M. 1919e: 89 (s.) BORNEO (East Malaysia: Sarawak). [Misspelled as dusan by Chapman & Capco, 1951: 115.] Status as species: Chapman & Capco, 1951: 115; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Pfeiffer, et al. 2011: 44; Yamada, Ito, et al. 2018: 10. dyak. Acanthomyrmex dyak Wheeler, W.M. 1919e: 86 (s.w.) BORNEO (East Malaysia: Sarawak). Status as species: Chapman & Capco, 1951: 115. Junior synonym of ferox: Moffett, 1986c: 70; Bolton, 1995b: 53. ferox. Acanthomyrmex ferox Emery, 1893f: 245 (footnote), pl. 6, fig. 11 (w.) WEST MALAYSIA. [Acanthomyrmex ferox Emery, 1893a: cclxxvi. Nomen nudum.] Moffett, 1986c: 72 (s.q.m.). Status as species: Emery, 1900d: 678; Emery, 1924d: 235; Chapman & Capco, 1951: 115; Moffett, 1985a: 165; Moffett, 1986c: 70 (redescription); Bolton, 1995b: 53; Jaitrong & Nabhitabhata, 2005: 10; Pfeiffer, et al.
    [Show full text]
  • A Guide to the Ants of Sabangau
    A Guide to the Ants of Sabangau The Orangutan Tropical Peatland Project November 2014 A Guide to the Ants of Sabangau All original text, layout and illustrations are by Stijn Schreven (e-mail: [email protected]), supple- mented by quotations (with permission) from taxonomic revisions or monographs by Donat Agosti, Barry Bolton, Wolfgang Dorow, Katsuyuki Eguchi, Shingo Hosoishi, John LaPolla, Bernhard Seifert and Philip Ward. The guide was edited by Mark Harrison and Nicholas Marchant. All microscopic photography is from Antbase.net and AntWeb.org, with additional images from Andrew Walmsley Photography, Erik Frank, Stijn Schreven and Thea Powell. The project was devised by Mark Harrison and Eric Perlett, developed by Eric Perlett, and coordinated in the field by Nicholas Marchant. Sample identification, taxonomic research and fieldwork was by Stijn Schreven, Eric Perlett, Benjamin Jarrett, Fransiskus Agus Harsanto, Ari Purwanto and Abdul Azis. Front cover photo: Workers of Polyrhachis (Myrma) sp., photographer: Erik Frank/ OuTrop. Back cover photo: Sabangau forest, photographer: Stijn Schreven/ OuTrop. © 2014, The Orangutan Tropical Peatland Project. All rights reserved. Email [email protected] Website www.outrop.com Citation: Schreven SJJ, Perlett E, Jarrett BJM, Harsanto FA, Purwanto A, Azis A, Marchant NC, Harrison ME (2014). A Guide to the Ants of Sabangau. The Orangutan Tropical Peatland Project, Palangka Raya, Indonesia. The views expressed in this report are those of the authors and do not necessarily represent those of OuTrop’s partners or sponsors. The Orangutan Tropical Peatland Project is registered in the UK as a non-profit organisation (Company No. 06761511) and is supported by the Orangutan Tropical Peatland Trust (UK Registered Charity No.
    [Show full text]
  • Digging Deeper Into the Ecology of Subterranean Ants: Diversity and Niche Partitioning Across Two Continents
    diversity Article Digging Deeper into the Ecology of Subterranean Ants: Diversity and Niche Partitioning across Two Continents Mickal Houadria * and Florian Menzel Institute of Organismic and Molecular Evolution, Johannes-Gutenberg-University Mainz, Hanns-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany; [email protected] * Correspondence: [email protected] Abstract: Soil fauna is generally understudied compared to above-ground arthropods, and ants are no exception. Here, we compared a primary and a secondary forest each on two continents using four different sampling methods. Winkler sampling, pitfalls, and four types of above- and below-ground baits (dead, crushed insects; melezitose; living termites; living mealworms/grasshoppers) were applied on four plots (4 × 4 grid points) on each site. Although less diverse than Winkler samples and pitfalls, subterranean baits provided a remarkable ant community. Our baiting system provided a large dataset to systematically quantify strata and dietary specialisation in tropical rainforest ants. Compared to above-ground baits, 10–28% of the species at subterranean baits were overall more common (or unique to) below ground, indicating a fauna that was truly specialised to this stratum. Species turnover was particularly high in the primary forests, both concerning above-ground and subterranean baits and between grid points within a site. This suggests that secondary forests are more impoverished, especially concerning their subterranean fauna. Although subterranean ants rarely displayed specific preferences for a bait type, they were in general more specialised than above-ground ants; this was true for entire communities, but also for the same species if they foraged in both strata. Citation: Houadria, M.; Menzel, F.
    [Show full text]
  • CALYPTOMYRMEX Arnoldi
    CALYPTOMYRMEX arnoldi. Dicroaspis arnoldi Forel, 1913a: 115 (w.) ZIMBABWE. Combination in Calyptomyrmex: Arnold, 1917: 360. Status as species: Arnold, 1917: 360; Wheeler, W.M. 1922a: 887; Emery, 1924d: 225; Arnold, 1948: 220; Bolton, 1981a: 66 (redescription); Bolton, 1995b: 83. asper. Calyptomyrmex asper Shattuck, 2011a: 4, figs. 2, 18 (w.) BORNEO (East Malaysia: Sarawak). Status as species: Akbar & Bharti, 2015: 8 (in key). barak. Calyptomyrmex barak Bolton, 1981a: 62, figs. 28, 33 (w.q.) GHANA, NIGERIA, IVORY COAST, GABON. Status as species: Bolton, 1995b: 83. beccarii. Calyptomyrmex beccarii Emery, 1887b: 472, pl. 2, fig. 23 (w.) INDONESIA (Ambon I.). Szabó, 1910a: 365 (q.). Status as species: Dalla Torre, 1893: 136; Szabó, 1910a: 365; Emery, 1924d: 225; Brown, 1951: 101; Chapman & Capco, 1951: 111; Baltazar, 1966: 253; Taylor, 1991b: 600; Bolton, 1995b: 83; Clouse, 2007b: 251; Shattuck, 2011a: 5 (redescription); Akbar & Bharti, 2015: 7 (in key). Senior synonym of emeryi: Shattuck, 2011a: 5. Senior synonym of glabratus: Shattuck, 2011a: 5. Senior synonym of rufobrunnea: Brown, 1951: 101; Bolton, 1995b: 83; Shattuck, 2011a: 5. Senior synonym of schraderi: Taylor, 1991b: 600; Bolton, 1995b: 83; Shattuck, 2011a: 5. brevis. Calyptomyrmex (Calyptomyrmex) brevis Weber, 1943c: 366, pl. 15, fig. 1 (w.) SOUTH SUDAN. Status as species: Weber, 1952a: 23; Bolton, 1981a: 63 (redescription); Bolton, 1995b: 83. brunneus. Calyptomyrmex brunneus Arnold, 1948: 221 (w.) SOUTH AFRICA. Status as species: Bolton, 1981a: 70 (redescription); Bolton, 1995b: 83; Hita Garcia, et al. 2013: 208. caledonicus. Calyptomyrmex caledonicus Shattuck, 2011a: 7, fig. 4 (w.) NEW CALEDONIA. cataractae. Calyptomyrmex cataractae Arnold, 1926: 283 (w.) ZIMBABWE. Wheeler, G.C. & Wheeler, J.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • The Functions and Evolution of Social Fluid Exchange in Ant Colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C
    ISSN 1997-3500 Myrmecological News myrmecologicalnews.org Myrmecol. News 31: 1-30 doi: 10.25849/myrmecol.news_031:001 13 January 2021 Review Article Trophallaxis: the functions and evolution of social fluid exchange in ant colonies (Hymenoptera: Formicidae) Marie-Pierre Meurville & Adria C. LeBoeuf Abstract Trophallaxis is a complex social fluid exchange emblematic of social insects and of ants in particular. Trophallaxis behaviors are present in approximately half of all ant genera, distributed over 11 subfamilies. Across biological life, intra- and inter-species exchanged fluids tend to occur in only the most fitness-relevant behavioral contexts, typically transmitting endogenously produced molecules adapted to exert influence on the receiver’s physiology or behavior. Despite this, many aspects of trophallaxis remain poorly understood, such as the prevalence of the different forms of trophallaxis, the components transmitted, their roles in colony physiology and how these behaviors have evolved. With this review, we define the forms of trophallaxis observed in ants and bring together current knowledge on the mechanics of trophallaxis, the contents of the fluids transmitted, the contexts in which trophallaxis occurs and the roles these behaviors play in colony life. We identify six contexts where trophallaxis occurs: nourishment, short- and long-term decision making, immune defense, social maintenance, aggression, and inoculation and maintenance of the gut microbiota. Though many ideas have been put forth on the evolution of trophallaxis, our analyses support the idea that stomodeal trophallaxis has become a fixed aspect of colony life primarily in species that drink liquid food and, further, that the adoption of this behavior was key for some lineages in establishing ecological dominance.
    [Show full text]
  • Ants of the Genus Lordomyrma Emery (2) the Japanese L. Azumai
    Zootaxa 3282: 45–60 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) Ants of the genus Lordomyrma Emery (2) The Japanese L. azumai (Santschi) and six new species from India, Viet Nam and the Philippines (Hymenoptera: Formicidae: Myrmicinae) ROBERT W. TAYLOR Research School of Biological Sciences, Australian National University, Canberra, ACT, 2600, Australia. Honorary Research Fellow, CSIRO Ecosystem Sciences, Canberra, ACT, 2601, Australia. E-mail: [email protected] Abstract Lordomyrma is recorded for the first time from India and mainland southeast Asia. The Japanese L. azumai is reviewed and six new worker-based species described: L. lakshmi (Kerala State, India); L. hmong (Lao Cai Province, Vietnam); L. diwata, L. emarginata and L. idianale (Mt Isarog, Luzon, Philippines) and L. limatula (Leyte, Philippines). Gynes are characterized for L. azumai, L. hmong and L. limatula. All taxa are diagnosed, illustrated, and their affinities discussed. Key words: Ants, Formicidae, Lordomyrma, Stenamma, Lasiomyrma, taxonomy, new species, biogeography, Japan, Hon- shu, Shikoku, Kyushu, India, Kerala, Viet Nam, Lao Cai, Philippines, Luzon, Leyte, Mt Isarog Introduction This is the second paper (following Taylor, 2009) of a project seeking to review and name the many known undescribed morphospecies reasonably considered taxonomically congeneric with the somewhat aberrant ant Lordomyrma furcifera Emery (type-species of Lordomyrma Emery 1897) and its more conservative putative relative L. azumai (Santschi). The latter is arguably the least morphologically derived known Lordomyrma species (Taylor, 2009) and its characteristics may thus be very generally considered archetypal for the genus. In this analysis L.
    [Show full text]
  • Insecta: Hymenoptera: Formicidae): Type Specimens Deposited in the Natural History Museum Vienna (Austria) and a Preliminary Checklist
    Ann. Naturhist. Mus. Wien, B 121 9–18 Wien, Februar 2019 Notes on the ant fauna of Eritrea (Insecta: Hymenoptera: Formicidae): type specimens deposited in the Natural History Museum Vienna (Austria) and a preliminary checklist M. Madl* Abstract The ant collection of the Natural History Museum Vienna (Austria) contains syntypes of nine species described from Eritrea: Aphaenogaster clavata EMERY, 1877 (= Pheidole clavata (EMERY, 1877)), Cam- ponotus carbo EMERY, 1877, Melissotarsus beccarii EMERY, 1877, Monomorium bicolor EMERY, 1877, Pheidole rugaticeps EMERY, 1877, Pheidole speculifera EMERY, 1877, Polyrhachis antinorii EMERY, 1877 (= Polyrhachis viscosa SMITH, 1858) and Tetramorium doriae EMERY, 1881. All syntypes were collected in Eritrea except the syntype of Monomorium luteum EMERY, 1881, which was collected in Yemen. A prelimi- nary checklist of the ants of Eritrea comprises 114 species and subspecies of seven subfamilies. Zusammenfassung In der Ameisensammlung des Naturhistorischen Museums Wien (Österreich) werden Syntypen von neun Arten aufbewahrt, die aus Eritrea beschrieben worden sind: Aphaenogaster clavata EMERY, 1877 [= Phei- dole clavata (EMERY, 1877)], Camponotus carbo EMERY, 1877, Melissotarsus beccarii EMERY, 1877, Mono- morium bicolor EMERY, 1877, Pheidole rugaticeps EMERY, 1877, Pheidole speculifera EMERY, 1877, Poly- rhachis antinorii EMERY, 1877 (= Polyrhachis viscosa SMITH, 1858) und Tetramorium doriae EMERY, 1881. Alle Syntypen stammen aus Eritrea ausgenommen der Syntypus von Monomorium luteum EMERY, 1881, der in Jemen gesammelt wurde. Eine vorläufige Artenliste der Ameisen Eritreas umfasst 114 Arten und Unterarten aus sieben Unterfamilien. Key words: Formicidae, types, Camponotus, Melissotarsus, Monomorium, Pheidole, Polyrhachis, Tetra- morium, checklist, Eritrea, Yemen. Introduction The study of the ant fauna of Eritrea has been neglected for several decades.
    [Show full text]
  • Print This Article
    Sociobiology 68(2): e5941 (June, 2021) DOI: 10.13102/sociobiology.v68i2.5941 Sociobiology An international journal on social insects Research article - Ants Caste-specific phenotypic plasticity of Asian weaver ants: Revealing the allometric and non- allometric component of female caste system of Oecophylla smaragdina (hymenoptera: Formicidae) by using geometric morphometrics KV Mahima1, PP Anand1, S Seena1, K. Shameema1, EM Manogem2, Y Shibu Vardhanan1 1 - Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Kerala, India 2 - Insect Endocrinology Laboratory, Department of Zoology, University of Calicut, Kerala, India Article History Abstract In eusocial insects, particularly in ants, caste differentiation is extremely complicated Edited by when we rely on traditional taxonomy. In most species, the worker caste does not Evandro N. Silva, UEFS, Brazil Received 29 October 2020 display any distinct morphological characters neither the caste’s central division Initial acceptance 14 March 2021 according to their morphological size variations. We used a landmark-based geometric Final acceptance 12 April 2021 morphometric approach to quantify the morphological characteristics of female caste Publication date 31 May 2021 systems (queen, major and minor worker ant) of Oecophylla smaragdina. Our findings suggested that each caste has its unique shape and size. Especially in the worker caste, Keywords apart from the size variations, we can use the shape as a prominent tool for distinguishing Asian weaver ant, Caste system, Polyphenism, Oecophylla smaragdina, between them. The O. smaragdina exhibits a triphasic allometry pattern. Studying Geometric morphometric. the allometry and non-allometry components of each caste system revealed a highly complex size and shape relationship in the female caste systems.
    [Show full text]