Scientific References for Nobel Chemistry Prizes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modern-Reduction-Methods.Pdf
Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow Related Titles Yamamoto, H., Ishihara, K. (eds.) Torii, S. Acid Catalysis in Modern Electroorganic Reduction Organic Synthesis Synthesis 2008 2006 ISBN: 978-3-527-31724-0 ISBN: 978-3-527-31539-0 Roberts, S. M. de Meijere, A., Diederich, F. (eds.) Catalysts for Fine Chemical Metal-Catalyzed Cross- Synthesis V 5 – Regio and Coupling Reactions Stereo-Controlled Oxidations 2004 and Reductions ISBN: 978-3-527-30518-6 2007 Online Book Wiley Interscience Bäckvall, J.-E. (ed.) ISBN: 978-0-470-09024-4 Modern Oxidation Methods 2004 de Vries, J. G., Elsevier, C. J. (eds.) ISBN: 978-3-527-30642-8 The Handbook of Homogeneous Hydrogenation 2007 ISBN: 978-3-527-31161-3 Modern Reduction Methods Edited by Pher G. Andersson and Ian J. Munslow The Editors All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and Prof. Dr. Pher G. Andersson publisher do not warrant the information Uppsala University contained in these books, including this book, to Department of Organic Chemistry be free of errors. Readers are advised to keep in Husargatan 3 mind that statements, data, illustrations, 751 23 Uppsala procedural details or other items may Sweden inadvertently be inaccurate. Dr. Ian J. Munslow Library of Congress Card No.: Uppsala University applied for Department of Biochemistry and Organic Chemistry Husargatan 3 British Library Cataloguing-in-Publication Data 751 23 Uppsala A catalogue record for this book is available from Sweden the British Library. Bibliographic information published by the Deutsche Nationalbibliothek Die Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografi e; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>. -
Curriculum Vitae Prof. Dr. John Howard Northrop
Curriculum Vitae Prof. Dr. John Howard Northrop Name: John Howard Northrop Lebensdaten: 5. Juli 1891 ‐ 27. Mai 1987 John Howard Northrop war ein US‐amerikanischer Biochemiker, Biophysiker und Bakteriologe. Er lieferte Arbeiten zur Charakterisierung von Proteinen. Darüber hinaus listete er Grundsätze auf, die bei der Isolierung und Reindarstellung von Enzymen generell beobachtet werden können. Außerdem entwickelte er experimentelle Methoden, mit denen nachgewiesen werden konnte, dass kristallisierte Proteine reine Verbindungen sind, die volle Enzymaktivität besitzen. Für die Darstellung von Enzymen und Virusproteinen in reiner Form wurde er 1946 gemeinsam mit seinem Landsmann, dem Biochemiker Wendell Meredith Stanley, mit dem Nobelpreis für Chemie ausgezeichnet. Akademischer und beruflicher Werdegang John Howard Northrop studierte ab 1908 Chemie und Zoologie an der Columbia University in New York. Die Ausbildung schloss er 1912 mit einem Bachelor of Science ab. Ein Jahr später erhielt er den Master of Arts. 1915 wurde er im Fach Chemie promoviert. Im Anschluss war er mit einem Stipendium am Jacques Loeb Laboratory tätig, das zum Rockefeller Institute gehört. 1916 nahm man ihn in den Mitarbeiterstab des Rockefeller Institute for Medical Research auf, 1924 wurde er Vollmitglied. Northrop blieb dort bis zu seiner Emeritierung im Jahr 1961. Während des Ersten Weltkriegs verpflichtete sich Northrop für den Kriegsdienst. Er war im Rang eines Hauptmanns tätig. Nach Kriegsende wandte er sich wieder seiner Forschungsarbeit am Rockefeller Institute in New York zu. 1939 war Northrop Gastprofessor an der University of California; ein Jahr später Lektor an der John Hopkins University. 1942 wurde er in die National Defense Research Commission berufen, ein Gremium, über das die amerikanische Forschung während des Zweiten Weltkriegs koordiniert Nationale Akademie der Wissenschaften Leopoldina www.leopoldina.org 1 wurde. -
Plant Viruses
Western Plant Diagnostic Network1 First Detector News A Quarterly Pest Update for WPDN First Detectors Spring 2015 edition, volume 8, number 2 In this Issue Page 1: Editor’s Note Dear First Detectors, Pages 2 – 3: Intro to Plant Plant viruses cause many important plant diseases and are Viruses responsible for huge losses in crop production and quality in Page 4: Virus nomenclature all parts of the world. Plant viruses can spread very quickly because many are vectored by insects such as aphids and Page 5 – Most Serious World Plant Viruses & Symptoms whitefly. They are a major pest of crop production as well as major pests of home gardens. By mid-summer many fields, Pages 6 – 7: Plant Virus vineyards, orchards, and gardens will see the effects of plant Vectors viruses. The focus of this edition is the origin, discovery, taxonomy, vectors, and the effects of virus infection in Pages 7 - 10: Grapevine plants. There is also a feature article on grapevine viruses. Viruses And, as usual, there are some pest updates from the West. Page 10: Pest Alerts On June 16 – 18, the WPDN is sponsoring the second Invasive Snail and Slug workshop at UC Davis. The workshop Contact us at the WPDN Regional will be recorded and will be posted on the WPDN and NPDN Center at UC Davis: home pages. Have a great summer and here’s hoping for Phone: 530 754 2255 rain! Email: [email protected] Web: https://wpdn.org Please find the NPDN family of newsletters at: Editor: Richard W. Hoenisch @Copyright Regents of the Newsletters University of California All Rights Reserved Western Plant Diagnostic Network News Plant Viruses 2 Ag, Manitoba Photo courtesy Photo Food, and Rural Initiatives and Food, of APS Photo by Giovanni Martelli, U of byBari Giovanni Photo Grapevine Fanleaf Virus Peanut leaf with Squash Mosaic Virus tomato spotted wilt virus Viruses are infectious pathogens that are too small to be seen with a light microscope, but despite their small size they can cause chaos. -
Design and Synthesis of Chiral Ligands and Their Applications in Transition
The Pennsylvania State University The Graduate School Department of Chemistry DESIGN AND SYNTHESIS OF CHIRAL LIGANDS AND THEIR APPLICATIONS IN TRANSITION METAL-CATALYZED ASYMMETRIC REACTIONS A Dissertation in Chemistry by Wei Li 2012 Wei Li Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2012 The dissertation of Wei Li was reviewed and approved* by the following: Gong Chen Assistant Professor of Chemistry Dissertation Advisor Chair of Committee Tom Mallouk Evan Pugh Professor of Material Chemistry and Physics Alex Radosevich Assistant Professor of Chemistry Qing Wang Associate Professor of Material Science and Engineering Xumu Zhang Professor of Chemistry Special Member Barbara J. Garrison Shapiro Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Transition metal catalyzed reactions are among the most powerful and direct approaches for the synthesis of organic molecules. During the past several decades, phosphorous-containing ligands have been extensively studied in transition metal - catalyzed transformations particularly asymmetric hydrogenations. Development of new chiral ligands and efficient catalyst systems for various prochiral unsaturated substrates in asymmetric hydrogenations are the focus of this dissertation. An important family of atropisomeric biaryl bisphosphine ligands, C3*-TunePhos and related bisaminophosphines have been designed and synthesized. The Ru catalysts of the highly modular C3*-TunePhos have been proved to be highly efficient (up to 99.8% ee, up to 1,000,000 TON) for practical asymmetric hydrogenations of a wide range of unfunctionalized ketones as well as α-, β- keto esters and N-2-substituted allylphthalimides. The synthetic utility of bisaminophosphine ligands was studied for rhodium-catalyzed asymmetric hydrogenations of α-dehydroamino acid esters, affording up to 98% ee’s. -
MICROREVIEW Substrate Activation in the Catalytic Asymmetric
MICROREVIEW B. Balakrishna, J. L. Núñez-Rico, A. Vidal-Ferran This is the peer reviewed version of the following article: Eur. J. Org. Chem. 2015, 5293–5303, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/ejoc.201500588/pdf. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving." Substrate Activation in the Catalytic Asymmetric Hydrogenation of N-Heteroarenes Bugga Balakrishna,[a] José Luis Núñez-Rico[a] and Anton Vidal-Ferran*[a],[b] Keywords: Asymmetric catalysis / Enantioselectivity / Iridium / Palladium / Nitrogen heterocycles / Hydrogenation. Different methods for transforming N-heteroarenes into more reactive derivatives for catalytic asymmetric hydrogenation are highlighted. The first strategy consists of facilitating hydrogenation by the formation of positively charged derivatives of the heteroarene. Catalyst deactivation processes arising upon binding of the substrate to the metal center can thus be prevented and, additionally, hydrogenation of positively charged heteroarenes may also be more favored than that of their neutral analogues. The second strategy is based on introducing a ligating group onto the substrate to assist its coordination to the metal center and facilitate hydrogenation by chelation assistance. The last strategy involves breaking the aromaticity of the heteroarene by inducing a doublebond migration process. This microreview summarizes advances made in the above strategies, which have allowed the development of highly enantioselective catalytic hydrogenation of N-heteroarenes for the production of fully or partially saturated chiral heterocycles. Introduction synthesizing fully or partly reduced heteroaromatic derivatives in Enantiopure organic compounds are important constituents of enantiomerically pure form (Scheme 1).[8] This synthetic strategy commercially produced chemicals including plastics, active also benefits from a great diversity of starting materials. -
Iridium Catalysed Asymmetric Hydrogenation of Olefins and Isomerisation of Allylic Alcohols
Iridium Catalysed Asymmetric Hydrogenation of Olefins and Isomerisation of Allylic Alcohols Byron Peters ©Byron Kennedy Peters, Stockholm University 2015 ISBN 978-91-76492-79-6 Printed in Sweden by Holmbergs, Malmö 2015 Distributor: Department of Organic Chemistry, Stockholm University ii Abstract The work described in this thesis is focused on exploring the efficacy of asymmetric iridium catalysis in the hydrogenation of challenging substrates, including precursors to chiral sulfones and chiral cyclohexanes. Further- more, iridium catalysis was used to isomerise allylic alcohols to aldehydes, and in a formal total synthesis of Aliskiren (a renin inhibitor). A large varie- ty of unsaturated sulfones (cyclic, acyclic, vinylic, allylic and homoallylic) were prepared and screened in the iridium catalysed hydrogenation reaction using a series of previously developed N,P-ligated Ir-catalysts. The outcome was a highly enantioselective (>90% ee) protocol to prepare sulfones bearing chiral carbon scaffolds, sometimes having purely aliphatic substituents at the stereogenic centre. Furthermore, performing the Ramberg-Bäcklund reaction on the chiral products, under optimised conditions, produced cyclic and acy- clic unsaturated derivatives without erosion of enantiomeric excess. This hydrogenation protocol was also successful in the hydrogenation of a num- ber of cyclohexene-containing compounds. Minimally functionalised, func- tionalised and heterocycle-containing cyclohexenes were hydrogenated in up to 99% ee. Hitherto, both chiral sulfones and chiral cyclohexanes have been challenging targets for most catalytic asymmetric methodologies. Although the preparation of aldehydes and ketones by isomerisation of the correspond- ing allylic alcohol is well established, there has been limited success in the development of good enantioselective protocols. For the isomerisation of a number -allylic alcohols to the corresponding chiral aldehydes, high enan- tioselectivities (up to >99% ee) and modest yields were achieved using an N,P-iridium catalyst. -
The Noyori Asymmetric Hydrogenation Reaction Chem 115
Myers The Noyori Asymmetric Hydrogenation Reaction Chem 115 Reviews: Mechanism: 1/n {[(R)-BINAP]RuCl2}n Noyori, R. Angew. Chem. Int. Ed. 2013, 52, 79–92. • Catalytic cycle: 2 CH3OH Kitamura, M.; Nakatsuka, H. Chem. Commun. 2011, 47, 842–846. Tang, W.; Zhang, X. Chem. Rev. 2003, 103, 3029–3069. Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40, 40–73. [(R)-BINAP]RuCl2(CH3OH)2 H2 OCH3 Original Report by the Noyori Group: O HCl CH3OH O [(R)-BINAP]RuHCl(CH3OH)2 CH3 H2 2 CH OH H2 (100 atm) 3 O O OH O RuCl2[(R)-BINAP] (0.05 mol %) OCH3 CH3 OCH3 CH3 OCH3 CH3OH, 36 h, 100 °C O [(R)-BINAP]RuCl(CH3O)(CH3OH)2 [(R)-BINAP]HClRu 96%, >99% ee O OCH 3 CH3 O OCH3 HO O Noyori, R., Okhuma, T.; Kitamura, M.; Takaya, H.; Sayo, N.; Kumobayashi, H.; Akuragawa, S. CH OH CH3 3 J. Am. Chem. Soc. 1987, 109, 5856–5858. [(R)-BINAP](CH3OH)ClRu 2 CH3OH O CH3 • Both enantiomers of BINAP are commercially available. Alternatively, both enantiomers can be Noyori, R. Asymmetric Catalysis in Organic Synthesis; John Wiley & Sons: New York, 1993, prepared from the relatively inexpensive (±)-1,1'-bi-2-naphthol. pp. 56–82. • The reduction of methyl 2,2-dimethyl-3-oxobutanoate proceeds in high yield and with high enantioselectivity, providing evidence that the reduction proceeds through the keto form of the !-keto ester. However, pathways that involve hydrogenation of the enol form of other !-keto esters cannot be OH PPh2 PPh2 ruled out. + OH PPh2 PPh2 H2 (100 atm) O O OH O RuCl2[(R)-BINAP]–Ru (±)-1,1'-Bi-2-naphthol (R)-(+)-BINAP (S)-(–)-BINAP CH3 OCH3 CH OH, 23 °C CH3 OCH3 20% 20% 3 CH3 CH3 CH3 CH3 99%, 96% ee Takaya, H.; Akutagawa, S.; Noyori, R. -
Named Organic Reactions (U – Z)
Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 1 NAMED ORGANIC REACTIONS (U – Z) © Dr. John Andraos, 2000 - 2014 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ Sakae Uemura Japanese, b. Japan Uemura oxidation Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. Tetrahedron Lett. 1998 , 39 , 6011 Nishimura, T.; Onoue, T.; Ohe, K.; Uemura S. J. Org. Chem. 1999 , 64 , 6750 Biographical references: Ivar Karl Ugi 5 September 1930 – 29 September 2005 German, b. Kuressaare, Estland, Germany Ugi condensation Ugi, I.; Meyr, R.; Fetzer, U.; Steinbrueckner, C. Angew. Chem. 1959 , 71 , 386 Urban, R.; Ugi, I., Angew. Chem. Int. Engl. Ed . 1975 , 14 , 61 Biographical references: Chemical Research Faculties: An International Directory 1996 , American Chemical Society: Washington, D.C., 1996 Wer ist Wer? Das Deutsche Who’s Who 1999/2000 , Schmidt-Römhild: Lübeck, 1999 Lemmen, P.; Fontain, E.; Bauer, J. Angew. Chem. Int. Ed. 2006 , 45 , 193 Fritz Ullmann 2 July 1875 - 17 March 1939 German, b. Fürth, Germany Ullmann reaction Ullmann, F. Ann. Chem . 1904 , 332 , 38 Dr. John Andraos, http://www.careerchem.com/NAMED/Named-Rxns(U-Z).pdf 2 Biographical references: Meyer, K.H., Helv. Chim. Acta 1940 , 23 , 93 Upjohn reaction Van Rheenen, V.; Kelly, R.C.; Cha, D.Y. Tetrahedron Lett. 1976 , 1973 A. Verley French, b. ? Meerwein-Pondorff-Verley reduction see Hans Leberecht Meerwein Biographical references: Victor Villiger 1 September 1868 - 1934 Swiss, b. -
Curriculum Vitae Prof. Dr. Cyril Norman Hinshelwood
Curriculum Vitae Prof. Dr. Cyril Norman Hinshelwood Name: Cyril Norman Hinshelwood Lebensdaten: 19. Juni 1897 ‐ 9. Oktober 1967 Cyril Norman Hinshelwood war ein britischer Chemiker. Er untersuchte Aspekte der chemischen Reaktionskinetik. Nach ihm ist der Langmuir‐Hinshelwood‐Mechanismus benannt. Er beschreibt die Reaktion zweier Ausgangsstoffe an einer Katalysator‐Oberfläche. Für seine Forschungen über die Mechanismen chemischer Reaktion wurde Hinshelwood 1956 mit dem Nobelpreis für Chemie ausgezeichnet. Akademischer und beruflicher Werdegang Cyril Norman Hinshelwood war sehr begabt und bekam ein Stipendium für die University of Oxford zugesprochen. Wegen des Ersten Weltkriegs konnte er dies jedoch nicht in Anspruch nehmen. Stattdessen war er in dieser Zeit als Chemiker in einer Sprengstofffabrik in Queensferry, Schottland tätig. 1919 ging er ans Balliol College in Oxford, wo er einen durch die Nachkriegszeit verkürzten Kurs in Chemie besuchen durfte. Seine Auffassungsgabe der chemischen Prinzipien war so herausragend, dass er erneut für ein Stipendium vorgeschlagen wurde. In Oxford erlangte Hinshelwood den Bachelor‐ und Master‐Grad. Von 1921 bis 1937 arbeitete er am Trinity College in Oxford als Tutor. 1937 erhielt er eine Professur für Chemie an der Universität Oxford. Auch während des Zweiten Weltkriegs war er für die Kriegsproduktion tätig, so unter anderem bei der Herstellung von Gasmasken und Penicillin. Nobelpreis für Chemie 1956 Die chemische Kinetik, die Geschwindigkeit und Mechanismus einer chemischen Reaktion untersucht, war zu Beginn des 20. Jahrhunderts noch wenig erforscht. Hinshelwood hatte großes Interesse an den Mechanismen derartiger chemischer Prozesse. Es wurde während des Ersten Weltkriegs noch verstärkt, als er in einer Munitionsfabrik beschäftigt war, wo er sich mit der Chemie von explosiven Stoffen beschäftigte. -
Timeline of Genomics (1901–1950)*
Research Resource Timeline of Genomics (1901{1950)* Year Event and Theoretical Implication/Extension Reference 1901 Hugo de Vries adopts the term MUTATION to de Vries, H. 1901. Die Mutationstheorie. describe sudden, spontaneous, drastic alterations in Veit, Leipzig, Germany. the hereditary material of Oenothera. Thomas Harrison Montgomery studies sper- 1. Montgomery, T.H. 1898. The spermato- matogenesis in various species of Hemiptera and ¯nds genesis in Pentatoma up to the formation that maternal chromosomes only pair with paternal of the spermatid. Zool. Jahrb. 12: 1-88. chromosomes during meiosis. 2. Montgomery, T.H. 1901. A study of the chromosomes of the germ cells of the Metazoa. Trans. Am. Phil. Soc. 20: 154-236. Clarence Ervin McClung postulates that the so- McClung, C.E. 1901. Notes on the acces- called accessory chromosome (now known as the \X" sory chromosome. Anat. Anz. 20: 220- chromosome) is male determining. 226. Hermann Emil Fischer(1902 Nobel Prize Laure- 1. Fischer, E. and Fourneau, E. 1901. UberÄ ate for Chemistry) and Ernest Fourneau report einige Derivate des Glykocolls. Ber. the synthesis of the ¯rst dipeptide, glycylglycine. In Dtsch. Chem. Ges. 34: 2868-2877. 1902 Fischer introduces the term PEPTIDES. 2. Fischer, E. 1907. Syntheses of polypep- tides. XVII. Ber. Dtsch. Chem. Ges. 40: 1754-1767. 1902 Theodor Boveri and Walter Stanborough Sut- 1. Boveri, T. 1902. UberÄ mehrpolige Mi- ton found the chromosome theory of heredity inde- tosen als Mittel zur Analyse des Zellkerns. pendently. Verh. Phys -med. Ges. WÄurzberg NF 35: 67-90. 2. Boveri, T. 1903. UberÄ die Konstitution der chromatischen Kernsubstanz. Verh. Zool. -
Named Equations and Laws in Chemistry (H – K)
Dr. John Andraos, http://www.careerchem.com/NAMED/Named-EQ(H-K).pdf 1 NAMED EQUATIONS AND LAWS IN CHEMISTRY (H – K) © Dr. John Andraos, 2000 - 2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ John Burdon Sanderson Haldane 5 November 1882 - 1 December 1964 British-Scottish, b. Oxford, England Haldane equation Haldane, J.B.S., Enzymes , Longmans, Green, & Co.: London, 1930 Briggs-Haldane solution see George Edward Briggs Biographical References: Daintith, J.; Mitchell, S.; Tootill, E.; Gjersten, D ., Biographical Encyclopedia of Scientists , Institute of Physics Publishing: Bristol, UK, 1994 Millar, D.; Millar, I.; Millar, J.; Millar, M., Chambers Concise Dictionary of Scientists , W. & R. Chambers: Edinburgh, 1989 Pirie, N.W., Biog. Memoirs Fellows Roy. Soc., 1966 , 12 , 219 Louis Plack Hammett 7 April 1894 - 9 February 1987 American, b. Wilmington, Delaware, USA Hammett equation Hammett sigma constants Hammett, L.P., J. Am. Chem. Soc. 1937 , 59 , 96 Hammett, L.P., Chem. Rev. 1935 , 17 , 125 Hammett acidity function Hammett, L.P.; Deyrup, A.J., J. Am. Chem. Soc . 1932 , 54 , 2721 2 Biographical References: Westheimer, F.H., Biog. Memoirs Natl. Acad. Sci. 1997 , 72 , 137 Anon., Chem. Eng. News 1998 , 76 (2), 171 Charles Samuel Hanes 21 May 1903 - 6 July 1990 Canadian, b. Toronto, Ontario, Canada Hanes-Woolf plot Hanes, C.S., Biochem. J. 1932 , 26 , 1406 Woolf's contributions cited in Haldane, J.B.S.; Stern, K.G. Allgemeine Chemie der Enzyme , Steinkopff: Dresden, Leipzig, 1932 though Woolf did not publish his own papers. -
Fang Family San Francisco Examiner Photograph Archive Negative Files, Circa 1930-2000, Circa 1930-2000
http://oac.cdlib.org/findaid/ark:/13030/hb6t1nb85b No online items Finding Aid to the Fang family San Francisco examiner photograph archive negative files, circa 1930-2000, circa 1930-2000 Bancroft Library staff The Bancroft Library University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ © 2010 The Regents of the University of California. All rights reserved. Finding Aid to the Fang family San BANC PIC 2006.029--NEG 1 Francisco examiner photograph archive negative files, circa 1930-... Finding Aid to the Fang family San Francisco examiner photograph archive negative files, circa 1930-2000, circa 1930-2000 Collection number: BANC PIC 2006.029--NEG The Bancroft Library University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ Finding Aid Author(s): Bancroft Library staff Finding Aid Encoded By: GenX © 2011 The Regents of the University of California. All rights reserved. Collection Summary Collection Title: Fang family San Francisco examiner photograph archive negative files Date (inclusive): circa 1930-2000 Collection Number: BANC PIC 2006.029--NEG Creator: San Francisco Examiner (Firm) Extent: 3,200 boxes (ca. 3,600,000 photographic negatives); safety film, nitrate film, and glass : various film sizes, chiefly 4 x 5 in. and 35mm. Repository: The Bancroft Library. University of California, Berkeley Berkeley, CA 94720-6000 Phone: (510) 642-6481 Fax: (510) 642-7589 Email: [email protected] URL: http://bancroft.berkeley.edu/ Abstract: Local news photographs taken by staff of the Examiner, a major San Francisco daily newspaper.