On Interannual Variability and Climate Change in the North Pacific

Total Page:16

File Type:pdf, Size:1020Kb

On Interannual Variability and Climate Change in the North Pacific ON INTERANNUAL VARIABILITY AND CLIMATE CHANGE IN THE NORTH PACIFIC By David Kurt Salmon RECOMMENDED: APPROVED: Dean, SchodjafLFisheries and Ocean Sciences Dean of me Graduate Schott Date ON INTERANNUAL VARIABILITY AND CLIMATE CHANGE IN THE NORTH PACIFIC A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By David Kurt Salmon, B.A. Fairbanks, Alaska Abstract Long term changes in the atmospheric and oceanic environment of the North Pacific were investigated for the period 1946-1991. A climatology of North Pacific wind stress curl was developed because of the relevance of changes in wind stress curl to both oceanic and atmospheric variability. The dominant scales of spatial and temporal wind stress curl variability were determined and examined within the context of observed changes in North Pacific air temperature, sea surface temperature (SST), sea ice cover, oceanic mass transport and the occurrence of blocking anticyclones. Relationships between these variables and indices of tropical Pacific variability were also determined on interannual time scales. During 1976-1988, phase relationships were very strong between long term mean anomalies of wind stress curl, SST, air temperature, sea ice cover, The Pacific North American index, the Southern Oscillation Index (SOI), and tropical Pacific SST. Long term mean anomalies of these parameters did not change sign during 1976-88. These strong phase relationships did not occur amongst these variables during any other period of the record. The 1976-1988 period is characterized by intensified storminess, the decreased occurrence of blocking anticyclones, and decreased sea ice cover in the subarctic North Pacific. Intensified atmospheric circulation also occurred in the western Pacific subtropical anticyclone. Anomalously low SST occurred across the central and western North Pacific during this period while anomalously high SST was present in the eastern North Pacific adjacent to North America. Changes in the sign of the long term mean anomalies of wind stress curl, central North Pacific SST and the SOI suggest that this climate regime ended or relaxed after 1988. After 1975, long term changes in anomalies of the Southern Oscillation Index, tropical Atlantic wind stress, Sahel rainfall, and Greenland Sea ice cover have characteristics similar to those observed in the North Pacific. It is suggested that the climate anomalies observed in the North Pacific during 1976-1988 occurred as part of a hemispheric or global scale climate regime. Contents List of Figures........................................................................................ ix List of Tables ............................................................................................ xii Acknowledgments................................................................................ xiv Overview................................................................................ 1 1) A Climatology of North Pacific Wind Stress Curl ......... 5 Introduction ........................................................................................... 5 The Role of Wind Stress Curl in Forcing Oceanic Variability ......... 5 Previous Studies................................................................................... 9 Data and Computations ........................................................................... 12 Analysis ........................................................................................................ 15 Computed and Real Boundary Effects on Wind Stress Curl............ 15 Mean Pressure Field ............................................................................ 18 Annual Mean Curl ............................................................................... 20 Mean Fields and Variance .................................................................. 22 Annual and Semi-annual Harmonics and Spectral Energy ............. 32 Annual Cycle of Zonal Mean Curl ...................................................... 36 Annual Cycle of North Pacific Sverdrup Transport ........................ 41 Comparison with Previous Studies .................................................... 47 vi Empirical Orthogonal Function (EOF) Analyses .............................. 53 The EOF Method.................................................................................. 53 Experiment SI..................................................................................... 55 Experiment N Sl.................................................................................. 65 Comparison with Rienecker and Ehret ............................................ 65 Regional Interannual Variability of North Pacific Wind Stress Curl....................................................................................... 68 Regional Wind Stress Curl Series ..................................................... 68 Correlations and Coherence between Regional Curl Fields ........... 81 Correlations between Regional Curl and EOF Time Amplitude Functions............................................................................................ 83 Wind Stress Curl over the Bering And Chukchi Sea Regions 1981-1990..................................................................................... 85 The Seasonal Cycle .............................................................................. 85 Interannual Variability ....................................................................... 89 EOF Analysis ............................................................. 92 Oceanographic Effects of Interannual Wind Stress Curl Variability ............................................................................. 97 Wind Stress Curl and Observed Transport and Property Variations in the Northeast Pacific.................................................... 97 Wind Stress Curl and Ocean Transports in the Western Subarctic Pacific ................................................................................. 102 Wind Stress Curl and Planetary Waves in the Northeast Pacific ................................................................................ 104 Summary and Discussion ....................................................................... 107 2) Interannual Variability in the North Pacific Climate System ................................................................................... i l l Introduction............................................................................................. I l l Previous Studies................................................................................ 112 Data and Methods ................................................................................... 114 Analysis ..................................................................................................... 115 Regional Interannual SST Variability ............................................ 115 EOF Analysis of North Pacific SST ................................................. 121 Interrelationships between North Pacific Climate Variables 128 Relationships between the Large Scale Fields of SST and Wind Stress Curl............................................................................... 128 Mechanisms of Interaction Between SST and Wind Stress Curl... 135 Implications of Decadal Scale Climate Variability ...........................137 Interannual Variability of Wind Stress Curl, SST, and Subarctic AirTemperatures .............................................................. 140 Relationships between Wind Stress Curl and Sea Ice Cover 145 Interannual Variability in the Tropical Pacific Atmosphere: The Southern Oscillation Index and the Pacific North American Index ...................................................................... 149 Relationships between Tropical Variables, Extratropical SST and Wind Stress Curl ........................................................................ 154 Summary and Discussion ...................................................................... 162 3) Interannual Variability of North Pacific Blocking Activity and its Relation to Climate Change ..................... 167 Introduction............................................................................................. 167 Data .................................................... 169 Definition and Characteristics cf Marine Ridges .............................169 A n alysis....................................................................................................... 174 Comparison with White and Clark [1975] ...................................... 174 Marine Ridging Activity 1946-1990 .................................................. 174 Marine Ridging Activity as a Precursor to El Nino-Southern Oscillation Events ................................................................................176 Relationships between Marine Ridging and the Pacific North American Teleconnection ......................................................... 183 Decadal Scale Variability in Marine Ridging Activity ................... 186 Summary and Discussion...................................................................... 194 4) Conclusions.................................................................... 197 Relationships between Interannual Variations in the Pacific and Atlantic................................................................................ 198 R eferences...........................................................................
Recommended publications
  • Meteorology and Climate
    Canadian Technical Report of Fisheries and Aquatic Sciences 2667 2007 ECOSYSTEM OVERVIEW: PACIFIC NORTH COAST INTEGRATED MANAGEMENT AREA (PNCIMA) APPENDIX B: METEOROLOGY AND CLIMATE Authors: William Crawford1, Duncan Johannessen2, Rick Birch3, Keith Borg3, and David Fissel3 Edited by: B.G. Lucas, S. Verrin, and R. Brown 1 Fisheries & Oceans Canada, Institute of Ocean Sciences, Sidney, BC V8L 4B2 2 Earth and Ocean Sciences, University of Victoria, PO Box 3055 STN CSC, Victoria, BC V8W 3P6 3 ASL Environmental Sciences, 1986 Mills Road, Sidney, BC V8L 5Y3 © Her Majesty the Queen in right of Canada, 2007. Cat. No. Fs 97-6/2667E ISSN 0706-6457 Correct citation for this publication: Crawford, W., Johannessen, D., Birch, R., Borg, K., and Fissel, D. 2007. Appendix B: Meteorology and climate. In Ecosystem overview: Pacific North Coast Integrated Management Area (PNCIMA). Edited by Lucas, B.G., Verrin, S., and Brown, R. Can. Tech. Rep. Fish. Aquat. Sci. 2667: iv + 18 p. TABLE OF CONTENTS 1.0 INTRODUCTION...........................................................................................................................1 1.1 KEY POINTS ................................................................................................................................1 1.2 UNCERTAINTIES, LIMITATIONS, AND VARIABILITY .....................................................................2 1.3 MAJOR SOURCES OF INFORMATION OR DATA .............................................................................2 1.4 IDENTIFIED KNOWLEDGE AND DATA GAPS .................................................................................3
    [Show full text]
  • Weather Numbers Multiple Choices I
    Weather Numbers Answer Bank A. 1 B. 2 C. 3 D. 4 E. 5 F. 25 G. 35 H. 36 I. 40 J. 46 K. 54 L. 58 M. 72 N. 74 O. 75 P. 80 Q. 100 R. 910 S. 1000 T. 1010 U. 1013 V. ½ W. ¾ 1. Minimum wind speed for a hurricane in mph N 74 mph 2. Flash-to-bang ratio. For every 10 second between lightning flash and thunder, the storm is this many miles away B 2 miles as flash to bang ratio is 5 seconds per mile 3. Minimum diameter of a hailstone in a severe storm (in inches) A 1 inch (formerly ¾ inches) 4. Standard sea level pressure in millibars U 1013.25 millibars 5. Minimum wind speed for a severe storm in mph L 58 mph 6. Minimum wind speed for a blizzard in mph G 35 mph 7. 22 degrees Celsius converted to Fahrenheit M 72 22 x 9/5 + 32 8. Increments between isobars in millibars D 4mb 9. Minimum water temperature in Fahrenheit for hurricane development P 80 F 10. Station model reports pressure as 100, what is the actual pressure in millibars T 1010 (remember to move decimal to left and then add either 10 or 9 100 become 10.0 910.0mb would be extreme low so logic would tell you it would be 1010.0mb) Multiple Choices I 1. A dry line front is also known as a: a. dew point front b. squall line front c. trough front d. Lemon front e. Kelvin front 2.
    [Show full text]
  • Aleutian Islands
    Ecosystem Status Report 2018 Aleutian Islands Edited by: Stephani Zador1 and Ivonne Ortiz2 1Resource Ecology and Fisheries Management Division, Alaska Fisheries Science Center, National Marine Fisheries Service, NOAA 7600 Sand Point Way NE, Seattle, WA 98115 2 JISAO, University of Washington, Seattle, WA With contributions from: Sonia Batten, Jennifer Boldt, Nick Bond, Anne Marie Eich, Ben Fissel, Shannon Fitzgerald, Sarah Gaichas, Jerry Hoff, Steve Kasperski, Carol Ladd, Ned Laman, Geoffrey Lang, Jean Lee, Jennifer Mondragon, John Olson,Ivonne Ortiz, Wayne Palsson, Heather Renner, Nora Rojek, Chris Rooper, Kim Sparks, Michelle St Martin, Jordan Watson, George A. Whitehouse, Sarah Wise, and Stephani Zador Reviewed by: The Plan Teams for the Groundfish Fisheries of the Bering Sea, Aleutian Islands, and Gulf of Alaska November 13, 2018 North Pacific Fishery Management Council 605 W. 4th Avenue, Suite 306 Anchorage, AK 99301 Aleutian Islands 2018 Report Card Region-wide The North Pacific Index (NPI) was strongly positive from fall 2017 into 2018 due to the relatively high sea level pressure in the region of the Aleutian Low, which was displaced to the northwest, over Siberia, and caused persistent warm winds from the southwest. Positive NPI is expected during La Ni~na,but its magnitude was greater than expected. The Aleutians Islands region experienced suppressed storminess through fall and winter 2017/2018 across the region. The Alaska Stream appears to have been relatively diffuse on the south side of the eastern Aleutian Islands. Although the sea surface temperatures cooled in 2018, relative to the 2014{2017 warm period, the overall temperature was still warm due to heat retention throughout the water column.
    [Show full text]
  • Review of the Draft Climate Science Special Report
    THE NATIONAL ACADEMIES PRESS This PDF is available at http://www.nap.edu/24712 SHARE Review of the Draft Climate Science Special Report DETAILS 132 pages | 8.5 x 11 | PAPERBACK ISBN 978-0-309-45664-7 | DOI: 10.17226/24712 CONTRIBUTORS GET THIS BOOK Committee to Review the Draft Climate Science Special Report; Board on Atmospheric Sciences and Climate; Division on Earth and Life Studies; National Academies of Sciences, Engineering, and FIND RELATED TITLES Medicine Visit the National Academies Press at NAP.edu and login or register to get: – Access to free PDF downloads of thousands of scientific reports – 10% off the price of print titles – Email or social media notifications of new titles related to your interests – Special offers and discounts Distribution, posting, or copying of this PDF is strictly prohibited without written permission of the National Academies Press. (Request Permission) Unless otherwise indicated, all materials in this PDF are copyrighted by the National Academy of Sciences. Copyright © National Academy of Sciences. All rights reserved. Review of the Draft Climate Science Special Report Committee to Review the Draft Climatee Science Special Report Board on Atmospheric Sciences and Climate Division on Earth and Life Studies A Report of Copyright © National Academy of Sciences. All rights reserved. Review of the Draft Climate Science Special Report THE NATIONAL ACADEMIES PRESS 500 Fifth Street, NW Washington, DC 20001 This study was supported by the National Aeronautics and Space Administration under award numbers NNH14CK78B and NNH14CK79D. Any opinions, findings, conclusions, or recommendations expressed in this publication do not necessarily reflect the views of any organization or agency that provided support for the project.
    [Show full text]
  • Northwesterly Surface Winds Over the Eastern North Pacific Ocean in Spring and Summer
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing Permalink https://escholarship.org/uc/item/62x1f76v Author Taylor, Stephen V. Publication Date 2006 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Northerly surface wind events over the eastern North Pacific Ocean: Spatial distribution, seasonality, atmospheric circulation, and forcing A Dissertation submitted in partial satisfaction of the requirement for the degree Doctor of Philosophy in Oceanography by Stephen V. Taylor Committee in charge: Professor Konstantine Georgakakos, Chair Professor Daniel Cayan, Co-Chair Professor Scott Ashford Professor Walter Munk Professor Joel Norris 2006 Copyright Stephen V. Taylor, 2006 All rights reserved. SIGNATURE PAGE The Dissertation of Stephen V. Taylor is approved, and it is acceptable in quality and form for publication on microfilm: ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Co-Chair ___________________________________________________________ Chair University of California, San Diego 2006 iii DEDICATION To all who maintain the interest and exert the effort to learn iv TABLE OF CONTENTS SIGNATURE
    [Show full text]
  • J16.1 Preliminary Assessment of Ascat Ocean Surface Vector Wind (Osvw) Retrievals at Noaa Ocean Prediction Center
    J16.1 PRELIMINARY ASSESSMENT OF ASCAT OCEAN SURFACE VECTOR WIND (OSVW) RETRIEVALS AT NOAA OCEAN PREDICTION CENTER Khalil. A. Ahmad* PSGS/NOAA/NESDIS/StAR, Camp Springs, MD Joseph Sienkiewicz NOAA/NWS/NCEP/OPC, Camp Springs, MD Zorana Jelenak, and Paul Chang NOAA/NESDIS/StAR, Camp Springs, MD 1. INTRODUCTION The National Oceanic and Atmospheric The SeaWinds scatterometer onboard Administration (NOAA) Ocean Prediction Center QuikSCAT satellite was launched into space by (OPC) is responsible for issuing marine weather the National Aeronautics and Space forecasts, wind warnings, and guidance in text and Administration (NASA) in June 1999. The graphical format for maritime users operating over SeaWinds scatterometer (henceforth, referred to the North Atlantic and North Pacific high seas, and as QuikSCAT) is a conical scanning, pencil beam the offshore waters of the continental United radar operating at a Ku-band microwave States. The OPC area of responsibility (AOR) frequency of 13.4 GHz that collects the extends from subtropics to arctic from 35° West to electromagnetic backscatter return from the wind 160° East. These waters include the busy trade roughened ocean surface at multiple antenna look routes between North America and both Europe angles to estimates the magnitude and direction of and Asia, the fishing grounds of Bering Sea, and the oceanic wind vector (Hoffman and Leidner, the cruising routes to Bermuda and Hawaii. 2005). The OSVW data derived from QuikSCAT has a nominal resolution of 25 km, and post The marine warnings issued by OPC are based processing techniques have resulted in a finer upon the Beaufort wind speed scale, and fall into resolution of 12.5 km.
    [Show full text]
  • Surface Flux Variability Over the North Pacific and North Atlantic Oceans
    NOVEMBER 1997 ALEXANDER AND SCOTT 2963 Surface Flux Variability over the North Paci®c and North Atlantic Oceans MICHAEL A. ALEXANDER AND JAMES D. SCOTT CIRES, University of Colorado, Boulder, Colorado (Manuscript received 22 January 1996, in ®nal form 9 May 1997) ABSTRACT Daily ®elds obtained from a 17-yr atmospheric GCM simulation are used to study the surface sensible and latent heat ¯ux variability and its relationship to the sea level pressure (SLP) ®eld. The ¯uxes are analyzed over the North Paci®c and Atlantic Oceans during winter. The leading mode of interannual SLP variability consists of a single center associated with the Aleutian low in the Paci®c, and a dipole pattern associated with the Icelandic low and Azores high in the Atlantic. The surface ¯ux anomalies are organized by the low-level atmospheric circulation associated with these modes in agreement with previous observational studies. The surface ¯ux variability on all of the timescales examined, including intraseasonal, interannual, 3±10 day, and 10±30 day, is maximized along the north and west edges of both oceans and between Japan and the date line at ;358N in the Paci®c. The intraseasonal variability is approximately 3±5 times larger than the interannual variability, with more than half of the total surface ¯ux variability occuring on timescales of less than 1 month. Surface ¯ux variability in the 3±10-day band is clearly associated with midlatitude synoptic storms. Composites indicate upward (downward) ¯ux anomalies that exceed |30 W m22| occur to the west (east) of storms, which move eastward across the oceans at 108±158 per day.
    [Show full text]
  • On the Summertime Strengthening of the Northern Hemisphere Pacific Sea-Level Pressure Anticyclone
    On the Summertime Strengthening of the Northern Hemisphere Pacific Sea-Level Pressure Anticyclone Sumant Nigam and Steven C. Chan Department of Atmospheric and Oceanic Science University of Maryland, College Park, MD 20742 (Submitted to the Journal of Climate on November 8, 2007; revised July 27, 2008) Corresponding author: Sumant Nigam, 3419 Computer & Space Sciences Bldg. University of Maryland, College Park, MD 20742-2425; [email protected] Abstract The study revisits the question posed by Hoskins (1996) on why the Northern Hemisphere Pacific sea-level pressure (SLP) anticyclone is strongest and maximally extended in summer when the Hadley Cell descent in the northern subtropics is the weakest. The paradoxical evolution is revisited because anticyclone build-up to the majestic summer structure is gradual, spread evenly over the preceding 4-6 months, and not just confined to the monsoon-onset period; interesting, as monsoons are posited to be the cause of the summer vigor of the anticyclone. Anticyclone build-up is moreover found focused in the extratropics; not subtropics, where SLP seasonality is shown to be much weaker; generating a related paradox in context of Hadley Cell’s striking seasonality. Showing this seasonality to arise from, and thus represent, remarkable descent variations in the Asian monsoon sector, but not over the central-eastern ocean basins, leads to paradox resolution. Evolution of other prominent anticyclones is analyzed to critique development mechanisms: Azores High evolves like the Pacific one, but without a monsoon to its immediate west. Mascarene High evolves differently, peaking in austral winter. Monsoons are not implicated in both cases. Diagnostic modeling of seasonal circulation development in the Pacific sector concludes this inquiry.
    [Show full text]
  • Toronto's Future Weather and Climate Driver Study
    TORONTO’S FUTURE WEATHER AND CLIMATE DRIVER STUDY Volume 1 - Overview Prepared For: The City of Toronto Prepared By: SENES Consultants Limited December 2011 TORONTO’S FUTURE WEATHER AND CLIMATE DRIVER STUDY Volume 1 - Overview Prepared for: The City of Toronto Prepared by: SENES Consultants Limited 121 Granton Drive, Unit 12 Richmond Hill, Ontario L4B 3N4 December 2011 Printed on Recycled Paper Containing Post-Consumer Fibre TORONTO’S FUTURE WEATHER AND CLIMATE DRIVER STUDY Volume 1 Prepared for: The City of Toronto Prepared by: SENES Consultants Limited 121 Granton Drive, Unit 12 Richmond Hill, Ontario L4B 3N4 ____________________ _____________________________ Kim Theobald, B.Sc. Zivorad Radonjic, B.Sc. Environmental Scientist Senior Weather and Air Quality Modeller ____________________ _____________________________ Bosko Telenta, M.Sc. Svetlana Music, B.Sc. Weather Modeller Weather Data Analyst ____________________ _____________________________ Doug Chambers, Ph.D. James W.S. Young, Ph.D., P.Eng., P.Met. Senior Vice President Senior Weather and Air Quality Specialist December 2011 TORONTO’S FUTURE WEATHER AND CLIMATE DRIVER STUDY – VOLUME 1 EXECUTIVE SUMMARY The Toronto Climate Drivers Study was conceived to help interpret the meaning of global and regional climate scale model predictions for the much smaller geographic area of the City of Toronto. The City of Toronto recognized that current climate descriptions of Canada and of southern Ontario do not adequately represent the weather that (1) Toronto currently experiences and (2) Toronto cannot rely solely on large scale global and regional climate model predictions to help adequately prepare the City for future "climate-driven" weather changes, and especially changes of weather extremes. Without the Great Lakes, Toronto would have an "extreme continental climate"; instead, Toronto has a "continental climate", one that is markedly modified by the Great Lakes and other physiographical features.
    [Show full text]
  • Chapman Conferences
    ABSTRACTS listed by name of presenter Alexander, M. Joan (between one day and one week apart). The stratopause temperature and height vary between observation nights on Mountain Wave Momentum Fluxes in the Southern scales of several kilometres and tens of Kelvin as a result of Hemisphere from Satellite Measurements planetary wave activity. The stratopause is also affected by Alexander, M. Joan1; Grimsdell, Alison1; Teitelbaum, Hector2 gravity-wave activity during the night, with the regular passage of inertia-gravity waves changing the stratopause 1. Colorado Research Associates Division, NWRA, Boulder, altitude by up to ~10km over the course of 18 hours. Gravity CO, USA wave dissipation above 40 km occurs during winter, while 2. LMD, Paris, France significant dissipation is only noted below the stratopause Accurate representation of stratospheric winds in the during autumn. Temporally filtered data with ground based Southern Hemisphere in climate models depends on the periods of 2 – 6 hours are examined in addition to the non- parameterization of gravity wave drag. Parameterization of filtered data, with similar seasonal cycles and short-term orographic wave drag is widely considered to be insufficient variability noted. We compare the seasonality of gravity-wave in these models, and additional drag from non-orographic energy with other high latitude sites and suggest that the waves is very important. Previous work has shown the main contribution to wave energy above Davis is from non- stratospheric circulation affects both the seasonal orographic sources. development of the ozone hole, and predicted changes in 21st century Southern Hemisphere climate. Recent Alexander, Simon observational evidence suggests that small islands in the The effect of orographic waves on Antarctic Polar Southern Ocean may be important sources of orographic Stratospheric Cloud (PSC) occurrence and wave drag that is currently missing in existing parameterizations.
    [Show full text]
  • Chapter 7 – Atmospheric Circulations (Pp
    Chapter 7 - Title Chapter 7 – Atmospheric Circulations (pp. 165-195) Contents • scales of motion and turbulence • local winds • the General Circulation of the atmosphere • ocean currents Wind Examples Fig. 7.1: Scales of atmospheric motion. Microscale → mesoscale → synoptic scale. Scales of Motion • Microscale – e.g. chimney – Short lived ‘eddies’, chaotic motion – Timescale: minutes • Mesoscale – e.g. local winds, thunderstorms – Timescale mins/hr/days • Synoptic scale – e.g. weather maps – Timescale: days to weeks • Planetary scale – Entire earth Scales of Motion Table 7.1: Scales of atmospheric motion Turbulence • Eddies : internal friction generated as laminar (smooth, steady) flow becomes irregular and turbulent • Most weather disturbances involve turbulence • 3 kinds: – Mechanical turbulence – you, buildings, etc. – Thermal turbulence – due to warm air rising and cold air sinking caused by surface heating – Clear Air Turbulence (CAT) - due to wind shear, i.e. change in wind speed and/or direction Mechanical Turbulence • Mechanical turbulence – due to flow over or around objects (mountains, buildings, etc.) Mechanical Turbulence: Wave Clouds • Flow over a mountain, generating: – Wave clouds – Rotors, bad for planes and gliders! Fig. 7.2: Mechanical turbulence - Air flowing past a mountain range creates eddies hazardous to flying. Thermal Turbulence • Thermal turbulence - essentially rising thermals of air generated by surface heating • Thermal turbulence is maximum during max surface heating - mid afternoon Questions 1. A pilot enters the weather service office and wants to know what time of the day she can expect to encounter the least turbulent winds at 760 m above central Kansas. If you were the weather forecaster, what would you tell her? 2.
    [Show full text]
  • The Lubbock Tornado: an Elevated Mixed Layer Case Study
    THE LUBBOCK TORNADO: AN ELEVATED MIXED LAYER CASE STUDY by TERRANCE JAMES CLARK, B.S. A THESIS IN ATMOSPHERIC SCIENCE Submitted to the Graduate Faculty of Texas Tech University in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Approved Accepted May, 1988 f\t 1o6 n inr lOo.S ACKNOWLEDGMENTS Cop ^ I wish to extend my sincere thanks to Dr. Richard E. Peterson for his encouragements and understanding during the preparation of this thesis. I would also like to thank Dr. Donald R. Haragan and Dr. Chia Bo Chang for their assistance and advice during the course of this work. Everyone's support throughout this endeavor made the final difference. Both Dr. Peterson's and Dr. Ed Rappaport's hospitality during my final visits will not be forgotten. My sincere thanks go to the United States Air Force for their financial support through the Air Force Institute of Technology and Environmental Technical Application Center. A special thanks goes to Glenna Cilento for her assistance typing this thesis. Finally, a special thanks goes to my wife Terry and children, Jennifer, Christina, Andrea and Matthew, for their understanding and support during the long hours I spent closed-in writing text and drawing figures. Also, my mother Beryl Clark and ten brothers and sisters share in keeping my determination directed toward finishing this project. Without this support, I could never have reached this educational goal. 11 TABLE OF CONTENTS Page ACKNOWLEDGMENTS ii ABSTRACT v LIST OF FIGURES vii CHAPTER I. INTRODUCTION 1 II. DATA SOURCES AND ANALYSIS TECHNIQUE 4 Data Sources 4 Analysis Technique 5 III.
    [Show full text]