Graftless Corneal Endothelial Replacement

Total Page:16

File Type:pdf, Size:1020Kb

Graftless Corneal Endothelial Replacement s CORNEA GRAFTLESS CORNEAL ENDOTHELIAL REPLACEMENT A new treatment paradigm in Fuchs dystrophy. BY LAIYIN MA, MD; AND ANGIE WEN, MD Courtesy of Kathryn Colby, MD, PhD he innermost layer of the dystrophy, according to Patricia cornea, the endothelium, Dahl, CEO at The Eye-Bank for Sight maintains corneal clarity by Restoration in New York (written serving as a barrier to aqueous communication, February 2020). humor and functioning as a Although the surgical management metabolicT pump to remove excess of FECD is widely accepted, these fluid from the stroma. A normal procedures are invasive, healing time human endothelial cell count at is often prolonged, and complications birth is 4,000 to 5,000 cells/mm2. such as allograft rejection and That figure decreases progressively detachment can occur. Additionally, with age by about 0.6% per year.1 there is a global shortage of corneal Figure. Five years after DSO. This rate of cellular decline can be graft tissue, with only one cornea compounded by damage secondary available for every 70 needed.5 topical ROCK inhibitors are potent to eye surgery, trauma, or diseases Investigators around the world are enhancers of corneal endothelial of the endothelium, the most therefore avidly searching for graftless wound healing because they promote common of which is Fuchs treatment options for FECD. the proliferation of residual healthy endothelial corneal dystrophy (FECD). endothelial cells peripheral to the site When cell density drops below RHO-ASSOCIATED KINASE INHIBITORS of injury.8 about 500 cells/mm2, endothelial Rho-associated kinase (ROCK) The use of ROCK inhibitors in the compromise results in corneal edema, inhibitors are one promising adjunct medical management of FECD was first clouding, and decreased vision.2 for FECD treatment. ROCK-signaling reported in 2013, when Koizumi and First described by Ernst Fuchs in pathways are responsible for a broad colleagues described the successful 1910, FECD is a degenerative disease of spectrum of fundamental cellular treatment of a 52-year-old Japanese the corneal endothelium that results events, and these pathways have man. Treatment consisted of denuding in cell dysmorphia and dysfunction.3 become important therapeutic the central corneal endothelium and The surgical management of FECD targets in the treatment of many applying a ROCK inhibitor topically usually entails replacing the diseased pathophysiologic conditions (see for 1 week. The patient’s bullous endothelium via Descemet stripping Use of ROCK Inhibitors in Other Areas keratopathy resolved; the cornea automated endothelial keratoplasty of Medicine).6 Cellular stresses on remained clear at 2 years, and visual or Descemet membrane endothelial the corneal endothelium activate acuity was 20/20.9 keratoplasty. In the United States, the Rho/ROCK/myosin light chain In 2018, the same investigators FECD is an increasingly common phosphorylation pathway, which reported successfully treating bullous indication for corneal transplantation, decreases cell adhesion to the keratopathy from various causes with accounting for almost one-third of underlying extracellular matrix and intracameral injections of cultured all transplants performed in 2017.4 activates the apoptosis cycle.7 ROCK human corneal endothelial cells This number is on the rise. In 2018, inhibition suppresses myosin light suspended in a solution with a ROCK more than 50% of all endothelial chain phosphorylation, discourages inhibitor. Descemet membrane was keratoplasties in the United States apoptosis, and counteracts the stripped from the central 8-mm– were performed for endothelial loss of cell adhesion.7 Additionally, diameter area of the cornea prior to 24 CATARACT & REFRACTIVE SURGERY TODAY | MAY 2020 CORNEA s injection, and the patients remained Descemet membrane can release greater than 625 µm was associated in a prone position for 3 hours to contact inhibition and facilitate with reduced corneal clearance after enhance adhesion of the injected cells. the central migration of healthier DSO in her initial series. Dr. Colby Six months after the injections, corneal peripheral endothelial cells.15 said she examines the peripheral transparency had been restored Borkar and colleagues evaluated endothelium to ensure that it is to 100% of the treated eyes, and 13 eyes of 11 patients with FECD and healthy and without significant guttae endothelial density was greater than no countable central endothelial because these cells will repopulate 500 cells/mm2.10 cells preoperatively who underwent the area of stripped cells centrally. She DSO with stripping of the central prefers the peripheral cell density to be DESCEMET STRIPPING WITHOUT 4-mm–diameter area of endothelium. greater than 1,500 cells/mm2, whereas ENDOTHELIAL KERATOPLASTY The corneas of four of these eyes Moloney has found a peripheral cell Corneal endothelial cells have an cleared by postoperative month 1. density greater than 1,000 cells/mm2 extremely limited ability to proliferate Clearing occurred in another four to be sufficient.17 The visual status of in vivo. Instead, neighboring cells eyes by month 3 and in two eyes the fellow eye is another important compensate for endothelial cell by month 6. Three eyes eventually consideration during surgical planning loss by enlarging and spreading required endothelial keratoplasty.13 because an initial decline in vision after to cover the defects.11 Since 2013, Iovieno et al reported clearance in four DSO is expected. Patients should be several researchers have reported of five eyes that underwent DSO with counseled preoperatively that visual observing corneal clearing after a 4-mm descemetorhexis.16 recovery will be gradual and is not iatrogenic endothelial trauma, which Although it is not well understood guaranteed. gave rise to the idea of healing by what causes certain patients to be Restricting the descemetorhexis to primary intention as a planned fast responders, responders, slow the central 4 mm seems to promote surgical strategy.12-14 A procedure responders, or nonresponders after a higher rate of corneal clearance dubbed Descemet membrane stripping DSO—terminology coined by Kathryn by limiting the surface area that the only (DSO) involves performing Colby, MD, PhD—experience suggests remaining endothelial cells are asked a descemetorhexis without that surgical technique and patient to repopulate. Initial series using a transplantation of a donor graft selection are two keys to successful larger descemetorhexis (8 mm in a (Figure); this is the newest proposed DSO.13 When we spoke to Dr. Colby study by Bleyen et al18 and 6 mm surgical treatment for FECD. The for this article, she stated that a in a study by Koenig19) were largely theory is that removing the diseased preoperative pachymetry reading disappointing. Of note, increasing the descemetorhexis from 4 to 6 mm in diameter more than doubles the surface area of stripped cells USE OF ROCK INHIBITORS IN OTHER AREAS OF MEDICINE (9/4 = 2.25).13 Rho-associated kinase (ROCK) inhibition is being analogues and/or adrenergic beta-receptor It is important to avoid surgical studied extensively for the treatment of a variety antagonists. The most commonly observed adverse trauma during Descemet stripping of diseases, including asthma, cancer, erectile effect is conjunctival hyperemia.2 because trauma can elicit a fibrotic dysfunction, glaucoma, insulin resistance, kidney In the United States, two formulations of ROCK scarring response that will challenge the central migration of peripheral failure, neuronal degeneration, and osteoporosis. inhibitor ophthalmic solutions are available for the endothelial cells. Davies and colleagues In 1995, the ROCK inhibitor fasudil hydrochloride reduction of elevated IOP in patients with open-angle described a descemetorhexis hydrate was approved in China and Japan for the glaucoma or ocular hypertension. The FDA approved technique that minimizes scarring to treatment of cerebral vasospasm through cerebral netarsudil ophthalmic solution 0.02% (Rhopressa, 1 3 the corneal stroma: a Fogla Descemet vasodilation. Aerie Pharmaceuticals) in 2017. In 2019, the FDA membrane–stripping hook is used to Ripasudil hydrochloride hydrate 0.4% (Glanatec, approved netarsudil 0.02%/latanoprost ophthalmic score only 2 clock hours, and the rest 4 Kowa, not available in the United States) was solution 0.005% (Rocklatan, Aerie Pharmaceuticals). of the descemetorhexis is peeled using the first ROCK inhibitor approved in any country forceps.20 1. Hu E, Lee D. Rho kinase as potential therapeutic target for cardiovascular for clinical use for the treatment of glaucoma diseases: opportunities and challenges. Expert Opin Ther Targets. 2005;9(4): and ocular hypertension. Ripasudil lowers IOP 715-736. COMBINING DSO WITH A 2. Tanihara H, Inoue T, Yamamoto T, et al; K-115 Clinical Study Group. Intra- by increasing aqueous humor outflow through ocular pressure-lowering effects of a Rho kinase inhibitor, ripasudil (K-115), over ROCK INHIBITOR the conventional pathway. Clinical trials have 24 hours in primary open-angle glaucoma and ocular hypertension: a random- Moloney et al used ripasudil 0.4% ized, open-label, crossover study. Acta Ophthalmol. 2015;93(4):e254-260. confirmed the efficacy of ripasudil as monotherapy 3. Rhopressa [package insert]. Irvine, CA: Aerie Pharmaceuticals, Inc.; 2017. (Glanatec, Kowa, not available in or as an adjunctive medication to prostaglandin 4. Rocklatan [package insert]. Irvine, CA: Aerie Pharmaceuticals, Inc.; 2019. the United States), a ROCK
Recommended publications
  • The Therapeutic Effects of Rho-ROCK Inhibitors on CNS Disorders
    REVIEW The therapeutic effects of Rho-ROCK inhibitors on CNS disorders Takekazu Kubo1 Abstract: Rho-kinase (ROCK) is a serine/threonine kinase and one of the major downstream Atsushi Yamaguchi1 effectors of the small GTPase Rho. The Rho-ROCK pathway is involved in many aspects of Nobuyoshi Iwata2 neuronal functions including neurite outgrowth and retraction. The Rho-ROCK pathway becomes Toshihide Yamashita1,3 an attractive target for the development of drugs for treating central nervous system (CNS) dis- orders, since it has been recently revealed that this pathway is closely related to the pathogenesis 1Department of Neurobiology, Graduate School of Medicine, Chiba of several CNS disorders such as spinal cord injuries, stroke, and Alzheimer’s disease (AD). In University, 1-8-1 Inohana, Chuo-ku, the adult CNS, injured axons regenerate poorly due to the presence of myelin-associated axonal 2 Chiba 260-8670, Japan; Information growth inhibitors such as myelin-associated glycoprotein (MAG), Nogo, oligodendrocyte- Institute for Medical Research Ltd.; 3Department of Molecular myelin glycoprotein (OMgp), and the recently identifi ed repulsive guidance molecule (RGM). Neuroscience, Graduate School The effects of these inhibitors are reversed by blockade of the Rho-ROCK pathway in vitro, of Medicine, Osaka University 2-2 and the inhibition of this pathway promotes axonal regeneration and functional recovery in the Yamadaoka, Suita, Osaka 565-0871, Japan injured CNS in vivo. In addition, the therapeutic effects of the Rho-ROCK inhibitors have been demonstrated in animal models of stroke. In this review, we summarize the involvement of the Rho-ROCK pathway in CNS disorders such as spinal cord injuries, stroke, and AD and also discuss the potential of Rho-ROCK inhibitors in the treatment of human CNS disorders.
    [Show full text]
  • Looking for New Classes of Bronchodilators
    REVIEW BRONCHODILATORS The future of bronchodilation: looking for new classes of bronchodilators Mario Cazzola1, Paola Rogliani 1 and Maria Gabriella Matera2 Affiliations: 1Dept of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy. 2Dept of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy. Correspondence: Mario Cazzola, Dept of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, Rome, 00133, Italy. E-mail: [email protected] @ERSpublications There is a real interest among researchers and the pharmaceutical industry in developing novel bronchodilators. There are several new opportunities; however, they are mostly in a preclinical phase. They could better optimise bronchodilation. http://bit.ly/2lW1q39 Cite this article as: Cazzola M, Rogliani P, Matera MG. The future of bronchodilation: looking for new classes of bronchodilators. Eur Respir Rev 2019; 28: 190095 [https://doi.org/10.1183/16000617.0095-2019]. ABSTRACT Available bronchodilators can satisfy many of the needs of patients suffering from airway disorders, but they often do not relieve symptoms and their long-term use raises safety concerns. Therefore, there is interest in developing new classes that could help to overcome the limits that characterise the existing classes. At least nine potential new classes of bronchodilators have been identified: 1) selective phosphodiesterase inhibitors; 2) bitter-taste receptor agonists; 3) E-prostanoid receptor 4 agonists; 4) Rho kinase inhibitors; 5) calcilytics; 6) agonists of peroxisome proliferator-activated receptor-γ; 7) agonists of relaxin receptor 1; 8) soluble guanylyl cyclase activators; and 9) pepducins. They are under consideration, but they are mostly in a preclinical phase and, consequently, we still do not know which classes will actually be developed for clinical use and whether it will be proven that a possible clinical benefit outweighs the impact of any adverse effect.
    [Show full text]
  • Investigating Small Molecule Therapeutics to Improve Regeneration and Functional Recovery Following Peripheral Nerve Damage
    LONDON’S GLOBAL UNIVERSITY Investigating small molecule therapeutics to improve regeneration and functional recovery following peripheral nerve damage. Melissa Lucy Doreen Rayner Thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. School of Pharmacy University College London September, 2018 1 Declaration I, Melissa Rayner, confirm that the work presented in this thesis is my own. Where information has been derived from other sources, I confirm that this has been indicated in the thesis. Signed: ________________________ Date: ________________________ 2 Acknowledgements I would like to express my sincere gratitude to my supervisors Dr Jess Healy and Dr James Phillips for their continuous support and guidance throughout the PhD. Thank you for all the time and encouragement you have given during the project but also towards the additional projects and activities I had the opportunity to get involved with. I would particularly like to thank the biological services unit staff for all of their generous support during in vivo experiments and especially to Francesca Busuttil for her willingness to give her time so generously to assist during long surgery days. In addition, special thanks also go to Rachael Evans for her input and hard-work during the development of the in vitro screening tool, Alessandra Grillo for her great effort and contribution to the biomaterials work and to Essam Tawfik for providing the PLGA nanofibres. I am grateful to all of my colleagues and friends in the Healy and Phillips labs for all of their inspiration and making the lab a friendly and enjoyable place to work. Furthermore, I am thankful to Professor Steve Brocchini and all of the CDT management team for giving me the opportunity to complete my PhD as a part of the CDT.
    [Show full text]
  • Risk Factors Leading to Trabeculectomy Surgery Of
    Shirai et al. BMC Ophthalmology (2021) 21:153 https://doi.org/10.1186/s12886-021-01897-4 RESEARCH ARTICLE Open Access Risk factors leading to trabeculectomy surgery of glaucoma patient using Japanese nationwide administrative claims data: a retrospective non-interventional cohort study Chikako Shirai1, Satoru Tsuda1, Kunio Tarasawa2, Kiyohide Fushimi3, Kenji Fujimori2* and Toru Nakazawa1* Abstract Background: Early recognition and management of baseline risk factors may play an important role in reducing glaucoma surgery burdens. However, no studies have investigated them using real-world data in Japan or other countries. This study aimed to clarify the risk factors leading to trabeculectomy surgery, which is the most common procedure of glaucoma surgery, of glaucoma patient using the Japanese nationwide administrative claims data associated with the diagnosis procedure combination (DPC) system. Methods: It was a retrospective, non-interventional cohort study. Data were collected from patients who were admitted to DPC participating hospitals, nationwide acute care hospitals and were diagnosed with glaucoma between 2012 to 2018. The primary outcome was the risk factors associated with trabeculectomy surgery. The association between baseline characteristics and trabeculectomy surgery was identified using multivariable logistic regression analysis by comparing patients with and without trabeculectomy surgery. Meanwhile, the secondary outcomes included the rate of comorbidities, the rate of concomitant drug use and the treatment patterns of
    [Show full text]
  • Achievements and Limits of Current Medical Therapy of Glaucoma
    Bettin P, Khaw PT (eds): Glaucoma Surgery. 2nd, revised and extended edition. Dev Ophthalmol. Basel, Karger, 2017, vol 59, pp 1–14 ( DOI: 10.1159/000458482 ) Achievements and Limits of Current Medical Therapy of Glaucoma Pelagia Kalouda · Christina Keskini · Eleftherios Anastasopoulos · Fotis Topouzis Laboratory of Research and Clinical Applications in Ophthalmology, Aristotle University of Thessaloniki, AHEPA Hospital, Thessaloniki , Greece Abstract ery systems are being investigated to open new horizons Prescribing medical therapy for the treatment of glauco- in glaucoma management. Although the general rule is ma can be a complex process since many parameters to initiate glaucoma management with medical treat- should be taken into consideration regarding its achieve- ment, the limits of medical therapy should be considered ments and limits. Today, a variety of options, including to identify those patients in need of surgical manage- multiple drug classes and multiple agents within classes, ment. © 2017 S. Karger AG, Basel are available to the clinician, but caution should be given to their side effects and contraindications. Glaucoma pa- tients with preexisting ocular surface disease should be State of the Art treated with caution, and preferably with preservative- free formulations, as there is an increased risk for symp- Glaucoma is a medical term describing a group of tom deterioration. The development and use of progressive optic neuropathies characterized by fixed-combination therapies has reduced the preserva- the degeneration of retinal ganglion cells and of tive-related side effects that threaten patient adherence the retinal nerve fiber layer, resulting in changes and has minimized the washout effect of multiple instil- in the optic nerve head.
    [Show full text]
  • (Ripasudil Hydrochloride Hydrate), a Rho Kinase Inhibitor, Has Been Approved in Singapore
    PRESS RELEASE March 11, 2020 Dear all Kowa Company, Ltd. K-115 (Ripasudil Hydrochloride Hydrate), a Rho Kinase Inhibitor, has been approved in Singapore Kowa Company, Ltd. (Headquarters: Nagoya, Japan, President & CEO: Yoshihiro Miwa, hereafter referred to as "Kowa") announced that "Ripasudil Hydrochloride Hydrate" (hereafter refer to as “Ripasudil”), a Rho kinase inhibitor, for the indications of Open-Angle Glaucoma and Ocular Hypertension has been approved by HSA (Health Sciences Authority) in Singapore. Ripasudil has been developed as a global product, and was launched in December 2014 in Japan (Brand name: GLANATEC® ophthalmic solution 0.4%) as the world's first glaucoma drug with Rho kinase inhibitory activity. Ripasudil is the first Rho kinase inhibitor filed and approved by HSA. Kowa plans to establish a direct sales system to support the marketing of Ripasudil. Following this approval in Singapore, Kowa continues efforts to gain approval for Ripasudil in counties all over the world. Kowa focuses on sensory organ diseases as one of its key therapeutic areas, especially ocular disorders. Kowa is developing Ripasudil for corneal endothelial diseases, as well as a fixed- dose combination (Ripasudil Hydrochloride Hydrate / Brimonidine Tartrate) in patients with glaucoma or ocular hypertension. In addition, Kowa markets intraocular lenses for cataracts, and seeks to address other unmet medical needs. GLANATEC® Ophthalmic Solution 0.4% GLANATEC® Ophthalmic Solution 0.4% includes Ripasudil as an active ingredient, and lowers intraocular pressure by promoting discharge of aqueous humor through a main outflow via trabecular meshwork-Schlemm’s canal as a result of Rho kinase inhibitory activity. In clinical studies enrolling patients with primary open-angle glaucoma and ocular hypertension in Japan, GLANATEC® Ophthalmic Solution 0.4% has been demonstrated to be effective in lowering intraocular pressure in both cases of mono-therapy and conjunctival therapy along with conventional treatment-glaucoma and ocular hypertension drugs.
    [Show full text]
  • Intraocular Pressure-Lowering Effect of Ripasudil Hydrochloride Hydrate
    ISSN: 2378-346X Kawara et al. Int J Ophthalmol Clin Res 2018, 5:083 DOI: 10.23937/2378-346X/1410083 Volume 5 | Issue 1 International Journal of Open Access Ophthalmology and Clinical Research RESEARCH ARTICLE Intraocular Pressure-Lowering Effect of Ripasudil Hydrochloride Hy- drate and Reasons for Discontinuation of Use in Clinical Practice Kana Kawara, Akiyasu Kanamori, Sotaro Mori, Yukako Inoue, Takuji Kurimoto, Sentaro Kusuhara, Yuko Yamada and Makoto Nakamura* Check for Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Japan updates *Corresponding author: Makoto Nakamura, Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan, E-mail: [email protected] that are commonly used include prostaglandin ana- Abstract log, which enhances uveoscleral outflow, adrenergic Background: To evaluate the intraocular pressure (IOP)-low- β-blocker and carbonic anhydrase inhibitor (CAI), which ering effect of ripasudil hydrochloride hydrate and the reasons for the discontinuation of its use in glaucomatous eyes with at reduce aqueous humor production, or adrenergic α2 least 2 ocular hypotensive medications. stimulant, which performs both mechanisms. The clin- Design: Retrospective case series. ical application of drugs that modify the conventional outflow pathway through trabecular meshwork and the Methods: We reviewed the medical records of 116 consec- utive patients with primary open angle, secondary, or de- Schlemm canal has been limited, except for pilocarpine velopmental glaucoma. The pre- and post-application IOP for pupillary block release, because of its insufficient up to 6 months after the initiation of ripasudil application IOP-lowering ability.
    [Show full text]
  • Fixed Combination Eye Drop of Ripasudil Hydrochloride Hydrate, A
    PRESS RELEASE February 19, 2020 Dear all Kowa Company, Ltd. Fixed Combination Eye Drop of Ripasudil Hydrochloride Hydrate, a Rho Kinase Inhibitor, and Brimonidine Tartrate Started Phase 3 Clinical Studies in Japan [Developmental code: K-232] Kowa Company, Ltd. (Headquarters: Nagoya, Japan, President & CEO: Yoshihiro Miwa, hereafter referred to as “Kowa”) announced that Phase 3 clinical studies of fixed combination eye drop “Ripasudil Hydrochloride Hydrate” (hereafter referred to as “Ripasudil”), a Rho kinase inhibitor, and Brimonidine tartrate (Developmental code: K-232) have started in Japan. Kowa is developing Ripasudil as a global product. Ripasudil was launched in December 2014 in Japan (Brand name: GLANATEC® ophthalmic solution 0.4%) as the world's first glaucoma drug with Rho kinase inhibitory activity. In addition, Kowa is developing a Phase 2 clinical studies in the U.S. of Ripasudil for corneal endothelial diseases (developmental code: K-321). K-232 is expected to improve adherence as the first fixed combination eye drop containing Ripasudil for the treatment of glaucoma and ocular hypertension. ■ GLANATEC® Ophthalmic Solution 0.4% GLANATEC® Ophthalmic Solution 0.4% includes Ripasudil, as an active ingredient, and lowers intraocular pressure by promoting discharge of aqueous humor through a main outflow via trabecular meshwork-Schlemm’s canal as a result of Rho kinase inhibitory activity. In clinical studies enrolling patients with primary open-angle glaucoma and ocular hypertension in Japan, GLANATEC® Ophthalmic Solution 0.4% has been demonstrated to be effective in lowering intraocular pressure as both mono-therapy and adjunctive therapy along with conventional glaucoma and ocular hypertension drugs. Public Relations 3-4-14, Nihonbashi Honcho, Chuo-ku, Department (Tokyo) Tokyo (Japanese inquiries only) TEL:+81-3-3279-7392 Headquaters (Nagoya) Nishiki 3-6-29, Nagoya City .
    [Show full text]
  • Ripasudil Alleviated the Inflammation of RPE Cells by Targeting the Mir-136-5P/ROCK/NLRP3 Pathway
    Ripasudil alleviated the inammation of RPE cells by targeting the miR-136-5p/ROCK/NLRP3 pathway Zhao Gao Shanxi Eye Hospital Qiang Li Shanxi Bethune Hospital Yunda Zhang Shanxi Eye Hospital Haiyan Li Shanxi Eye Hospital Xiaohong Gao Shanxi Eye Hospital Zhigang Yuan ( [email protected] ) Shanxi Eye Hospital Research article Keywords: Ripasudil, ROCK1, ROCK2, miR-136-5p, RPE cells, NLRP3 Posted Date: January 13th, 2020 DOI: https://doi.org/10.21203/rs.2.20697/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at BMC Ophthalmology on April 6th, 2020. See the published version at https://doi.org/10.1186/s12886-020-01400-5. Page 1/13 Abstract Introduction Inammation of RPE cells lead to different kinds of eye diseases and affect the normal function of the retina. Furthermore, higher levels of ROCK1 and ROCK2 induced injury of endothelial cells and many inammatory diseases of the eyes. Ripasudil which was used for the treatment of glaucoma was one kind of the inhibitor of ROCK1 and ROCK2. But whether the ripasudil could relieved the LPS induced inammation damage of RPE cells was not clear. Material and methods We used the LPS to stimulate ARPE-19 cells which is the RPE cell line. After that, we detected the levels of ROCK1 and ROCK2 by western-blotting assay after the stimulation of LPS and treatment of ripasudil. Then luciferase reporter assays were used to conrm the targeted effect of miR-136-5p on ROCK1 and ROCK2.
    [Show full text]
  • Rhoa-ROCK Signaling As a Therapeutic Target in Traumatic Brain Injury
    cells Review RhoA-ROCK Signaling as a Therapeutic Target in Traumatic Brain Injury Shalaka Mulherkar 1 and Kimberley F. Tolias 1,2,* 1 Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 2 Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence: [email protected] Received: 20 November 2019; Accepted: 16 January 2020; Published: 18 January 2020 Abstract: Traumatic brain injury (TBI) is a leading cause of death and disability worldwide. TBIs, which range in severity from mild to severe, occur when a traumatic event, such as a fall, a traffic accident, or a blow, causes the brain to move rapidly within the skull, resulting in damage. Long-term consequences of TBI can include motor and cognitive deficits and emotional disturbances that result in a reduced quality of life and work productivity. Recovery from TBI can be challenging due to a lack of effective treatment options for repairing TBI-induced neural damage and alleviating functional impairments. Central nervous system (CNS) injury and disease are known to induce the activation of the small GTPase RhoA and its downstream effector Rho kinase (ROCK). Activation of this signaling pathway promotes cell death and the retraction and loss of neural processes and synapses, which mediate information flow and storage in the brain. Thus, inhibiting RhoA-ROCK signaling has emerged as a promising approach for treating CNS disorders. In this review, we discuss targeting the RhoA-ROCK pathway as a therapeutic strategy for treating TBI and summarize the recent advances in the development of RhoA-ROCK inhibitors.
    [Show full text]
  • Ripasudil in a Model of Pigmentary Glaucoma
    Article Ripasudil in a Model of Pigmentary Glaucoma Chao Wang1–4, Yalong Dang1,2,5, Susannah Waxman2,YingHong2, Priyal Shah2, Ralitsa T. Loewen1,2, Xiaobo Xia3,4, and Nils A. Loewen1,2 1 University of Würzburg, Department of Ophthalmology, Würzburg, Germany 2 University of Pittsburgh School of Medicine, Department of Ophthalmology, Pittsburgh, PA, USA 3 Eye Center of Xiangya Hospital, Central South University, Changsha, Hunan, China 4 Hunan Key Laboratory of Ophthalmology, Changsha, Hunan, China 5 Sanmenxia Central Hospital, Sanmenxia, Henan, China Correspondence: Nils A. Loewen, Purpose: To investigate the effects of Ripasudil (K-115), a Rho-kinase inhibitor, ina MD,PhD,Departmentof porcine model of pigmentary glaucoma. Ophthalmology, University of Methods: Würzburg, Josef-Schneider-Strasse In vitro trabecular meshwork (TM) cells and ex vivo perfused eyes were 11, 97080, Würzburg, Germany. subjected to pigment dispersion followed by K-115 treatment (PK115). PK115 was e-mail: [email protected] compared to controls (C) and pigment (P). Cytoskeletal alterations were assessed by F-actin labeling. TM cell phagocytosis of fluorescent targets was evaluated by flow Received: May 2, 2020 cytometry. Cell migration was studied with a wound-healing assay. Intraocular pressure Accepted: August 16, 2020 was continuously monitored and compared to after the establishment of the pigmen- Published: September 25, 2020 tary glaucoma model and after treatment with K-115. Keywords: pigment dispersion; Results: The percentage of cells with stress fibers increased in response to pigment but anterior segment perfusion model; declined sharply after treatment with K-115 (P: 32.8% ± 2.9%; PK115: 11.6% ± 3.3%, pigmentary glaucoma; rho-kinase P < 0.001).
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]