Profinite Algebras and Affine Boundedness
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stone Coalgebras
Electronic Notes in Theoretical Computer Science 82 No. 1 (2003) URL: http://www.elsevier.nl/locate/entcs/volume82.html 21 pages Stone Coalgebras Clemens Kupke 1 Alexander Kurz 2 Yde Venema 3 Abstract In this paper we argue that the category of Stone spaces forms an interesting base category for coalgebras, in particular, if one considers the Vietoris functor as an analogue to the power set functor. We prove that the so-called descriptive general frames, which play a fundamental role in the semantics of modal logics, can be seen as Stone coalgebras in a natural way. This yields a duality between the category of modal algebras and that of coalgebras over the Vietoris functor. Building on this idea, we introduce the notion of a Vietoris polynomial functor over the category of Stone spaces. For each such functor T we establish a link between the category of T -sorted Boolean algebras with operators and the category of Stone coalgebras over T . Applications include a general theorem providing final coalgebras in the category of T -coalgebras. Key words: coalgebra, Stone spaces, Vietoris topology, modal logic, descriptive general frames, Kripke polynomial functors 1 Introduction Technically, every coalgebra is based on a carrier which itself is an object in the so-called base category. Most of the literature on coalgebras either focuses on Set as the base category, or takes a very general perspective, allowing arbitrary base categories, possibly restricted by some constraints. The aim of this paper is to argue that, besides Set, the category Stone of Stone spaces is of relevance as a base category. -
Arxiv:2101.00942V2 [Math.CT] 31 May 2021 01Ascainfrcmuigmachinery
Reiterman’s Theorem on Finite Algebras for a Monad JIŘÍ ADÁMEK∗, Czech Technical University in Prague, Czech Recublic, and Technische Universität Braun- schweig, Germany LIANG-TING CHEN, Academia Sinica, Taiwan STEFAN MILIUS†, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany HENNING URBAT‡, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany Profinite equations are an indispensable tool for the algebraic classification of formal languages. Reiterman’s theorem states that they precisely specify pseudovarieties, i.e. classes of finite algebras closed under finite products, subalgebras and quotients. In this paper, Reiterman’s theorem is generalized to finite Eilenberg- Moore algebras for a monad T on a category D: we prove that a class of finite T-algebras is a pseudovariety iff it is presentable by profinite equations. As a key technical tool, we introduce the concept of a profinite monad T associated to the monad T, which gives a categorical view of the construction of the space of profinite terms. b CCS Concepts: • Theory of computation → Algebraic language theory. Additional Key Words and Phrases: Monad, Pseudovariety, Profinite Algebras ACM Reference Format: Jiří Adámek, Liang-Ting Chen, Stefan Milius, and Henning Urbat. 2021. Reiterman’s Theorem on Finite Al- gebras for a Monad. 1, 1 (June 2021), 49 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION One of the main principles of both mathematics and computer science is the specification of struc- tures in terms of equational properties. The first systematic study of equations as mathematical objects was pursued by Birkhoff [7] who proved that a class of algebraic structures over a finitary signature Σ can be specified by equations between Σ-terms if and only if it is closed under quo- tient algebras (a.k.a. -
Topological Vector Spaces and Algebras
Joseph Muscat 2015 1 Topological Vector Spaces and Algebras [email protected] 1 June 2016 1 Topological Vector Spaces over R or C Recall that a topological vector space is a vector space with a T0 topology such that addition and the field action are continuous. When the field is F := R or C, the field action is called scalar multiplication. Examples: A N • R , such as sequences R , with pointwise convergence. p • Sequence spaces ℓ (real or complex) with topology generated by Br = (a ): p a p < r , where p> 0. { n n | n| } p p p p • LebesgueP spaces L (A) with Br = f : A F, measurable, f < r (p> 0). { → | | } R p • Products and quotients by closed subspaces are again topological vector spaces. If π : Y X are linear maps, then the vector space Y with the ini- i → i tial topology is a topological vector space, which is T0 when the πi are collectively 1-1. The set of (continuous linear) morphisms is denoted by B(X, Y ). The mor- phisms B(X, F) are called ‘functionals’. +, , Finitely- Locally Bounded First ∗ → Generated Separable countable Top. Vec. Spaces ///// Lp 0 <p< 1 ℓp[0, 1] (ℓp)N (ℓp)R p ∞ N n R 2 Locally Convex ///// L p > 1 L R , C(R ) R pointwise, ℓweak Inner Product ///// L2 ℓ2[0, 1] ///// ///// Locally Compact Rn ///// ///// ///// ///// 1. A set is balanced when λ 6 1 λA A. | | ⇒ ⊆ (a) The image and pre-image of balanced sets are balanced. ◦ (b) The closure and interior are again balanced (if A 0; since λA = (λA)◦ A◦); as are the union, intersection, sum,∈ scaling, T and prod- uct A ⊆B of balanced sets. -
CHAPTER 1 the Interplay Between Topological Algebra Theory and Algebras of Holomorphic Functions
CHAPTER 1 The interplay between topological algebra theory and algebras of holomorphic functions. Alberto Saracco Dipartimento di Scienze Matematiche, Fisiche e Informatiche Universit`adegli Studi di Parma, Italy e-mail: [email protected] Abstract There are several interactions between the general theory of commutative topological algebras over C with unity and that of the holomorphic functions of one or several complex variables. This chapter is intended to be a review chapter of classical results in this subjects and a list of very difficult and long-standing open problems. A big reference section will provide the reader material to dwell into the proofs of theorems and understand more deeply the subjects. This chapter will be divided in two parts. In the first we will review known results on the general theory of Banach algebras, Frechet algebras, LB and LF algebras, as well as the open problems in the field. In the second part we will examine concrete algebras of holomorphic functions, again reviewing known results and open problems. We will mainly focus on the interplay between the two theories, showing how each one can be considered either an object of study per se or a mean to understand better the other subject. 1.1 Topological algebras A topological algebra A over a topological field K is a topological space endowed with continuous operations + : A × A ! A; · : K × A ! A; ? : A × A ! A; such that (A; +; ·) is a vector space over K and (A; +;?) is an algebra. If the inner product ? is commutative, we will call A a commutative (topological) algebra. -
REVERSIBLE FILTERS 1. Introduction a Topological Space X Is Reversible
REVERSIBLE FILTERS ALAN DOW AND RODRIGO HERNANDEZ-GUTI´ ERREZ´ Abstract. A space is reversible if every continuous bijection of the space onto itself is a homeomorphism. In this paper we study the question of which countable spaces with a unique non-isolated point are reversible. By Stone duality, these spaces correspond to closed subsets in the Cech-Stoneˇ compact- ification of the natural numbers β!. From this, the following natural problem arises: given a space X that is embeddable in β!, is it possible to embed X in such a way that the associated filter of neighborhoods defines a reversible (or non-reversible) space? We give the solution to this problem in some cases. It is especially interesting whether the image of the required embedding is a weak P -set. 1. Introduction A topological space X is reversible if every time that f : X ! X is a continuous bijection, then f is a homeomorphism. This class of spaces was defined in [10], where some examples of reversible spaces were given. These include compact spaces, Euclidean spaces Rn (by the Brouwer invariance of domain theorem) and the space ! [ fpg, where p is an ultrafilter, as a subset of β!. This last example is of interest to us. Given a filter F ⊂ P(!), consider the space ξ(F) = ! [ fFg, where every point of ! is isolated and every neighborhood of F is of the form fFg [ A with A 2 F. Spaces of the form ξ(F) have been studied before, for example by Garc´ıa-Ferreira and Uzc´ategi([6] and [7]). -
Some Limits of Boolean Algebras
SOME LIMITS OF BOOLEAN ALGEBRAS FRANKLIN HAIMO 1. Introduction. Inverse systems of topological spaces and direct and inverse systems of Abelian groups and resulting applications thereof to algebraic topology have been studied intensively, and the techniques employed are now standard [2]. (Numbers in brackets refer to the bibliography at the end of the paper.) We shall apply some of these ideas to the treatment of sets of Boolean algebras in order to obtain, in the inverse case, a representation, and, in both cases, some information about the ideals and about the decompositions of certain algebras. For instance, it is well known [l] that the cardinal product B* of a set {Ba} of Boolean algebras, indexed by a class A, is also a Boolean algebra. Moreover, if each Ba is m-complete for some fixed cardinal m [3], then B* is m-complete. When A is a set partly ordered by = and directed thereby, and when the Ba form an inverse system (to be defined below), we shall show that the re- sulting inverse limit set is a Boolean algebra, a subalgebra of B*, and a similar result will hold in the direct case, at least in part.1 For each nonfinite Boolean algebra B, there will be constructed a nontrivial inverse limit representation of B, the inverse limit of all principal ideals [3] of B (with repetitions). In the direct case, ideals in the limit algebra (and the homomorphic algebras which they generate) will turn out to be direct limits of like objects. Direct decomposition into ideals of the direct limit takes place (it will be seen) if there is a similar decomposition in each Ba. -
Stone Duality Above Dimension Zero: Axiomatising the Algebraic Theory of C(X)
Stone duality above dimension zero: Axiomatising the algebraic theory of C(X) Vincenzo Marraa, Luca Reggioa,b aDipartimento di Matematica \Federigo Enriques", Universit`adegli Studi di Milano, via Cesare Saldini 50, 20133 Milano, Italy bUniversit´eParis Diderot, Sorbonne Paris Cit´e,IRIF, Case 7014, 75205 Paris Cedex 13, France Abstract It has been known since the work of Duskin and Pelletier four decades ago that Kop, the opposite of the category of compact Hausdorff spaces and continuous maps, is monadic over the category of sets. It follows that Kop is equivalent to a possibly infinitary variety of algebras ∆ in the sense of S lomi´nskiand Linton. Isbell showed in 1982 that the Lawvere-Linton algebraic theory of ∆ can be generated using a finite number of finitary operations, together with a single operation of countably infinite arity. In 1983, Banaschewski and Rosick´yindependently proved a conjecture of Bankston, establishing a strong negative result on the axiomatisability of Kop. In particular, ∆ is not a finitary variety | Isbell's result is best possible. The problem of axiomatising ∆ by equations has remained open. Using the theory of Chang's MV-algebras as a key tool, along with Isbell's fundamental insight on the semantic nature of the infinitary operation, we provide a finite axiomatisation of ∆. Key words: Algebraic theories, Stone duality, Boolean algebras, MV-algebras, Lattice-ordered Abelian groups, C∗-algebras, Rings of continuous functions, Compact Hausdorff spaces, Stone-Weierstrass Theorem, Axiomatisability. 2010 MSC: Primary: 03C05. Secondary: 06D35, 06F20, 46E25. 1. Introduction. In the category Set of sets and functions, coordinatise the two-element set as 2 := f0; 1g. -
Arxiv:1408.1072V1 [Math.CT]
SOME NOTES ON ESAKIA SPACES DIRK HOFMANN AND PEDRO NORA Dedicated to Manuela Sobral Abstract. Under Stone/Priestley duality for distributive lattices, Esakia spaces correspond to Heyting algebras which leads to the well-known dual equivalence between the category of Esakia spaces and morphisms on one side and the category of Heyting algebras and Heyting morphisms on the other. Based on the technique of idempotent split completion, we give a simple proof of a more general result involving certain relations rather then functions as morphisms. We also extend the notion of Esakia space to all stably locally compact spaces and show that these spaces define the idempotent split completion of compact Hausdorff spaces. Finally, we exhibit connections with split algebras for related monads. Introduction These notes evolve around the observation that Esakia duality for Heyting algebras arises more naturally when considering the larger category SpecDist with objects spectral spaces and with morphisms spectral distributors. In fact, as we observed already in [Hofmann, 2014], in this category Esakia spaces define the idempotent split completion of Stone spaces. Furthermore, it is well-known that SpecDist is dually equivalent to the category DLat⊥,∨ of distributive lattices and maps preserving finite suprema and that, under this equivalence, Stone spaces correspond to Boolean algebras. This tells us that the category of Esakia spaces and spectral distributors is dually equivalent to the idempotent split completion of the category Boole⊥,∨ of Boolean algebras and maps preserving finite suprema. However, the main ingredients to identify this category as the full subcategory of DLat⊥,∨ defined by all co-Heyting algebras were already provided by McKinsey and Tarski in 1946. -
Arxiv:1807.10637V2 [Math.RA] 1 May 2019 Eso Ht If That, Show We Abstract .Introduction 1
Codensity, profiniteness and algebras of semiring-valued measures Luca Reggio IRIF, Universit´eParis Diderot, Sorbonne Paris Cit´e, Case 7014, 75205 Paris Cedex 13, France and Laboratoire J. A. Dieudonn´e, Universit´eCˆote d’Azur, Parc Valrose, 06108 Nice Cedex 02, France E-mail address: [email protected] Abstract We show that, if S is a finite semiring, then the free profinite S-semimodule on a Boolean Stone space X is isomorphic to the algebra of all S-valued measures on X, which are finitely additive maps from the Boolean algebra of clopens of X to S. These algebras naturally appear in the logic approach to formal languages as well as in idempotent analysis. Whenever S is a (pro)finite idempotent semiring, the S-valued measures are all given uniquely by continuous density functions. This generalises the classical representation of the Vietoris hyperspace of a Boolean Stone space in terms of continuous functions into the Sierpi´nski space. We adopt a categorical approach to profinite algebra which is based on profinite monads. The latter were first introduced by Ad´amek et al. as a special case of the notion of codensity monads. Keywords: profinite algebra, Stone duality, codensity monad, semimodule over a semiring, measure, Vietoris hyperspace 2010 MSC: 28A60, 54H10, 18A40 1. Introduction Semirings generalise rings by relaxing the conditions on the additive structure requiring just a monoid rather than a group. The analogue of the notion of module over a ring is that of semimodule over a semiring, or more concisely of an S-semimodule where S is the semiring. -
Profinite Heyting Algebras
Profinite Heyting algebras Nick Bezhanishvili Department of Computer Science University of Leicester [email protected] http://www.cs.le.ac.uk/people/nb118 joint work with Guram Bezhanishvili New Mexico State University Nick Bezhanishvili TANCL III, Oxford Profinite objects Let C be a Set-based category. An object A of C is called profinite if it is an inverse limit of an inverse system of finite C-objects. Examples. 1. In the category of compact Hausdorff spaces, an object is profinite iff it is a Stone space (that is, the dual of a Boolean algebra). 2. In the category of compact order-Hausdorff spaces, an ob- ject is profinite iff it is a Priestley space (that is, the dual of a bounded distributive lattice). 1 Nick Bezhanishvili TANCL III, Oxford Profinite objects 3. In the category of Boolean algebras, an object is profinite iff it is complete and atomic. 4. In the category of bounded distributive lattices, an object is profinite iff it is complete and completely join-prime gen- erated. (An element a ∈ A is completely join-prime if a ≤ W C implies there exists c ∈ C such that a ≤ c. A lattice A is completely join-prime generated if every element of A is a join of completely join-prime elements.) Question: What are profinite Heyting algebras? 2 Nick Bezhanishvili TANCL III, Oxford Heyting algebras A Heyting algebra is a bounded distributive lattice (A, ∧, ∨, 0, 1) with a binary operation →: A2 → A such that for each a,b,c ∈ A we have a ∧ c ≤ b iff c ≤ a → b; 3 Nick Bezhanishvili TANCL III, Oxford Algebraic characterization An algebra A is finitely approximable if for every a, b ∈ A with a 6= b, there exists a finite algebra B and a surjective homo- morphism h : A → B such that h(a) 6= h(b). -
Arens-Michael Envelopes, Homological Epimorphisms, And
Trudy Moskov. Matem. Obw. Trans. Moscow Math. Soc. Tom 69 (2008) 2008, Pages 27–104 S 0077-1554(08)00169-6 Article electronically published on November 19, 2008 ARENS–MICHAEL ENVELOPES, HOMOLOGICAL EPIMORPHISMS, AND RELATIVELY QUASI-FREE ALGEBRAS ALEXEI YUL’EVICH PIRKOVSKII Abstract. We describe and investigate Arens–Michael envelopes of associative alge- bras and their homological properties. We also introduce and study analytic analogs of some classical ring-theoretic constructs: Ore extensions, Laurent extensions, and tensor algebras. For some finitely generated algebras, we explicitly describe their Arens–Michael envelopes as certain algebras of noncommutative power series, and we also show that the embeddings of such algebras in their Arens–Michael envelopes are homological epimorphisms (i.e., localizations in the sense of J. Taylor). For that purpose we introduce and study the concepts of relative homological epimorphism and relatively quasi-free algebra. The above results hold for multiparameter quan- tum affine spaces and quantum tori, quantum Weyl algebras, algebras of quantum (2 × 2)-matrices, and universal enveloping algebras of some Lie algebras of small dimensions. 1. Introduction Noncommutative geometry emerged in the second half of the last century when it was realized that several classical results can be interpreted as some kind of “duality” be- tween geometry and algebra. Informally speaking, those results show that quite often all the information about a geometric “space” (topological space, smooth manifold, affine algebraic variety, etc.) is in fact contained in a properly chosen algebra of functions (continuous, smooth, polynomial. ) defined on that space. More precisely, this means that assigning to a space X the corresponding algebra of functions, one obtains an anti- equivalence between a category of “spaces” and a category of commutative algebras. -
Ultrafilter Spaces on the Semilattice of Partitions
Ultrafilter Spaces on the Semilattice of Partitions Lorenz Halbeisen Department of Mathematics, University of California, Evans Hall 938, Berkeley, CA 94720, USA, [email protected] Benedikt L¨owe Mathematisches Institut, Rheinische Friedrich–Wilhelms–Universit¨at Bonn, Beringstraße 6, 53115 Bonn, Germany, [email protected] Abstract The Stone-Cechˇ compactification of the natural numbers βω (or equivalently, the space of ultrafilters on the subsets of ω) is a well-studied space with interesting properties. Replacing the subsets of ω by partitions of ω in the construction of the ultrafilter space gives non-homeomorphic spaces of partition ultrafilters correspond- ing to βω. We develop a general framework for spaces of this type and show that the spaces of partition ultrafilters still have some of the nice properties of βω, even though none of them is homeomorphic to βω. Further, in a particular space, the minimal height of a tree π-base and P -points are investigated. Keywords: Compactness; Cosubobjects; Partitions; P-Points; Separability; Shat- tering families; Stone topologies on semilattices; Ultrafilter spaces 2000 Mathematics Subject Classification: 54A05 54D80 54A10 03E17 03E35 arXiv:math/0109176v1 [math.LO] 23 Sep 2001 1 The first author wishes to thank the Swiss National Science Foundation for supporting him, and the second author wishes to thank the Studienstiftung des deutschen Volkes and the Graduiertenkolleg “Algebraische, analytische und geo- metrische Methoden und ihre Wechselwirkung in der modernen Mathematik” in Bonn for travel grants. Both authors would like to extend their gratitude to An- dreas Blass (Ann Arbor MI) for sharing his views on dualization with them.