Trilobite Evolutionary Rates Constrain the Duration of the Cambrian Explosion
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambrian Phytoplankton of the Brunovistulicum – Taxonomy and Biostratigraphy
MONIKA JACHOWICZ-ZDANOWSKA Cambrian phytoplankton of the Brunovistulicum – taxonomy and biostratigraphy Polish Geological Institute Special Papers,28 WARSZAWA 2013 CONTENTS Introduction...........................................................6 Geological setting and lithostratigraphy.............................................8 Summary of Cambrian chronostratigraphy and acritarch biostratigraphy ...........................13 Review of previous palynological studies ...........................................17 Applied techniques and material studied............................................18 Biostratigraphy ........................................................23 BAMA I – Pulvinosphaeridium antiquum–Pseudotasmanites Assemblage Zone ....................25 BAMA II – Asteridium tornatum–Comasphaeridium velvetum Assemblage Zone ...................27 BAMA III – Ichnosphaera flexuosa–Comasphaeridium molliculum Assemblage Zone – Acme Zone .........30 BAMA IV – Skiagia–Eklundia campanula Assemblage Zone ..............................39 BAMA V – Skiagia–Eklundia varia Assemblage Zone .................................39 BAMA VI – Volkovia dentifera–Liepaina plana Assemblage Zone (Moczyd³owska, 1991) ..............40 BAMA VII – Ammonidium bellulum–Ammonidium notatum Assemblage Zone ....................40 BAMA VIII – Turrisphaeridium semireticulatum Assemblage Zone – Acme Zone...................41 BAMA IX – Adara alea–Multiplicisphaeridium llynense Assemblage Zone – Acme Zone...............42 Regional significance of the biostratigraphic -
Decoupled Evolution of Soft and Hard Substrate Communities During the Cambrian Explosion and Great Ordovician Biodiversification Event
Decoupled evolution of soft and hard substrate communities during the Cambrian Explosion and Great Ordovician Biodiversification Event Luis A. Buatoisa,1, Maria G. Mánganoa, Ricardo A. Oleab, and Mark A. Wilsonc aDepartment of Geological Sciences, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E2; bEastern Energy Resources Science Center, US Geological Survey, Reston, VA 20192; and cDepartment of Geology, The College of Wooster, Wooster, OH 44691 Edited by Steven M. Holland, University of Georgia, Athens, GA, and accepted by Editorial Board Member David Jablonski May 6, 2016 (received for review November 21, 2015) Contrasts between the Cambrian Explosion (CE) and the Great shed light on the natures of both radiations. Because there is still Ordovician Biodiversification Event (GOBE) have long been recog- controversy regarding Sepkoski’s nonstandardized curves of nized. Whereas the vast majority of body plans were established Phanerozoic taxonomic diversity (13–15), a rarefaction analysis as a result of the CE, taxonomic increases during the GOBE were was performed in an attempt to standardize diversity data. The manifested at lower taxonomic levels. Assessing changes of ichno- aims of this paper are to document the contrasting ichnodiversity diversity and ichnodisparity as a result of these two evolutionary and ichnodisparity trajectories in soft and hard substrate com- events may shed light on the dynamics of both radiations. The early munities during these two evolutionary events and to discuss the Cambrian (series 1 and 2) displayed a dramatic increase in ichnodi- possible underlying causes of this decoupled evolution. versity and ichnodisparity in softground communities. In contrast to this evolutionary explosion in bioturbation structures, only a few Results Cambrian bioerosion structures are known. -
Smithsonian Miscellaneous Collections Volume 148, Number 3
—r SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 ,v, . SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 148, NUMBER 3 l^psfarrl| 3F«ttb UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE (With 21 Plates) By FRANCO RASETTI The Johns Hopkins University Baltimore, Md. (Publication 4598) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION June 10, 1965 <.%'^ Q^fii^ CONNECTICUT PRINTERS, INC. HARTFORD, CONN., U.S.A. CONTENTS Part I. Stratigraphy and Faunas Pj^ge Acknowledgments 3 Descriptions of Localities and Sections 3 General statement 3 Hawkins County 4 Hamblen County 10 Grainger County 12 Jefferson County I5 Union County 19 Claiborne County 21 Knox County 22 Monroe County 23 Purchase Ridge, Scott Coimty, Virginia 24 Index of Localities 25 Fauna of the Cedaria Zone 26 Fauna of the Crepicephalus Zone 28 Fauna of the Aphelaspis Zone 30 Part II. Systematic Paleontology General Statement 38 Descriptions of Trilobite Genera and Species Order AGNOSTIDA 38 Family AGNOSTIDAE 38 Order CORYNEXOCHIDA 39 Family DORYPYGIDAE 39 Order PTYCHOPARHDA 40 Family LONCHOCEPHALIDAE 40 Family CATILLICEPHALIDAE 44 Family CREPICEPHALIDAE 45 Family TRI CREPICEPHALIDAE 54 Family ASAPHISCIDAE 55 Family KINGSTONIIDAE 60 Family MENOMONIIDAE 61 Family NORWOODIIDAE 64 Family CEDARIIDAE 69 Family ELVINIIDAE 71 Family PTEROCEPHALIIDAE 72, PTYCHOPARHDA of uncertain affinities 102 Undetermined trilobites 112 References 115 Explanation of Plates 118 UPPER CAMBRIAN TRILOBITE FAUNAS OF NORTHEASTERN TENNESSEE By FRANCO RASETTI The Johns Hopkins University PART I. STRATIGRAPHY AND FAUNAS The purpose of this paper is both to describe the fossils and to present them in their proper stratigraphic setting. -
Smithsonian Miscellaneous Collections Volume 101
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101. NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 22, 1942 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 101, NUMBER 15 FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS BY CHARLES E. RESSER Curator, Division of Stratigraphic Paleontology U. S. National Museum (Publication 3682) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION MAY 12, 1942 Z?>i Botb QBafhtnore (prcee BALTIMORE, MD., U. S. A. ' FIFTH CONTRIBUTION TO NOMENCLATURE OF CAMBRIAN FOSSILS By CHARLES E. RESSER Curator, Division of Stratigraphic Paleonlolo<jy, U. S. National Museum This is the fifth in the series of papers designed to care for changes necessary in the names of Cambrian fossils. When the fourth paper was published it was hoped that further changes would be so few and so obvious that they could be incorporated in the Cambrian bibliographic summary, and would not be required to appear first in a separate paper. But even now it is impossible to gather all of the known errors for rectification in this paper. For example, correc- tion of some errors must await the opportunity to examine the speci- mens because the published illustrations, obviously showing incorrect generic determinations, are too poor to permit a proper understanding of the fossil. In the other instances where new generic designations are clearly indicated, erection of new genera should await the pub- lication of a paper with illustrations, because better-preserved speci- mens are in hand, or undescribed species portray the generic charac- teristics more fully and should therefore be chosen as the genotypes. -
Available Generic Names for Trilobites
AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites. -
Copertina Guida Ai TRILOBITI V3 Esterno
Enrico Bonino nato in provincia di Bergamo nel 1966, Enrico si è laureato in Geologia presso il Dipartimento di Scienze della Terra dell'Università di Genova. Attualmente risiede in Belgio dove svolge attività come specialista nel settore dei Sistemi di Informazione Geografica e analisi di immagini digitali. Curatore scientifico del Museo Back to the Past, ha pubblicato numerosi volumi di paleontologia in lingua italiana e inglese, collaborando inoltre all’elaborazione di testi e pubblicazioni scientifiche a livello nazonale e internazionale. Oltre alla passione per questa classe di artropodi, i suoi interessi sono orientati alle forme di vita vissute nel Precambriano, stromatoliti, e fossilizzazioni tipo konservat-lagerstätte. Carlo Kier nato a Milano nel 1961, Carlo si è laureato in Legge, ed è attualmente presidente della catena di alberghi Azul Hotel. Risiede a Cancun, Messico, dove si dedica ad attività legate all'ambiente marino. All'età di 16 anni, ha iniziato una lunga collaborazione con il Museo di Storia Naturale di Milano, ed è a partire dal 1970 che prese inizio la vera passione per i trilobiti, dando avvio a quella che oggi è diventata una delle collezioni paleontologiche più importanti al mondo. La sua instancabile attività di ricerca sul terreno in varie parti del globo e la collaborazione con professionisti del settore, ha permesso la descrizione di nuove specie di trilobiti ed artropodi. Una forte determinazione e la costruzione di un nuovo complesso alberghiero (AZUL Sensatori) hanno infine concretizzzato la realizzazione -
The Geologic Time Scale Is the Eon
Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2. -
Western North Greenland (Laurentia)
BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west. -
Lower and Middle Paleozoic Stratigraphic Successions
CHAPTER 2 LOWER AND MIDDLE PALEOZOIC STRATIGRAPHIC SUCCESSIONS Middle Arenigian quartzite beds (upper Armorican Quartzite) in the Estena river section, Cabañeros National Park Gutiérrez-Marco, J.C. Rábano, I. Liñán, E. Gozalo, R. Fernández Martínez, E. Arbizu, M. Méndez-Bedia, I. Pieren Pidal, A. Sarmiento, G.N. It has already been explained how the formation of the Iberian Massif, where the Iberian Peninsula base- ment crops out, is closely linked to the development of the Late Paleozoic Variscan orogeny. The result was the intense shortening and deformation of the marine sediments previously deposited along the vast Gondwana continental margins during the Early and Middle Paleozoic. The Iberian Massif contains the most extense and fossiliferous exposures in the European Variscan orogenic chain. Its different struc- tural and paleogeographic zones include important stratigraphic successions from the Cambrian to the Devonian periods (García-Cortés et al., 2000, 2001; Gutiérrez-Marco, 2006), making up one of the key geological frameworks to understand the latest Precambrian and Paleozoic evolution of the Iberian Peninsula and Western Europe, and with an abundant record of geological and biological global events. Figure 1. Sites of Geological Interest (Geosites) The Cambrian record presents exceptional strati- described in the text: 1) Murero (Zaragoza), 2) Barrios graphic successions in the Cantabrian and Ossa- de Luna (León), 3) Arnao (Asturias), 4) Cabañeros Morena Zones, as well as in the Iberian Range. In (Ciudad Real-Toledo), 5) Checa -
001-012 Primeras Páginas
PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9. -
Cambrian Trilobite Ovatoryctocara Granulata Tchernysheva, 1962 and Its Biostratigraphic Significance
Available online at www.sciencedirect.com Progress in Natural Science 19 (2009) 213–221 www.elsevier.com/locate/pnsc Cambrian trilobite Ovatoryctocara granulata Tchernysheva, 1962 and its biostratigraphic significance Jinliang Yuan a,*, Yuanlong Zhao b, Jin Peng b, Xuejian Zhu a, Jih-pai Lin c a Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, East Beijing Road 39, Nanjing 210008, China b College of Resource and Environment Science, Guizhou University, Guiyang 550003, China c School of Earth Sciences, Ohio State University, Columbus, OH 43210, USA Received 28 March 2008; received in revised form 27 May 2008; accepted 14 August 2008 Abstract The genus Ovatoryctocara Tchernysheva, 1962, and its key species Ovatoryctocara granulata Tchernysheva, 1962, are revised. Ovatoryctocara granulata occurs near the base of the Ovatoryctocara Zone and ranges up into the lower portion of the Kounamkites Zone in the Siberian Platform. O. granulata also appears in southeastern Guizhou, South China, but O. granulata in northern Greenland may represent an indefinite species. Specimens of Ovatoryctocara from Newfoundland cannot be identified to species level. Specimens includ- ing two cranidia and three pygidia from the lower part of the Aoxi Formation at Yaxi Village, Shizhu Town, eastern Tongren, north- eastern Guizhou, were previously assigned to O. granulata, which is now reassigned as a new species O. yaxiensis sp. nov. It bears the following main features: glabella club-shaped, slightly expanded medially, with four pairs of lateral furrows, of which S1–S3 are trian- gular pits, S4 is shallow, connecting with axial furrow; shorter palpebral lobe situated a little anterior to the midway of facial suture across the fixigenae, longer posterolateral area (exsag.); semielliptical pygidium consisting of seven axial rings with a terminal piece and with eight pairs of marginal tips giving a sawtooth-like shape of the lateral margins in dorsal view. -
Paleontological Contributions
Paleontological Contributions Number 3 A new Cambrian arthropod, Emeraldella brutoni, from Utah Martin Stein, Stephen B. Church, and Richard A. Robison September 30, 2011 Lawrence, Kansas, USA ISSN 1946-0279 paleo.ku.edu/contributions http://hdl.handle.net/1808/8086 Paleontological Contributions September 30, 2011 Number 3 A NEW CAMBRIAN ARTHROPOD, EMERALDELLA BRUTONI, FROM UTAH Martin Stein,1* Stephen B. Church,2 and Richard A. Robison1 1University of Kansas, Department of Geology, Lawrence, Kansas 66045, USA, [email protected], [email protected]; 2Sinclair Oil & Gas Company, Salt Lake City, Utah 84130, USA, [email protected] ABSTRACT Emeraldella is a rare arthropod of relatively large body size that belongs with the trilobite-like arthropods, Artiopoda. E. brutoni n. sp. from the Wheeler Formation of west-central Utah is the second species described and marks the first confirmed occurrence of Emeraldella outside the Burgess Shale of British Columbia. An articulated, flagelliform telson, similar to that of the Burgess Shale taxon Molaria, is recognized in Emeraldella. Evidence for the presence of lamellae on the exopods of Molaria is presented, supporting affinity of that taxon with Artiopoda. A close relationship between Emeraldella and Molaria is tentatively suggested, based on the morphology of tergites and telson. Keywords: Wheeler Formation, Drum Mountains, exceptional preservation, Arthropoda INTRODUCTION others (2007), Elrick and Hinnov (2007), Brett and others (2009), Halgedahl and others (2009), and Howley and Jiang (2010), The Wheeler Formation of west-central Utah is well known have provided more detailed information about its stratigraphy for its diverse and exceptionally preserved biota, which was and depositional environments. One of us (S.B.C.) collected the reviewed by Robison (1991).