Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams

Total Page:16

File Type:pdf, Size:1020Kb

Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams + + Chem. Rev. 1997, 97, 25−51 25 Cavity Ringdown Laser Absorption Spectroscopy: History, Development, and Application to Pulsed Molecular Beams J. J. Scherer,† J. B. Paul, A. O’Keefe,‡ and R. J. Saykally* Department of Chemistry, University of California, Berkeley, California 94720, and Los Gatos Research, 1685 Plymouth Way, Mountain View, California 94043 Received December 2, 1993 (Revised Manuscript Received September 13, 1996) Contents again, dynamic effects complicate the interpretation of spectra. The same considerations apply to other I. Introduction 25 types of “action” spectroscopy. II. CRLAS History and Development 26 It would often be preferable to measure the elec- CRLAS Applications 29 tronic spectra of molecules and clusters in direct III. CRLAS Sensitivity and Fundamentals 31 absorption, as this approach is the most straightfor- First-Order Considerations 32 ward and accurate means of determining absolute Data Acquisition 32 vibronic band intensities and for accessing states that Shot Noise 33 are invisible to LIF or REMPI. The problem, of Laser Bandwidth and Multiexponential 33 course, is that direct absorption methods are gener- Decays ally orders of magnitude less sensitive than the Interference Effects in CRLAS 34 “action” techniques and are, therefore, difficult to Laser Transverse Mode Considerations 38 apply to transient species, such as clusters or radi- Cavity Mirrors 39 cals. IV. CRLAS of Pulsed Supersonic Jets 39 In this review, we describe a relatively new direct Applications to Metal Cluster Systems 40 absorption technique that we have developed for Copper Dimer 41 measuring the electronic spectra of jet-cooled mol- ecules and clusters with both high sensitivity and Aluminum Dimer 42 high spectral resolution. The method is based on Copper Trimer 42 measurement of the time rate of decay of a pulse of Metal Silicides 44 light trapped in a high reflectance optical cavity; we Copper Silicide 45 call it cavity ringdown laser absorption spectroscopy Silver Silicide 46 (CRLAS). In practice, pulsed laser light is injected Gold Silicide 48 into an optical cavity that is formed by a pair of V. Summary 50 highly reflective (R > 99.9%) mirrors. The small VI. Acknowledgments 50 amount of light that is now trapped inside the cavity VII. References 50 reflects back and forth between the two mirrors, with a small fraction ( 1 - R) transmitting through each mirror with each∼ pass. The resultant transmission I. Introduction of the circulating light is monitored at the output mirror as a function of time and allows the decay time The measurement of electronic spectra of super- of the cavity to be determined. A simple picture of sonically cooled molecules and clusters is a widely the cavity decay event for the case where the laser used approach for addressing many problems in pulse is temporally shorter than the cavity round trip chemistry. The most established techniques for transit time is presented in Figure 1. In this case, making such measurements are laser-induced fluo- the intensity envelope of these discrete transmitted rescence (LIF) and resonance-enhanced multiphoton pulses exhibits a simple exponential decay. The time ionization (REMPI), and both have been employed required for the cavity to decay to 1/e of the initial very successfully in a large number of studies. output pulse is called the “cavity ringdown” time. However, both methods often fail for systems con- Determination of the ringdown time allows the taining more than a few atoms, due to rapid internal absolute single pass transmission coefficient of the conversion, predissociation, or other dynamical pro- cavity to be determined with high accuracy, given the cesses. Even for small systems, the vibronic band mirror spacing. The apparatus is converted to a intensities are often contaminated by intramolecular sensitive absorption spectrometer simply by placing relaxation dynamics; in such cases, these techniques an absorbing medium between the two mirrors and cannot be used for reliable intensity measurements. recording the frequency dependent ringdown time of For clusters that exhibit rapid photofragmentation, the cavity. Ideally, the ringdown time is a function depletion spectroscopy can be employed quite ef- of only the mirror reflectivities, cavity dimensions, fectively to measure their vibronic structure, but and sample absorption. Absolute absorption intensi- ties are obtained by subtracting the base-line trans- mission of the cavity, which is determined when the † IBM Predoctoral Fellow. Current address: Sandia National Laboratories, M/S 9055, Livermore, CA 94551-0969. laser wavelength is off-resonance with all molecular ‡ Los Gatos Research. transitions. S0009-2665(93)00048-2 CCC: $28 00 © 1997 American Chemical Society + + 26 Chemical Reviews, 1997, Vol. 97, No. 1 Scherer et al. James J. Scherer was born and raised in Berkeley, CA. He received his Anthony O’Keefe is President of Los Gatos Research, a small R&D Bachelors degrees in art and physics at the University of California at company located in the San Francisco area that is involved in government- Berkeley, followed by a Doctoral degree in chemistry also at Berkeley. funded laser research for aerospace applications. Prior to this position His research interests include spectroscopic studies of metal cluster he was a partner and co-owner of Deacon Research, where he developed species and free radicals. the Cavity Ringdown Absorption technique that forms the basis of the present work. He has worked to develop this technique from a laboratory curiosity to a widely recognized method of making ultra-high sensitivity spectroscopic measurements. Dr. O’Keefe received his B.S. degree in Chemistry from Beloit College in 1977 and his M.S. and Ph.D. degrees in physical chemistry from the University of California, Berkeley, in 1979 and 1981, respectively. Joshua B. Paul received his Bachelor’s degree in Physics in 1991 from the University of California at Berkeley. As an undergraduate, he worked in Professor Saykally’s laboratories helping to build the current cavity ringdown apparatus. When given the opportunity to join the Chemistry Graduate program at Berkeley, he gladly accepted, electing to continue his work on the ringdown project. Recently, he has switched from UV− visible studies to the mid-infrared, where he has employed ringdown toward Richard Saykally was born in 1947 in Rhinelander, WI. He graduated the study of the O−H stretch fundamentals of water clusters and the − from the University of WisconsinsEau Claire in 1970 and received his N H stretches of nucleotide base clusters. At 28 years of age, Josh will Ph.D. from UWsMadison in 1977 under the direction of R. C. Woods. soon face the realities of life after Graduate School. After spending two years at NIST in Boulder as a NRC postdoctoral fellow with K. M. Evenson, he was appointed Assistant Professor at UC Berkeley in 1979. He has served as Vice-Chair of Chemistry from 1988 to 1991 Because the cavity decay time is independent of and has been the thesis advisor for 30 Ph.Ds. He has received numerous − the initial intensity that exits the cavity, CRLAS honors and awards, including the Harrison Howe Award, the Lippincott Prize for Vibrational Spectroscopy, the Bomem Michelson Award in sensitivity is not seriously degraded by the large shot Spectroscopy, the E. K. Plyler Prize for Molecular Spectroscopy, the Bourke to shot intensity fluctuations common to pulsed Lectureship of the Royal Society of Chemistry, and a Humboldt Senior lasers. With state-of-the-art data collection methods, Scientist Award. He has been a Presidential Young Investigator and a -7 Dreyfus Scholar and is a Fellow of the American Physical Society, the a fractional absorption (1 - I/Io)of3 10 per pass × Optical Society of America, the Royal Society of Chemistry, and the can be measured with a single laser pulse; signal American Academy of Arts and Sciences. He serves on the editorial averaging can be employed to improve this figure. boards of The Journal of Chemical Physics, Molecular Physics, Chemical While currently implemented from the ultraviolet to Physics Letters, The Review of Scientific Instruments, The Journal of the mid-infrared regions, CRLAS is primarily limited Molecular Spectroscopy, and Spectroscopy. Also recognized as an to spectral regions by both the availability of outstanding teacher, Professor Saykally has received the Berkeley Distinguished Teaching Award and was the co-director of Science for highly reflective mirrors and suitable pulsed laser Science Teachers, a national program for secondary school teacher sources. enhancement. He has published nearly 200 papers on subjects ranging from intermolecular forces and molecular ions to astrophysics and laser In this paper, we present an account of the theory, spectroscopy. development, and applications of the CRLAS method, with emphasis on the specific application of pulsed II. CRLAS History and Development molecular beam spectroscopy. In addition to a gen- The history and development of the CRLAS tech- eral review of CRLAS, experimental data are pre- nique dates back to the invention of the cw-based sented that demonstrate the simplicity, sensitivity, cavity attenuated phase shift (CAPS) method by J. and generality of this powerful new spectroscopic tool. M. Herbelin et al. in the early 1980’s.1 Although the + + Cavity Ringdown Laser Absorption Spectroscopy Chemical Reviews, 1997, Vol. 97, No. 1 27 Figure 1. In the short pulse limit, discrete pulses of laser Figure 2. Cavity attenuated phase shift method (CAPS) light leak out of the cavity with each pass. The intensity experimental diagram. Modulated continuous wave laser envelope of the resultant decay is approximated by a light is coupled into a high-finesse optical cavity. Measure- smooth exponential expression. Determination of the decay ment of the resultant phase shift at the exit mirror allows time allows the cavity losses or molecular absorption to be the mirror reflectivities to be determined. In Herbelin’s determined. Typical cavity decays consist of ten thousand original work, a ring resonator was also used.
Recommended publications
  • Self Amplified Lock of a Ultra-Narrow Linewidth Optical Cavity
    Self Amplified Lock of a Ultra-narrow Linewidth Optical Cavity Kiwamu Izumi,1, ∗ Daniel Sigg,1 and Lisa Barsotti2 1LIGO Hanford Observatory, PO Box 159 Richland, Washington 99354, USA 2LIGO laboratory, Massachusetts Institute of Technology, Cambridge, Massachussetts 02139, USA compiled: January 8, 2016 High finesse optical cavities are an essential tool in modern precision laser interferometry. The incident laser field is often controlled and stabilized with an active feedback system such that the field resonates in the cavity. The Pound-Drever-Hall reflection locking technique is a convenient way to derive a suitable error signal. However, it only gives a strong signal within the cavity linewidth. This poses a problem for locking a ultra-narrow linewidth cavity. We present a novel technique for acquiring lock by utilizing an additional weak control signal, but with a much larger capture range. We numerically show that this technique can be applied to the laser frequency stabilization system used in the Laser Interferometric Gravitational-wave Observatory (LIGO) which has a linewidth of 0.8 Hz. This new technique will allow us to robustly and repeatedly lock the LIGO laser frequency to the common mode of the interferometer. OCIS codes: (140.3425), (140.3410) http://dx.doi.org/10.1364/XX.99.099999 High finesse optical cavities have been an indispens- nonlinear response [8, 9] dominant and thus hinder the able tool for precision interferometry to conduct rela- linear controller. tivistic experiments such as gravitational wave detection Gravitational wave observatories deploy kilometer [1{3] and optical clocks [4]. The use of a high finesse cav- scale interferometers with extremely narrow linewidth.
    [Show full text]
  • Absorption Spectroscopy and Imaging from the Visible Through Mid-Infrared with 20 Nm Resolution
    Absorption spectroscopy and imaging from the visible through mid-infrared with 20 nm resolution. Aaron M. Katzenmeyer,1 Glenn Holland,1 Kevin Kjoller2 and Andrea Centrone1* 1Center for Nanoscale Science and Technology, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States. *E-mail: [email protected] 2Anasys Instruments, Inc., 325 Chapala Street, Santa Barbara, California 93101, United States. Abstract Absorption spectroscopy and mapping from visible through mid-IR wavelengths has been achieved with spatial resolution exceeding the limit imposed by diffraction, via the photothermal induced resonance technique. Correlated vibrational (chemical), and electronic properties are obtained simultaneously with topography with a wavelength-independent resolution of ≈ 20 nm using a single laboratory-scale instrument. This marks the highest resolution reported for PTIR, as determined by comparing height and PTIR images, and its first extension to near-IR and visible wavelengths. Light-matter interaction enables scientists to characterize materials and biological samples across a large range of energies. Visible (VIS) and near-infrared (NIR) light (from 400 nm to 2.5 µm) probes electronic transitions in materials [1], providing information regarding band gap, defects, and energy transfer which is crucial for the semiconductor and optoelectronic industries and for understanding processes such as photosynthesis. Mid-infrared (mid-IR) light (from 2.5 µm to 15 µm) probes vibrational transitions and provides rich chemical and structural information enabling materials identification [2]. Spectral maps can be obtained by coupling a light source and a spectrometer with an optical microscope [3]. However, light diffraction limits the lateral resolution achievable with conventional microscopic techniques to approximately half the wavelength of light [4].
    [Show full text]
  • Power Build-Up Cavity Coupled to a Laser Diode
    I POWER BUILD-UP CAVITY COUPLED I TO A LASER DIODE Daniel J. Evans I Center of Excellence for Raman Technology University of Utah I Abstract combination of these elements will emit photons at different frequencies. The ends of these semiconductor In many Raman applications there is a need to devices are cleaved to form mirrors that bounce the I detect gases in the low ppb range. The desired photons back and forth within the cavity. The photons sensitivity can be achieved by using a high power laser excite more electrons, which form more photons source in the range of tens of watts. A system (referred to as optical pumping). 2 A certain portion of I combining a build-up cavity to enhance the power and the photons emit through the front and back cleaved an external cavity laser diode setup to narrow the surfaces of the laser diode. The amount of photons that bandwidth can give the needed power to the Raman get through the cleaved surfaces can be adjusted by I spectroscopy system. coating the surface or installing other mirrors. Introduction to Laser Diodes The planar cleaved surfaces of the laser diode form a Fabry-Perot cavity with set resonance frequencies I An important characteristic of all lasers is the (vp).3 The typical laser diode has a spacing of 150 f.1I11 mode structure. The mode structure refers to both the with an index of refraction of 3.5, yielding a resonance lasing frequency and the spatial characteristics of the frequency of 285 GHz. The wavelength spacing (~A.) I laser.
    [Show full text]
  • Quantum Illumination at the Microwave Wavelengths
    Quantum Illumination at the Microwave Wavelengths 1 2 3 4 5 6, Shabir Barzanjeh, Saikat Guha, Christian Weedbrook, David Vitali, Jeffrey H. Shapiro, and Stefano Pirandola ∗ 1Institute for Quantum Information, RWTH Aachen University, 52056 Aachen, Germany 2Quantum Information Processing Group, Raytheon BBN Technologies, Cambridge, Massachusetts 02138, USA 3QKD Corp., 60 St. George St., Toronto, M5S 3G4, Canada 4School of Science and Technology, University of Camerino, Camerino, Macerata 62032, Italy 5Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 6Department of Computer Science & York Centre for Quantum Technologies, University of York, York YO10 5GH, United Kingdom Quantum illumination is a quantum-optical sensing technique in which an entangled source is exploited to improve the detection of a low-reflectivity object that is immersed in a bright thermal background. Here we describe and analyze a system for applying this technique at microwave frequencies, a more appropriate spectral region for target detection than the optical, due to the naturally-occurring bright thermal background in the microwave regime. We use an electro-opto- mechanical converter to entangle microwave signal and optical idler fields, with the former being sent to probe the target region and the latter being retained at the source. The microwave radiation collected from the target region is then phase conjugated and upconverted into an optical field that is combined with the retained idler in a joint-detection
    [Show full text]
  • Construction of a Flashlamp-Pumped Dye Laser and an Acousto-Optic
    ; UNITED STATES APARTMENT OF COMMERCE oUBLICATION NBS TECHNICAL NOTE 603 / v \ f ''ttis oi Construction of a Flashlamp-Pumped Dye Laser U.S. EPARTMENT OF COMMERCE and an Acousto-Optic Modulator National Bureau of for Mode-Locking Iandards — NATIONAL BUREAU OF STANDARDS 1 The National Bureau of Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation's science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measure- ment system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Center for Computer Sciences and Technology, and the Office for Information Programs. THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scien- tific community, industry, and commerce. The Institute consists of a Center for Radia- tion Research, an Office of Measurement Services and the following divisions: Applied Mathematics—Electricity—Heat—Mechanics—Optical Physics—Linac Radiation 2—Nuclear Radiation 2—Applied Radiation 2—Quantum Electronics 3— Electromagnetics 3—Time and Frequency 3 —Laboratory Astrophysics3—Cryo- 3 genics .
    [Show full text]
  • Absorption Spectroscopy
    World Bank & Government of The Netherlands funded Training module # WQ - 34 Absorption Spectroscopy New Delhi, February 2000 CSMRS Building, 4th Floor, Olof Palme Marg, Hauz Khas, DHV Consultants BV & DELFT HYDRAULICS New Delhi – 11 00 16 India Tel: 68 61 681 / 84 Fax: (+ 91 11) 68 61 685 with E-Mail: [email protected] HALCROW, TAHAL, CES, ORG & JPS Table of contents Page 1 Module context 2 2 Module profile 3 3 Session plan 4 4 Overhead/flipchart master 5 5 Evaluation sheets 22 6 Handout 24 7 Additional handout 29 8 Main text 31 Hydrology Project Training Module File: “ 34 Absorption Spectroscopy.doc” Version 06/11/02 Page 1 1. Module context This module introduces the principles of absorption spectroscopy and its applications in chemical analyses. Other related modules are listed below. While designing a training course, the relationship between this module and the others, would be maintained by keeping them close together in the syllabus and place them in a logical sequence. The actual selection of the topics and the depth of training would, of course, depend on the training needs of the participants, i.e. their knowledge level and skills performance upon the start of the course. No. Module title Code Objectives 1. Basic chemistry concepts WQ - 02 • Convert units from one to another • Discuss the basic concepts of quantitative chemistry • Report analytical results with the correct number of significant digits. 2. Basic aquatic chemistry WQ - 24 • Understand equilibrium chemistry and concepts ionisation constants. • Understand basis of pH and buffers • Calculate different types of alkalinity.
    [Show full text]
  • Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential
    Sensors 2014, 14, 17275-17303; doi:10.3390/s140917275 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Review Raman Spectroscopy for In-Line Water Quality Monitoring — Instrumentation and Potential Zhiyun Li 1, M. Jamal Deen 1,2,4,*, Shiva Kumar 2 and P. Ravi Selvaganapathy 1,3 1 School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada; E-Mails: [email protected] (Z.L.); [email protected] (P.R.S.) 2 Electrical and Computer Engineering, McMaster University, Hamilton, ON L8S 4K1 Canada; E-Mail: [email protected] 3 Mechanical Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada 4 Electronic and Computer Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel.: +1-905-525-9140 (ext. 27137); Fax: +1-905-521-2922. Received: 1 July 2014; in revised form: 7 September 2014 / Accepted: 9 September 2014 / Published: 16 September 2014 Abstract: Worldwide, the access to safe drinking water is a huge problem. In fact, the number of persons without safe drinking water is increasing, even though it is an essential ingredient for human health and development. The enormity of the problem also makes it a critical environmental and public health issue. Therefore, there is a critical need for easy-to-use, compact and sensitive techniques for water quality monitoring. Raman spectroscopy has been a very powerful technique to characterize chemical composition and has been applied to many areas, including chemistry, food, material science or pharmaceuticals.
    [Show full text]
  • Basics of Plasma Spectroscopy
    Home Search Collections Journals About Contact us My IOPscience Basics of plasma spectroscopy This content has been downloaded from IOPscience. Please scroll down to see the full text. 2006 Plasma Sources Sci. Technol. 15 S137 (http://iopscience.iop.org/0963-0252/15/4/S01) View the table of contents for this issue, or go to the journal homepage for more Download details: IP Address: 198.35.1.48 This content was downloaded on 20/06/2014 at 16:07 Please note that terms and conditions apply. INSTITUTE OF PHYSICS PUBLISHING PLASMA SOURCES SCIENCE AND TECHNOLOGY Plasma Sources Sci. Technol. 15 (2006) S137–S147 doi:10.1088/0963-0252/15/4/S01 Basics of plasma spectroscopy U Fantz Max-Planck-Institut fur¨ Plasmaphysik, EURATOM Association Boltzmannstr. 2, D-85748 Garching, Germany E-mail: [email protected] Received 11 November 2005, in final form 23 March 2006 Published 6 October 2006 Online at stacks.iop.org/PSST/15/S137 Abstract These lecture notes are intended to give an introductory course on plasma spectroscopy. Focusing on emission spectroscopy, the underlying principles of atomic and molecular spectroscopy in low temperature plasmas are explained. This includes choice of the proper equipment and the calibration procedure. Based on population models, the evaluation of spectra and their information content is described. Several common diagnostic methods are presented, ready for direct application by the reader, to obtain a multitude of plasma parameters by plasma spectroscopy. 1. Introduction spectroscopy for purposes of chemical analysis are described in [11–14]. Plasma spectroscopy is one of the most established and oldest diagnostic tools in astrophysics and plasma physics 2.
    [Show full text]
  • Ophthalmic Laser Therapy: Mechanisms and Applications
    1 Ophthalmic Laser Therapy: Mechanisms and Applications Daniel Palanker Department of Ophthalmology and Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA Definition The term LASER is an abbreviation which stands for Light Amplification by Stimulated Emission of Radiation. The laser is a source of coherent, directional, monochromatic light that can be precisely focused into a small spot. The laser is a very useful tool for a wide variety of clinical diagnostic and therapeutic procedures. Principles of Light Emission by Lasers Molecules are made up of atoms, which are composed of a positively charged nucleus and negatively charged electrons orbiting it at various energy levels. Light is composed of individual packets of energy, called photons. Electrons can jump from one orbit to another by either, absorbing energy and moving to a higher level (excited state), or emitting energy and transitioning to a lower level. Such transitions can be accompanied by absorption or spontaneous emission of a photon. “Stimulated Emission” is a process in which photon emission is stimulated by interaction of an atom in excited state with a passing photon. The photon emitted by the atom in this process will have the same phase, direction of propagation and wavelength as the “stimulating photon”. The “stimulating photon” does not lose energy during this interaction- it simply causes the emission and continues on, as illustrated in Figure 1. Figure 1: LASER: Light Amplification by Stimulated Emission of Radiation For such stimulated emission to occur more frequently than absorption (and hence result in light amplification), the optical material should have more atoms in excited state than in a lower state.
    [Show full text]
  • Generation of a Flat-Top Laser Beam for Gravitational Wave Detectors By
    Generation of a flat-top laser beam for gravitational wave detectors by means of a nonspherical Fabry–Perot resonator Marco G. Tarallo,1,2,* John Miller,2,3 J. Agresti,1,2 E. D’Ambrosio,2 R. DeSalvo,2 D. Forest,4 B. Lagrange,4 J. M. Mackowsky,4 C. Michel,4 J. L. Montorio,4 N. Morgado,4 L. Pinard,4 A. Remilleux,4 B. Simoni,1,2 and P. Willems2 1Dipartimento di Fisica, Università di Pisa, Largo Pontecorvo 3, 56100 Pisa, Italy 2LIGO Laboratory, California Institute of Technology, 1200 E. California Boulevard, Pasadena, California, USA 3Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, UK 4Laboratoire des Matèriaux Avancès, 22 Boulevard Niels Bohr, Villeurbanne, France *Corresponding author: [email protected] Received 23 February 2007; revised 6 July 2007; accepted 11 July 2007; posted 13 July 2007 (Doc. ID 80265); published 7 September 2007 We have tested a new kind of Fabry–Perot long-baseline optical resonator proposed to reduce the thermal noise sensitivity of gravitational wave interferometric detectors—the “mesa beam” cavity—whose flat top beam shape is achieved by means of an aspherical end mirror. We present the fundamental mode intensity pattern for this cavity and its distortion due to surface imperfections and tilt misalignments, and contrast the higher order mode patterns to the Gauss–Laguerre modes of a spherical mirror cavity. We discuss the effects of mirror tilts on cavity alignment and locking and present measurements of the mesa beam tilt sensitivity. © 2007 Optical Society of America OCIS codes: 140.4780, 120.2230, 230.0040.
    [Show full text]
  • Atomic Spectroscopy 008044D 01 a Guide to Selecting The
    PerkinElmer has been at the forefront of The Most Trusted inorganic analytical technology for over 50 years. With a comprehensive product Name in Elemental line that includes Flame AA systems, high-performance Graphite Furnace AA Analysis systems, flexible ICP-OES systems and the most powerful ICP-MS systems, we can provide the ideal solution no matter what the specifics of your application. We understand the unique and varied needs of the customers and markets we serve. And we provide integrated solutions that streamline and simplify the entire process from sample handling and analysis to the communication of test results. With tens of thousands of installations worldwide, PerkinElmer systems are performing WORLD LEADER IN inorganic analyses every hour of every day. Behind that extensive network of products stands the industry’s largest and most-responsive technical service and support staff. Factory-trained and located in 150 countries, they have earned a reputation for consistently AA, ICP-OES delivering the highest levels of personalized, responsive service in the industry. AND ICP-MS PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602 www.perkinelmer.com For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs Copyright ©2008-2013, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. Atomic Spectroscopy 008044D_01 A Guide to Selecting the Appropriate
    [Show full text]
  • 3-5 Development of an Ultra-Narrow Line-Width Clock Laser
    3-5 Development of an Ultra-Narrow Line-Width Clock Laser LI Ying, NAGANO Shigeo, MATSUBARA Kensuke, KOJIMA Reiko, KUMAGAI Motohiro, ITO Hiroyuki, KOYAMA Yasuhiro, and HOSOKAWA Mizuhiko An optical lattice clock and a single ion optical clock are being developed in National Institute of Information and Communications Technology (NICT). Diode lasers are used for the develop- ment of extremely narrow linewidth clock lasers for optical frequency standards. Using the Pound- Drever-Hall technique, the required reduction of linewidth was achieved by locking the laser to an ultrahigh-fi nesse ultralow-expansion glass (ULE) reference cavity, which is set in the high vacuum chamber with a constant temperature and isolated against environmental noise and vibration. As a result, the laser linewidth is decreased down to several Hz. The Allan deviation is less than 4×10−15 at an averaging time over 100 s. A vibration-insensitive optical cavity has been designed, aiming the linewidth below 1 Hz. In this chapter, we report the present status of development of the clock lasers at NICT. Keywords Laser frequency stabilization, Diode laser, Optical reference cavity, Optical clock, Optical frequency standard 1 Introduction an uncertainty of 10−17 or less is divided into two types. The fi rst is the “optical lattice The second, the current time and frequency clock” [4] [5], neutral atoms are trap in the opti- standard unit, is defi ned according to the hy- cal lattice “magic wave length” and the second perfi ne structure transition of cesium atoms by is the “single ion clock” [6], single ion is con- the General Conference of Weights and Mea- fi ned to the Lamb-Dick regime.
    [Show full text]