IGES/PDES Organization (IPO) and Its Related Activities

Total Page:16

File Type:pdf, Size:1020Kb

IGES/PDES Organization (IPO) and Its Related Activities Copyright PDF Help Cover Page Contents Figures Tables Index US PRO Initial Graphics Exchange Specification 5.3 The U.S. Product Data Association (US PRO) was a nonprofit membership organization established by industry in 1992 and active through December 31, 2006. US PRO provided the management functions for the IGES/PDES Organization (IPO) and its related activities. US PRO's primary activities included hosting the ISO/IPO standards development meetings held in the U.S. each year, support for the U.S. TAG as required to maintain accreditation with ANSI, publication and distribution of the standards documents developed and approved as a result of these activities, as well as education and training, marketing, and communications efforts. These activities served both U.S. industry and government agencies by providing a national forum for participation from all interested parties from industry, government, and academia. The US PRO association helped remove barriers that inhibited the exchange of product data and its flow across the supply chain linked to product design, manufacture, and support. Advancement of Product Data Exchange technology is dramatically improving U.S. and global competitiveness. Participation in US PRO ensured that critical requirements for member businesses and industries were addressed in order to meet their Product Data Exchange needs. Copyright PDF Help Cover Page Contents Figures Tables Index Copyright 1997, US PRO All Rights Reserved Quick PDF Toolbar Tutorial • This brings you back when jumping to hypertext link. You can click several times for previous views. Actual size of the Last page page (100% zoom) Next page Full page within the Window Set width of page to Previous page that of the Window First page Find a word or phrase in the document Zoom For this Document “Blue” means hypertext. Click on the blue item and go to that Section, Figure, Type, etc. Click on this item and enter PDF page Click on this number (not IGES item and enter page number) zoom factor Copyrightã 1997, MerAl Productions Formerly an ANSI Standard September 23, 1996 - September 2006 IGES Formerly ANS US PRO/IPO-100-1996 Initial Graphics Exchange Specification IGES 5.3 IGES/PDES Organization US PRO U.S. Product Data Association Copyright 1996, All Rights Reserved This standard was developed under procedures accredited as meeting the criteria for American National Standards. The committee that approved the standard was balanced to assure that individuals from competent and concerned interests have had an opportunity to participate. The proposed standard was made available for public review and comment which provided an opportunity for additional public input from industry, academia, regulatory agencies and the public-at-large. US PRO makes no warranty of any kind with regard to this document or the procedures or standards specified herein, including, but not limited to, the implied warranties of merchantability or fitness for a particular purpose. While every precaution has been taken in preparation, publication and distribution of this document, US PRO shall not be liable for errors or omissions contained herein or for direct, indirect, special, incidental or consequential damages in connection with the furnishing or use of this document or the procedures or standards described herein. US PRO does not approve, rate, or endorse any item, construction, proprietary device, or activity. US PRO does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable Letters Patent, nor assume any such liability. Users of a standard are expressly advised that determination of the validity of any such patent rights, and the risk of infringement of such rights, is entirely their own responsibility. Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry endorsement of this standard. Published by U.S. Product Data Association Trident Research Center, Suite 204, 5300 International Blvd., N. Charleston, SC 29418 Copyright 1996 by the IGES/PDES Organization All Rights Reserved Printed in the United States of America US PRO U.S. Product Data Association Trident Research Center, Suite 204 5300 International Blvd. N. Charleston, SC 29418 An American National Standard from 1996 through 2006 Initial Graphics Exchange Specification Formerly ANS US PRO/IPO-100-1996 IGES Technical Editor P. R. Kennicott Sandia National Laboratories Albuquerque, NM IGES Project Manager Gregory Morea General Dynamics Electric Boat Division Groton, CT IGES Deputy Project Manager Ed Reid Caterpillar Inc. Peoria, IL IGES Change Control Secretary Curtis Parks National Institute of Standards and Technology Gaithersburg, MD IGES Configuration Manager Gaylen Rinaudot National Institute of Standards and Technology Gaithersburg, MD IGES Figure Editor Dennette A. Harrod Jr. WizWorx Concord, MA Chairman, William B. Gruttke IGES/PDES Organization National Institute of Standards and Technology Gaithersburg, MD U.S. Product Data Association Trident Research Center, Suite 204 N. Charleston, SC 29418 September 23, 1996 Officers and Committees of the IGES/PDES Organization February 8, 1995 Officers Chair Bill Gruttke Deputy Chair Mary Mitchell IGES Project Manager Greg Morea Deputy IGES Project Manager Ed Reid PDES Project Manager Haidee Halvorson Testing Project Manager Gary Conkol Deputy Testing Project Manager Alan Peltzman U.S. TAG to ISO/TC184/SC4 Dick Justice Associated Staff Executive Assistant Ellen Trager Secretary Cremona Randall Administrative Coordinator, NCGA Nancy Flower IGES Technical Editor Philip Kennicott IGES Change Control Secretary Curt Parks IGES Configuration Manager Gaylen Rinaudot IGES Ballot Coordinator Ellen Trager IPO Communications Program Dave Mattei IPO Education Program Dave Sanford IPO Editor Joan Wellington Special Interest Groups CALS/IGES Lisa Deeds Ben Kassel, deputy CALS/PDES Wey Chang Configuration Management Haidee Halvorson Process Plant Mark Palmer Software Products Robert M. Wessely (acting) Steering Committee Chair Frank Tidaback Vice Chair Dick Wandmacher Secretary Dick Justice Treasurer S. Greg Hugh ©US PRO 1996. Copying or reprinting not allowed without permission. ii Technical Committee Chairs Application Protocol Validation Methodology Joel Peterson Ben Kassell, deputy Architecture, Engineering & Construction Burt Gischner, deputy Composites Glen Ziolko Conformance & Verification Testing Methodologies Tom Phelps Drafting Linas Polikaitis (STEP APs) Ed Reid, deputy (IGES) Electrical Applications Curt Parks, deputy (IGES) (acting) Finite Element Analysis Keith Hunten Geometry Ed Clapp Noel Christensen, deputy Implementation Specifications Dave Price (acting) Implementations Bill Turcotte co-chair George Baker co-chair Integration Yuhwei Yang Interoperability Accept. Testing Methodology George Elwood Gary Conkol, deputy Manufacturing Technology Greg Paul Larry Parker, deputy Materials Joe Carpenter Mechanical Product Definition Bill Cain PDES Development Methods Phil Kennicott co-chair Product Structure and Life Cycle Support Rick Bsharah co-chair Chuck Amaral co-chair Shirley Goodman, deputy Qualification & Validation Pete Lazo Sheet Metal Mike Strub, deputy Standard Parts Patrick Rourke, deputy Technical Publications Yuri Rubinsky (acting) ©USPRO 1996. Copying or reprinting not allowed without permission. iii Members of the IGES/PDES Organization Members of the IGES/PDES Organization Amaral, Chuck Rockwell International Corp Anderson, Bill D SCRA Anderson, John R US Army Research Laboratory Baker, George W International TechneGroup Inc Barnard Feeney, Allison NIST Basham, Dave Boeing Co Benigni, Daniel R NIST CSL Borchert, Cliff Eastman Kodak Co Bradley, Jeff CACI Inc Bringuel, Martin Hewlett Packard Co Brown, David Auto-trol Technology Corp Brubaker, Craig Newport News Shipbuilding Bsharah, Rick Rockwell Aerospace NAAD Cain, William D Martin Marietta Energy Systems Carpenter, Joseph A NIST Cederman, Charles General Motors Chang, Wey Tyng Accurate Information Systems Christensen, Noel C Allied Signal Inc Clapp, Edward Autodesk Inc Clark, Stephen NIST Collins, Michael F Control Data Systems Inc Conkol, Gary K CAMP ECRC Conroy, Bill NIST/Electronic Data Systems Cook, Jeff Texas Instruments Inc Corley, Jack SCRA Craig, Diane L PDIT Crusey, Jesse L NIST Danner, William F NIST Deeds, Lisa V David Taylor Research Center Demasek, Frank W General Motors DePauw, J Spencer Caterpillar Inc Durnin, Marc W Lockheed Aeronautical Systems Co Elwood, George Air Force CALS Testbed Fleig, Gottlieb NIST/NIPDE Fletcher, Rob RLF Enterprises Freeman Jr, William B SCRA Freund, Kevin D Appleton Co Inc Ganus, Floyd O Vought Aircraft Co Gilbert, Mitch Grumman Data Systems Goodman, Shirley A Naval Surface Warfare Center Goosen, Ted Lockheed Fort Worth Co / PDES Inc Graves, Gerald R SCRA Grout, J S (Steve) Sematech Gruttke, William B Northrop Grumman Corp ©USPRO 1996. Copying or reprinting not allowed without permission. iv Members of the IGES/PDES Organization Halvorson, Haidee Auto-trol Technology Corp Hardwick, Martin RPI/STEP Tools Inc Harrod, Dennette Wiz Worx Hazzard, Lon R Grumman Data Systems Heiser, John E JEH Consulting Heller, Mitchell H Raytheon Co Hodges, John International TechneGroup Inc Home, Lance NIST Humphrey, Chris NIST Hunten, Keith Lockheed Fort Worth Co Johnson, Thomas G
Recommended publications
  • Pro/INTERFACE Help Topic Collection
    ® Pro/ENGINEER Wildfire™ 2.0 Pro/INTERFACE™ Help Topic Collection Parametric Technology Corporation Copyright © 2004 Parametric Technology Corporation. All Rights Reserved. User and training documentation from Parametric Technology Corporation (PTC) is subject to the copyright laws of the United States and other countries and is provided under a license agreement that restricts copying, disclosure, and use of such documentation. PTC hereby grants to the licensed user the right to make copies in printed form of this documentation if provided on software media, but only for internal/personal use and in accordance with the license agreement under which the applicable software is licensed. Any copy made shall include the PTC copyright notice and any other proprietary notice provided by PTC. This documentation may not be disclosed, transferred, modified, or reduced to any form, including electronic media, or transmitted or made publicly available by any means without the prior written consent of PTC and no authorization is granted to make copies for such purposes. Information described herein is furnished for general information only, is subject to change without notice, and should not be construed as a warranty or commitment by PTC. PTC assumes no responsibility or liability for any errors or inaccuracies that may appear in this document. The software described in this document is provided under written license agreement, contains valuable trade secrets and proprietary information, and is protected by the copyright laws of the United States and other countries. It may not be copied or distributed in any form or medium, disclosed to third parties, or used in any manner not provided for in the software licenses agreement except with written prior approval from PTC.
    [Show full text]
  • CAD Data Exchange
    CCAADD DDaattaa EExxcchhaannggee 2255..335533 LLeeccttuurree SSeerriieess PPrrooff.. GGaarryy WWaanngg Department of Mechanical and Manufacturing Engineering The University of Manitoba 1 BBaacckkggrroouunndd Fundamental incompatibilities among entity representations Complexity of CAD/CAM systems CAD interoperability issues and problems cost automotive companies a combined $1 billion per year (Brunnermeier & Martin, 1999). 2 BBaacckkggrroouunndd (cont’d) Intra-company CAD interoperability Concurrent engineering and lean manufacturing philosophies focus on the reduction of manufacturing costs through the outsourcing of components (National Research Council, 2000). 3 IInnffoorrmmaattiioonn ttoo bbee EExxcchhaannggeedd Shape data: both geometric and topological information Non-shape data: graphics data Design data: mass property and finite element mesh data Manufacturing data: NC tool paths, tolerancing, process planning, tool design, and bill of materials (BOM). 4 IInntteerrooppeerraabbiilliittyy MMeetthhooddss Standardized CAD package Standardized Modeling Kernel Point-to-Point Translation: e.g. a Pro/ENGINEER model to a CATIA model. Neutral CAD Format: e.g. IGES (Shape-Based Format ) and STEP (Product Data-Based Format) Object-Linking Technology: Use Windows Object Linking and Embedding (OLE) technology to share model data 5 IInntteerrooppeerraabbiilliittyy MMeetthhooddss (Ibrahim Zeid, 1990) 6 CCAADD MMooddeelliinngg KKeerrnneellss Company/Application ACIS Parasolid Proprietary Autodesk/AutoCAD X CADKey Corp/CADKEY X Dassault Systems/CATIA v5 X IMS/TurboCAD X Parametric Technology Corp. / X Pro/ENGINEER SDRC / I-DEAS X SolidWorks Corp. / SolidWorks X Think3 / Thinkdesign X UGS / Unigraphics X Unigraphics / Solid Edge X Visionary Design System / IronCAD X X (Dr. David Kelly 2003) 7 CCAADD MMooddeelliinngg KKeerrnneellss (cond’t) Parent Subsidiary Modeling Product Company Kernel Parametric Granite v2 (B- Pro/ENGINEER Technology rep based) Corporation (PTC) (www.ptc.com) Dassault Proprietary CATIA v5 Systems SolidWorks Corp.
    [Show full text]
  • Procedures for the Nist Iges Validation Test Service
    Initial Graphics Exchange Specification (IGES): J Procedures for the NIST IGES ^ Validation Test Service Jacki A. Schneider Lynne S. Rosenthal U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Graphics Software Group Gaithersburg, MD 20899 NIST i i Initial Graphics Exchange Specification (iGES): Procedures for the NiST iGES Validation Test Service Jacki A. Schneider Lynne S. Rosenthal U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Computer Systems Laboratory Graphics Software Group Gaithersburg, MD 20899 December 1994 U.S. DEPARTMENT OF COMMERCE Ronald H. Brown, Secretary TECHNOLOGY ADMINISTRATION Mary L. Good, Under Secretary for Technology NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director tf i I I I TABLE OF CONTENTS 1 Introduction 1 1.1 Purpose 1 1.2 The IGES standard 1 1.3 Scope of validation 2 1.4 Definitions 4 2 General procedures 7 2.1 Validation by testing 7 2.1.1 Overview 7 2.1.2 Validation Test Software 7 2.1.3 Renewal of a Certificate of Validation 8 2.1.4 Validation Summary Report (VSR) 8 2.2 Registration 8 2.2.1 Overview 8 2.2.2 Eligibility for registration 9 2.3 Miscellaneous 10 2.3.1 Pricing 10 2.3.2 Cancellation 10 2.3.3 Disputed and withdrawn tests 10 2.3.4 Validated Products List (VPL) 10 2.3.5 Documentation 11 2.3.6 Publication 11 3 Preprocessor testing program 13 3.1 Objective 13 3.2 Testing steps 13 3.3 Pricing 17 3.4 Registration of environments 18 4 Postprocessor testing program 19 4.1 Objective 19 4.2 Testing steps 19 4.3 Pricing 22 4.4 Registration of environments 22 APPENDIX A 25 iii IV ABSTRACT In 1989, the American Society of Mechanical Engineers (ASME) and the American National Standards Institute (ANSI) adopted the Initial Graphics Exchange Specification (IGES) Version 4.0 as a national standard (ASME/ANSI Y14.26M - 1989, Digital Representation for Communication of Product Definition Data).
    [Show full text]
  • Heartwood Smartscopesm Asset Collection Guidelines
    Heartwood SmartScopeSM Asset Collection Guidelines Congratulations! You are joining the ranks of some visionary organizations by deploying 3D Interactive Training – the true gold standard in learning. Our successful SmartScopeSM guidelines enable our customers to collect the data critical for the estimating and development process. Guidelines • Guideline 1 – Assets for Scope Estimation of Training Course. a. Video or images of equipment b. A description of the procedure in the lesson/course. If estimating multiple lessons/courses, send 3-4 packages of assets for the average lesson/course. Choose one or more of the following: 1. Current course materials used in classroom 2. Video of procedure performed on the equipment 3. Technical manual (indicate which pages are relevant) 4. Storyboard of course/lesson or procedure • Guideline 2 – Assets for Development of Training Course. Typically these are more detailed; we can provide best practices on how to assemble the assets. a. Required: i. Video and/or images of equipment ii. Current course materials used in classroom iii. Technical manual (indicate which pages are relevant) b. Desired: i. 3D models or 2D drawings of equipment, see page 2 for a list of compatible formats ii. Video of procedure performed on the equipment iii. Storyboard of course/lesson or procedure This is not an exhaustive list for all training courses. A very unique training course may require more data and some additional assets may be ‘required or desired’ to save time and cost. Ask us about our SmartStartSM service to make the asset collection process easier for you. H E A R T W O O D 2121 South El Camino Real, Suite 100 San Mateo, CA 94403-1859 PH: 888.781.0274 FAX: 877.536.4496 www.hwd3d.com Compatible file formats Preferred non-CAD format • Autodesk (*.fbx) • gw::OBJ-Importer (*.obj) Preferred CAD format • STEP (*.stp, *.step) • IGES (*.ige, *.iges, *.igs) Other compatible file formats • 3D Studio Mesh (*.3ds, *.prj) • Adobe Illustrator (*.ai) • Autodesk Packet File (*.apf) • ProEASM (*.asm) • Catia V5 (*.catpart, *.cgr, *.
    [Show full text]
  • Freecad a Manual.Pdf
    Table of Contents Introduction 1.1 Discovering FreeCAD 1.2 What is FreeCAD? 1.2.1 Installing 1.2.2 Installing on Windows 1.2.2.1 Installing on Linux 1.2.2.2 Installing on Mac OS 1.2.2.3 Uninstalling 1.2.2.4 Setting basic preferences 1.2.2.5 Installing additional content 1.2.2.6 The FreeCAD interface 1.2.3 Workbenches 1.2.3.1 The interface 1.2.3.2 Customizing the interface 1.2.3.3 Navigating in the 3D view 1.2.4 A word about the 3D space 1.2.4.1 The FreeCAD 3D view 1.2.4.2 Selecting objects 1.2.4.3 The FreeCAD document 1.2.5 Parametric objects 1.2.6 Import and export to other filetypes 1.2.7 Working with FreeCAD 1.3 All workbenches at a glance 1.3.1 Traditional modeling, the CSG way 1.3.2 Traditional 2D drafting 1.3.3 Modeling for product design 1.3.4 Preparing models for 3D printing 1.3.5 Exporting to slicers 1.3.5.1 Converting objects to meshes 1.3.5.2 Using Slic3r 1.3.5.3 2 Using the Cura addon 1.3.5.4 Generating G-code 1.3.5.5 Generating 2D drawings 1.3.6 BIM modeling 1.3.7 Using spreadsheets 1.3.8 Reading properties 1.3.8.1 Writing properties 1.3.8.2 Creating FEM analyses 1.3.9 Creating renderings 1.3.10 Python scripting 1.4 A gentle introduction 1.4.1 Writing Python code 1.4.1.1 Manipulating FreeCAD objects 1.4.1.2 Vectors and Placements 1.4.1.3 Creating and manipulating geometry 1.4.2 Creating parametric objects 1.4.3 Creating interface tools 1.4.4 The community 1.5 3 Introduction A FreeCAD manual Note: The manual has been moved to the official FreeCAD wiki which is now its new home.
    [Show full text]
  • Supported File Formats CAD FORMATS
    Supported file formats CAD FORMATS With the Autodesk Netfabb CAD import function, you can convert original CAD data directly into 3D mesh files without the need for additional, expensive software tools. Powerful mesh analysis and repair scripts generate watertight files, closing holes, eliminate self-intersections and more; while mesh triangulation helps improve the resolution of your printed parts. CAD import is supported for Windows. CAD format Description Import Export 3DM Rhino ✓ CATPART CATIA V5 ✓ CGR FBX FBX (Autodesk Filmbox) ✓ G PTC Granite (Creo) ✓ IGES Initial Graphics Exchange Specification ✓ IGS JT Jupiter File Format ✓ MODEL CATIA V4 ✓ NEU PRT Creo Parametric / ProE ✓ XPR SLDPRT Solidworks ✓ STEP Standard for the Exchange of Product Model Data ✓ STP PRT NX (Siemens) ✓ SAT ACIS ✓ SKP SketchUp ✓ SMT Autodesk ShapeManager Format - ASM SMT ✓ SMB WIRE ALIAS ✓ X_B Parasolid ✓ X_T 3D FORMATS Netfabb supports the following 3D formats: Colors & Textures 3D format Description Import Export Import Export 3DS Autodesk 3D Modeling Format ✓ ✓ ✓ 3MF 3D Manufacturing Format ✓ ✓ ✓ ✓ AMF Additive Manufacturing File ✓ ✓ BINVOX Binary Voxel Format ✓ ✓ GTS Gnu Tesselated Surfaces ✓ ✓ NCM Autodesk Netfabb Compressed Mesh ✓ ✓ ✓ ✓ OBJ Wave Front OBJ ✓ ✓ ✓ ✓ PLY Stanford Polygon ✓ ✓ ✓ ✓ STL Surface Tesselation Language ✓ ✓ STL (ASCII) Surface Tesselation Language ✓ ✓ STL (color) Surface Tesselation Language ✓ ✓ ✓ ✓ VRML Virtual Reality Modeling Language ✓ ✓ ✓ ✓ WRL X3D Extensible 3D-ASCII ✓ ✓ ✓ ✓ X3DB Extensible 3D-Binary ✓ ✓ ✓ ✓ ZPR Z-Print ✓ ✓ ✓
    [Show full text]
  • Chapter 12 Computervision
    Chapter 12 Computervision According to a 1994 Wall Street Journal article, Philippe Villers decided to start a technology company shortly after listening to the minister at Concord, Massachusetts’ First Parish Church extol Martin Luther King’s accomplishments a few days after he was murdered in April 1968. Villers felt he needed to do something meaningful with his life and that there were two options – either become a social activist or start a company, make a lot of money and then use that money to change the world. Luckily for what eventually became the CAD/CAM industry, he chose the second path.1 Villers was technically well qualified to start Computervision, Inc. or CV is it was generally known. Born in Paris, France, he came to this country via Canada in the early 1940s to escape the Nazis. Villers had an undergraduate liberal arts degree from Harvard and a masters degree in mechanical engineering from MIT. He worked for several years in General Electric’s management training program followed by stints at Perkin Elmer, Barnes Engineering and the Link Division of Singer-General Precision with increasing levels of project management responsibility. At the time he decided to establish Computervision, Villers was Manager of Advanced Products at Concord Control in Boston. Villers spent much of his spare time in 1968 meeting with a group of business and technical associates including Steve Coons and Nicholas Negroponte (founder of the MIT Media Lab). Realizing that it takes more than good technical ideas to build a successful company, Villers decided to find a partner with more business experience to help jump start the enterprise.
    [Show full text]
  • An Overview of 3D Data Content, File Formats and Viewers
    Technical Report: isda08-002 Image Spatial Data Analysis Group National Center for Supercomputing Applications 1205 W Clark, Urbana, IL 61801 An Overview of 3D Data Content, File Formats and Viewers Kenton McHenry and Peter Bajcsy National Center for Supercomputing Applications University of Illinois at Urbana-Champaign, Urbana, IL {mchenry,pbajcsy}@ncsa.uiuc.edu October 31, 2008 Abstract This report presents an overview of 3D data content, 3D file formats and 3D viewers. It attempts to enumerate the past and current file formats used for storing 3D data and several software packages for viewing 3D data. The report also provides more specific details on a subset of file formats, as well as several pointers to existing 3D data sets. This overview serves as a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D data files. 1 Introduction 3D data represents information in several applications, such as medicine, structural engineering, the automobile industry, and architecture, the military, cultural heritage, and so on [6]. There is a gamut of problems related to 3D data acquisition, representation, storage, retrieval, comparison and rendering due to the lack of standard definitions of 3D data content, data structures in memory and file formats on disk, as well as rendering implementations. We performed an overview of 3D data content, file formats and viewers in order to build a foundation for understanding the information loss introduced by 3D file format conversions with many of the software packages designed for viewing and converting 3D files.
    [Show full text]
  • Table 1. Visualization Software Features
    Table 1. Visualization Software Features INFORMATIX COMPANY ALIAS ALIAS AUTODESK AUTO•DES•SYS SOFTWARE INTERNATIONAL Product ALIAS IMAGESTUDIO STUDIOTOOLS 11 AUTODESK VIZ 2005 FORM.Z 4.5 PIRANESI 3 E-mail [email protected] [email protected] Use website form [email protected] [email protected] Web site www.alias.com www.alias.com www.autodesk.com www.formz.com www.informatix.co.uk Price $3,999 Starts at $7,500 $1,995 $1,495 $750 Operating systems Supported Windows XP/2000 Professional Windows XP/2000 Professional, SGI IRIX Windows 2000/XP Windows 98/NT/XP/ME/2000, Macintosh 9/X Windows 98 and later, Macintosh OS X Reviewed Windows XP Professional SP1 Windows XP Professional SP1 Windows XP Professional SP1 Windows XP Professional SP1 Windows XP Professional SP1 Modeling None Yes Yes Solid and Surface N/A NURBS Imports NURBS models Yes Yes Yes N/A Refraction Yes Yes Yes Yes N/A Reflection Yes Yes Yes Yes By painting with a generated texture Anti-aliasing Yes Yes Yes Yes N/A Rendering methods Radiosity Yes, Final Gather No Yes, and global illumination/caustics Yes N/A* Ray-tracing Yes Yes Yes Yes N/A* Shade/render (Gouraud) Yes Yes Yes Yes N/A* Animations No† Yes Yes Walkthrough, Quicktime VR N/A Panoramas Yes Yes Yes Yes Can paint cubic panorams and create .MOV files Base file formats AIS Alias StudioTools .wire format MAX FMZ EPX, EPP (panoramas) Import file formats StudioTools (.WIRE), IGES, Maya IGES, STEP, DXF, PTC Granite, CATIA V4/V5, 3DS, AI, XML, DEM, DWG, DXF, .FBX, 3DGF, 3DMF, 3DS, Art*lantis, BMP, DWG EPX, EPP§; Vedute: converts DXF, 3DS; for plans UGS, VDAFS, VDAIS, JAMA-IS, DES, OBJ, EPS IGES, LS, .STL, VWRL, Inventor (installed) DXF, EPS, FACT, HPGL, IGES, AI, JPEG, Light- and elevations; JPG, PNG, TIF, raster formats AI, Inventor, ASCII Scape, Lightwave, TIF, MetaFo;e.
    [Show full text]
  • High-Tech Giants
    spring08 The Magazine for University College and the School of Professional and Continuing Studies Alumni and Friends high-tech GIantS Alumni PersPectives on working for technology Pioneers: Digital EquipmEnt Corporation, primE ComputEr, anD Wang laboratoriEs >BoB Bozeman [uC ’78] alumni Travel Program: TUSCANY ocToBeR 22–30, 2008 trip highlights • spend seven nights in the ancient etruscan city of cortona, wonderfully situated in the heart of tuscany and the inspiration for the book Under the Tuscan Sun by frances mayes. • explore the tranquility of Assis and the graceful gothic ambience in siena. • marvel at the architectural wonders of renaissance florence. • experience the prodigious medieval history in Perugia, the well-preserved jewel of umbria. • learn the essence of tuscan cooking—the incomparable blend of olive oil, sun-ripened tomatoes, and herbs—at a demonstration by the chef of the award-winning restaurant tonino. space is limited so reserve your spot today! For more Information: contact Paula vogel at [email protected] or 617.373.2727. Registration: register online at http://nortea.ahitravel.com/ or call the northeastern university travel Program at 1.800.323.7373. the alumni travel program is sponsored by the school of Professional and continuing studies. emergency medical professionals conference upcoming JUne 14 BurlingTon Campus alumnievents Conference for EMt and Paramedics. lunch with dean hopey JUne 18 Cape Cod, MA Enjoy lunch with fellow alumni and the School of Professional and Continuing Studies is committed Dean Hopey on the Cape. to making connections with alumni and also connecting alumni to students. With that in mind, we have created social, networking, preparing for college and educational events for alumni.
    [Show full text]
  • 2005 3D Viewers Roundup Product Reference Guide
    2005 3D Viewers Roundup Product Reference Guide June 2005 As product development becomes increasingly more globalized, more and more players— both inside and outside of design engineering departments—are involved in the product development process. For organizations both large and small, 3D viewing technology is taking on more importance as it enables collaboration within and without the company by letting users view, markup, and print 3D CAD files without the originating CAD software. But how do you know which 3D viewing solution is best for your organization? With the goal of helping our community members address this question, we bring you the 3D Viewers Roundup. The 2005 3D Viewers Roundup consists of feature articles contributed by industry experts and this Product Reference Guide, which lists specifications for products that provide a range of viewing, markup, and collaboration capabilities in CAD neutral and cross-CAD file formats. See the associated articles under Community Features, “A Higher Level View of Enterprise Data Assets” and “Product Visualization across the Extended Enterprise.” These articles provide differing perspectives on selecting and implementing 3D Viewer technologies for collaboration on product development throughout the organization and beyond. The data herein was compiled using submissions from the listed companies. Note that it is not an exhaustive list of companies, nor does it include all the products of each company. However, we have attempted to include all the major software solutions. ConnectPress Ltd. cannot guarantee the accuracy of this data; we suggest you contact specific companies for further information, particularly to confirm technical details regarding their products. Space does not permit us to list all file formats supported, nor all versions of 3D CAD supported.
    [Show full text]
  • Classification Version 1.0.5 Status: PUBLISHED Issued 2007-11-09
    Global Digital Format Registry (GDFR) Classification Version 1.0.5 Status: PUBLISHED Issued 2007-11-09 1 Introduction The Global Digital Format Registry (GDFR) provides sustainable services to store, discover, and deliver important representation information about digital formats. A format is the set of syntactic and semantic rules for serializing an abstract information model, an expression of exchangeable knowledge. The format of a digital object must be known in order to interpret the information content of that object properly. Without knowledge of its format, a digital object is merely a collection of undifferentiated bits. Thus, format typing is fundamental to the effective use, interchange, and preservation of all digitally-encoded content. Classification is an important component of the format representation information managed by the GDFR network. 2 Classification The GDFR uses a system of faceted classification. Each format registered in the GDFR may be associated with a set of classification entries. Each entry is specified in terms of a facet type (or name) and value. Entries are represented notationally in the case-insensitive form: type:value. The defined facets are: genre role composition form constraint basis domain transform The genre and role facets are required in a GDFR classification; all others are optional. EXAMPLE TIFF (Tagged image file format) genre:still-image role:family composition:container-wrapper form:binary EXAMPLE TIFF 6.0 genre:still-image role:file-format composition:container-wrapper form:binary basis:sampled
    [Show full text]