579 On some consequences of the canonical transformation in the Hamiltonian theory of water waves Peter A.E.M. Janssen Research Department November 2008 Series: ECMWF Technical Memoranda A full list of ECMWF Publications can be found on our web site under: http://www.ecmwf.int/publications/ Contact:
[email protected] c Copyright 2008 European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading, RG2 9AX, England Literary and scientific copyrights belong to ECMWF and are reserved in all countries. This publication is not to be reprinted or translated in whole or in part without the written permission of the Director. Appropriate non-commercial use will normally be granted under the condition that reference is made to ECMWF. The information within this publication is given in good faith and considered to be true, but ECMWF accepts no liability for error, omission and for loss or damage arising from its use. On some consequences of the canonical transformation in the Hamiltonian theory of water waves Abstract We discuss some consequences of the canonical transformation in the Hamiltonian theory of water waves (Zakharov, 1968). Using Krasitskii’s canonical transformation we derive general expressions for the second order wavenumber and frequency spectrum, and the skewness and the kurtosis of the sea surface. For deep-water waves, the second-order wavenumber spectrum and the skewness play an important role in understanding the so-called sea state bias as seen by a Radar Altimeter. According to the present approach, but in contrast with results obtained by Barrick and Weber (1977), in deep-water second-order effects on the wavenumber spectrum are relatively small.