Journal of Applied Geophysics

Total Page:16

File Type:pdf, Size:1020Kb

Journal of Applied Geophysics JOURNAL OF APPLIED GEOPHYSICS AUTHOR INFORMATION PACK TABLE OF CONTENTS XXX . • Description p.1 • Audience p.1 • Impact Factor p.1 • Abstracting and Indexing p.2 • Editorial Board p.2 • Guide for Authors p.4 ISSN: 0926-9851 DESCRIPTION . The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics. Benefits to authors We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services. Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center AUDIENCE . Environmental Geophysicists, Engineering Geophysicists, Hydro geophysicists, Exploration Geophysicists. IMPACT FACTOR . 2020: 2.121 © Clarivate Analytics Journal Citation Reports 2021 AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/jappgeo 1 ABSTRACTING AND INDEXING . AGI's Bibliography and Index of Geology Bulletin Signalétique Current Contents Engineering Village - GEOBASE Pascal Francis INSPEC Geotechnical Abstracts Engineering Index Physics Abstracts Petroleum Abstracts Scopus Academic Search (EBSCO) Current Abstracts (EBSCO) TOC Premier Science and Technology Collection Compendex OCLC Contents Alert ProQuest Engineering Index Monthly Arts & Humanities Search Science Citation Index Expanded Web of Science Referativnyi Zhurnal VINTI-RAN (Russian Academy of Sciences) EDITORIAL BOARD . Co-Editors in Chief Jyoti Behura, Colorado School of Mines, Golden, Colorado, United States of America Exploration Seismics, including Theory and Modelling Jianghai Xia, Zhejiang University Library, Hangzhou, China Near-surface, Engineering Seismics, Ground-Penetrating Radar Maurizio Fedi, University of Naples Federico II, Via Cintia, Naples, Italy Potential Field Methods - Gravity and Magnetic Models Mark Everett, Texas A&M University Department of Geology and Geophysics, College Station, Texas, United States of America Geoelectrics and Electromagnetic Methods Associate Editors abhash kumar, Battelle Memorial Institute, Columbus, United States of America Kaushik Bandyopadhyay, ExxonMobil Upstream, Houston, United States of America Ed Biegert, Shell Technology Center Houston, Houston, United States of America Liu Bin, Shandong University, Jinan, China Thomas Blum, Federal Polytechnic School of Lausanne, Lausanne, Switzerland Andrew Brenders, BP America Inc, Houston, United States of America Ray Cakir, Washington State Department of Natural Resources, Olympia, United States of America Jun Cao, ConocoPhillips Company, Houston, United States of America Federico Cella, University of Calabria Department of Biology Ecology and Earth Sciences, Rende, Italy Yangkang Chen, Zhejiang University School of Earth Science, Hangzhou, China John Deceuster, University of Mons, Mons, Belgium Alberto Godio, Polytechnic of Turin Department of Environmental Land and Infrastructure Engineering, Torino, Italy Thomas Günther, Leibniz Institute for Applied Geophysics, Hannover, Germany Andreas Güntner, Helmholtz Centre Potsdam German Research Centre for Geosciences, Potsdam, Germany Felix Herrmann, The University of British Columbia, Vancouver, Canada Ann Hirt, University of Zurich, Zurich, Switzerland Trevor P. Irons, The University of Utah, Salt Lake City, United States of America Niklas Juhojuntti, Luossavaara-Kiirunavaara AB Kiruna, Kiruna, Sweden Vassilios Karastathis, National Observatory of Athens, Athens, Greece Mason Kass, USGS Geology Geophysics and Geochemistry Science Center, Denver, Co.80225, United States of America AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/jappgeo 2 Léa Lévy, Aarhus University Faculty of Natural Sciences, Aarhus, Denmark Shuang Liu, China University of Geosciences Institute of Geophysics and Geomatics, Wuhan, China Meng Loke, Geotomo Software Sdn Bhd, Gelugor, Malaysia Laurent Louis, New England Research Institutes, Watertown, United States of America Maciek Lubczynski, University of Twente Faculty of Geo-Information Science and Earth Observation, Enschede, Netherlands Yong Ma, ConocoPhillips Company, Houston, United States of America Alireza Malehmir, Uppsala University, Uppsala, Sweden Binbin Mi, Zhejiang University School of Earth Science, Hangzhou, China Ehsan Naeini, Ikon Science Ltd, Surbiton, United Kingdom Jorge Parra, Southwest Research Institute, San Antonio, United States of America Philippe A Pezard, University of Montpellier, Montpellier, France Ravi Sharma, Indian Institute of Technology Roorkee, Uttarakhand, India Rita Streich, Shell Global Solutions International BV, Amsterdam, Netherlands Kazunori Takahashi, Oyo Corporation Technical Center, Saitama, Japan Mamoru Takanashi, Japan Oil Gas and Metals National Corporation Library, Minato-Ku, Japan Gang Tian, Zhejiang University Library, Hangzhou, China Konstantin Titov, St Petersburg University, Sankt Peterburg, Russian Federation Fabio Caratori Tontini, GNS Science Ltd, Lower Hutt, New Zealand Jens Tronicke, Universität Potsdam, Inst. für Geowissenschaften, Golm, Germany Panagiotis Tsourlos, Aristotle University of Thessaloniki, Thessaloniki, Greece Giulio Vignoli, University of Cagliari, Cagliari, Italy Edward Woolery, University of Kentucky, Lexington, United States of America Xinming Wu, The University of Texas at Austin Bureau of Economic Geology, Austin, United States of America Yixian Xu, Zhejiang University Library, Hangzhou, China Bo Zhang, The University of Alabama, Tuscaloosa, United States of America Jingfeng Zhang, BP America Inc, Houston, United States of America Michael Zhdanov, The University of Utah, Salt Lake City, United States of America Editorial Board members Founding Editors Dattatray S. Parasnis Risto Puranen Svend Saxov Toivo Siikarla AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/jappgeo 3 GUIDE FOR AUTHORS . Your Paper Your Way We now differentiate between the requirements for new and revised submissions. You may choose to submit your manuscript as a single Word or PDF file to be used in the refereeing process. Only when your paper is at the revision stage, will you be requested to put your paper in to a 'correct format' for acceptance and provide the items required for the publication of your article. To find out more, please visit the Preparation section below. Introduction The Journal of Applied Geophysics with its key objective of responding to pertinent and timely needs, places particular emphasis on methodological developments and innovative applications of geophysical techniques for addressing environmental, engineering, and hydrological problems. Related topical research in exploration geophysics and in soil and rock physics is also covered by the Journal of Applied Geophysics. Types of Paper The types of papers that can be submitted to the journal are as follows: Research paper, Review article, Discussion, Rapid communication. Submission checklist You can use this list to carry out a final check of your submission before you send it to the journal for review. Please check the relevant section in this Guide for Authors for more details. Ensure that the following items are present: One author has been designated as the corresponding author with contact details: • E-mail address • Full postal address All necessary files have been uploaded: Manuscript: • Include keywords • All figures (include relevant captions) • All tables (including titles, description, footnotes) • Ensure all figure and table citations in the text match the files provided • Indicate clearly if color should be used for any figures in print Graphical Abstracts / Highlights files (where applicable) Supplemental files (where applicable) Further considerations • Manuscript has been 'spell checked' and 'grammar checked' • All references mentioned in the Reference List are cited in the text, and vice versa • Permission has been obtained for use of copyrighted material from other sources (including the Internet) • A competing interests statement is provided, even if the authors have no competing interests to declare • Journal policies detailed in this guide have been reviewed • Referee suggestions and contact details provided, based on journal requirements For further information, visit our Support Center. BEFORE YOU BEGIN Ethics in publishing Please see our information on Ethics in publishing. Declaration of competing interest All authors must disclose any financial and personal relationships with other people or organizations that could inappropriately influence (bias) their work. Examples of potential conflicts of interest include employment, consultancies, stock ownership, honoraria, paid expert testimony, patent applications/ registrations, and grants or other funding. Authors should complete the declaration of competing interest statement using this template and upload to the submission system at the Attach/Upload Files AUTHOR INFORMATION PACK 25 Sep 2021 www.elsevier.com/locate/jappgeo 4 step. Note: Please do not convert the .docx template to another file type. Author signatures are not required. If there are no interests to declare, please choose the first option in the template. More information.
Recommended publications
  • Geophysics (3 Credits) Spring 2018
    GEO 3010 – Geophysics (3 credits) Spring 2018 Lecture: FASB 250, 10:45-11:35 am, M & W Lab: FASB 250, 2:00-5:00 pm, M or W Instructor: Fan-Chi Lin (Assistant Professor, Dept. of Geology & Geophysics) Office: FASB 271 Phone: 801-581-4373 Email: [email protected] Office Hours: M, W 11:45 am - 1:00 pm. Please feel free to email me if you would like to make an appointment to meet at a different time. Teaching Assistants: Elizabeth Berg ([email protected]) FASB 288 Yadong Wang ([email protected]) FASB 288 Office Hours: T, H 1:00-3:00 pm Website: http://noise.earth.utah.edu/GEO3010/ Course Description: Prerequisite: MATH 1220 (Calculus II). Co-requisite: GEO 3080 (Earth Materials I). Recommended Prerequisite: PHYS 2220 (Phycs For Scien. & Eng. II). Fulfills Quantitative Intensive BS. Applications of physical principles to solid-earth dynamics and solid-earth structure, at both the scale of global tectonics and the smaller scale of subsurface exploration. Acquisition, modeling, and interpretation of seismic, gravity, magnetic, and electrical data in the context of exploration, geological engineering, and environmental problems. Two lectures, one lab weekly. 1. Policies Grades: Final grades are based on following weights: • Homework (25 %) • Labs (25 %) • Exam 1-3 (10% each) • Final (20 %) Homework: There will be approximately 6 homework sets. Homework must be turned in by 5 pm of the day they are due. 10 % will be marked off for each day they are late. Homework will not be accepted 3 days after the due day. Geophysics – GEO 3010 1 Labs: Do not miss labs! In general you will not have a chance to make up missed labs.
    [Show full text]
  • Geophysical Methods Commonly Employed for Geotechnical Site Characterization TRANSPORTATION RESEARCH BOARD 2008 EXECUTIVE COMMITTEE OFFICERS
    TRANSPORTATION RESEARCH Number E-C130 October 2008 Geophysical Methods Commonly Employed for Geotechnical Site Characterization TRANSPORTATION RESEARCH BOARD 2008 EXECUTIVE COMMITTEE OFFICERS Chair: Debra L. Miller, Secretary, Kansas Department of Transportation, Topeka Vice Chair: Adib K. Kanafani, Cahill Professor of Civil Engineering, University of California, Berkeley Division Chair for NRC Oversight: C. Michael Walton, Ernest H. Cockrell Centennial Chair in Engineering, University of Texas, Austin Executive Director: Robert E. Skinner, Jr., Transportation Research Board TRANSPORTATION RESEARCH BOARD 2008–2009 TECHNICAL ACTIVITIES COUNCIL Chair: Robert C. Johns, Director, Center for Transportation Studies, University of Minnesota, Minneapolis Technical Activities Director: Mark R. Norman, Transportation Research Board Paul H. Bingham, Principal, Global Insight, Inc., Washington, D.C., Freight Systems Group Chair Shelly R. Brown, Principal, Shelly Brown Associates, Seattle, Washington, Legal Resources Group Chair Cindy J. Burbank, National Planning and Environment Practice Leader, PB, Washington, D.C., Policy and Organization Group Chair James M. Crites, Executive Vice President, Operations, Dallas–Fort Worth International Airport, Texas, Aviation Group Chair Leanna Depue, Director, Highway Safety Division, Missouri Department of Transportation, Jefferson City, System Users Group Chair Arlene L. Dietz, A&C Dietz and Associates, LLC, Salem, Oregon, Marine Group Chair Robert M. Dorer, Acting Director, Office of Surface Transportation Programs, Volpe National Transportation Systems Center, Research and Innovative Technology Administration, Cambridge, Massachusetts, Rail Group Chair Karla H. Karash, Vice President, TranSystems Corporation, Medford, Massachusetts, Public Transportation Group Chair Mary Lou Ralls, Principal, Ralls Newman, LLC, Austin, Texas, Design and Construction Group Chair Katherine F. Turnbull, Associate Director, Texas Transportation Institute, Texas A&M University, College Station, Planning and Environment Group Chair Daniel S.
    [Show full text]
  • A Continuous Plate-Tectonic Model Using Geophysical Data to Estimate
    GEOPHYSICAL JOURNAL INTERNATIONAL, 133, 379–389, 1998 1 A continuous plate-tectonic model using geophysical data to estimate plate margin widths, with a seismicity based example Caroline Dumoulin1, David Bercovici2, Pal˚ Wessel Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, 96822, USA Summary A continuous kinematic model of present day plate motions is developed which 1) provides more realistic models of plate shapes than employed in the original work of Bercovici & Wessel [1994]; and 2) provides a means whereby geophysical data on intraplate deformation is used to estimate plate margin widths for all plates. A given plate’s shape function (which is unity within the plate, zero outside the plate) can be represented by analytic functions so long as the distance from a point inside the plate to the plate’s boundary can be expressed as a single valued function of azimuth (i.e., a single-valued polar function). To allow sufficient realism to the plate boundaries, without the excessive smoothing used by Bercovici and Wessel, the plates are divided along pseudoboundaries; the boundaries of plate sections are then simple enough to be modelled as single-valued polar functions. Moreover, the pseudoboundaries have little or no effect on the final results. The plate shape function for each plate also includes a plate margin function which can be constrained by geophysical data on intraplate deformation. We demonstrate how this margin function can be determined by using, as an example data set, the global seismicity distribution for shallow (depths less than 29km) earthquakes of magnitude greater than 4.
    [Show full text]
  • The Reunification of Seismology and Geophysics Brad Artman Exploration Geophysics – a Brief History
    The Reunification of Seismology and Geophysics Brad Artman Exploration geophysics – a brief history J.C. Karcher patents the reflection seismic method, focused the exploration geophysicist for the next century Beno Guttenberg becomes a professor of seismology Gas research institute, Teledyne Geotech, & Sandia National Labs develop equipment and techniques for microseismic monitoring to illuminate hydraulic fracturing 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2013 Rapid advances in computational capabilities allow processing of ever-larger data volumes with more complete physics Exploration geophysics begins (re) learning earthquake seismology to commercialize microseismic monitoring Today, we have the opportunity to capitalize on the strengths of 100 yrs of development in both communities © Spectraseis Inc. 2013 2 Strength comparison To extract the full Seismology Geophysics potential from these Better sensors More sensors measurements, Better physics More compute horsepower we must capture the best of both Bigger events Smaller domain knowledge bases. Seismologists use cheap computers (grad. students) to do very thorough analysis on small numbers of traces. Geophysicists use cheap computers (clusters) to do good- enough approximations on very large numbers of traces. The merger of these fields is an historic opportunity to do exciting and valuable work © Spectraseis Inc. 2013 3 Agenda Sensor selection Survey design Processing algorithms and computer requirements Conclusions © Spectraseis Inc. 2013 4 Fracture mechanisms Compensated Linear Isotropic Double Couple Vector Dipole (explosion) (DC) (CLVD) P-waves only P- and S-waves P- and S-waves All fractures can be decomposed into these three mechanisms © Spectraseis Inc. 2013 5 DC radiation and particle motion Particle motion of P waves is compressional and in the same direction direction to the traveling wavefront.
    [Show full text]
  • Equivalence of Current–Carrying Coils and Magnets; Magnetic Dipoles; - Law of Attraction and Repulsion, Definition of the Ampere
    GEOPHYSICS (08/430/0012) THE EARTH'S MAGNETIC FIELD OUTLINE Magnetism Magnetic forces: - equivalence of current–carrying coils and magnets; magnetic dipoles; - law of attraction and repulsion, definition of the ampere. Magnetic fields: - magnetic fields from electrical currents and magnets; magnetic induction B and lines of magnetic induction. The geomagnetic field The magnetic elements: (N, E, V) vector components; declination (azimuth) and inclination (dip). The external field: diurnal variations, ionospheric currents, magnetic storms, sunspot activity. The internal field: the dipole and non–dipole fields, secular variations, the geocentric axial dipole hypothesis, geomagnetic reversals, seabed magnetic anomalies, The dynamo model Reasons against an origin in the crust or mantle and reasons suggesting an origin in the fluid outer core. Magnetohydrodynamic dynamo models: motion and eddy currents in the fluid core, mechanical analogues. Background reading: Fowler §3.1 & 7.9.2, Lowrie §5.2 & 5.4 GEOPHYSICS (08/430/0012) MAGNETIC FORCES Magnetic forces are forces associated with the motion of electric charges, either as electric currents in conductors or, in the case of magnetic materials, as the orbital and spin motions of electrons in atoms. Although the concept of a magnetic pole is sometimes useful, it is diácult to relate precisely to observation; for example, all attempts to find a magnetic monopole have failed, and the model of permanent magnets as magnetic dipoles with north and south poles is not particularly accurate. Consequently moving charges are normally regarded as fundamental in magnetism. Basic observations 1. Permanent magnets A magnet attracts iron and steel, the attraction being most marked close to its ends.
    [Show full text]
  • SEG Near-Surface Geophysics Technical Section Annual Meeting
    The 2018 SEG Near-Surface Geophysics Technical Section Proposed Technical Sessions (Please note, the identified session topics here are not inclusive of all possible near-surface geophysics technical sessions, but have been identified at this point.) Session topic/title Session description and objective Coupled above and below-ground Description: There have been significant advances in a variety of geophysical techniques in the past decades to characterize near- monitoring using geophysics, UAV, surface critical zone heterogeneity, including hydrological and biogeochemical properties, as well as near-surface spatiotemporal and remote sensing dynamics such as temperature, soil moisture and geochemical changes. At the same time, above-ground characterization is evolving significantly – particularly in airborne platforms and unmanned aerial vehicles (UAV) – to capture the spatiotemporal dynamics in microtopography, vegetation and others. The critical link between near-surface and surface properties has been recognized, since surface processes dictates the evolution of near-surface environments evolve (e.g., topography influences surface/subsurface flow, affecting bedrock weathering), while near-surface properties (such as soil texture) control vegetation and topography. Now that geophysics and airborne technologies can capture both surface and near-surface spatiotemporal dynamics at high resolution in a spatially extensive manner, there is a great opportunity to advance the understanding of this coupled surface and near-surface system. This session calls for a variety of contributions on this topic, including coupled above/below-ground sensing technologies, new geophysical techniques to characterize the interactions between near-surface and surface environments. Near-surface modeling using Description: The first few meters of the subsurface is of paramount importance to the engineering and environmental industry.
    [Show full text]
  • Introduction to Environmental Geophysics Student Manual
    United States Offi ce of Emergency and July 2014 Environmental Protection Remedial Response www.epa.gov/superfund Agency Washington, DC 20460 Superfund Introduction to Environmental Geophysics Student Manual Overview of Geophysical Methods OVERVIEW OF GEOPHYSICAL METHODS Geophysical Surveys Characterize geology Characterize hydrogeology Locate metal targets and voids Physical Properties Measured Velocity Seismic Radar Electrical Impedance Electromagnetics Resistivity Magnetic Magnetics Density Gravity Overview of Environmental Geophysics 1 Overview of Geophysical Methods Magnetics Measures natural magnetic field Map anomalies in magnetic field Detects iron and steel Geometrics Cesium Magnetometer Electromagnetics (EM) Generates electrical and magnetic fields Measures the conductivity of target Locates metal targets Overview of Environmental Geophysics 2 Overview of Geophysical Methods EM-31 Marion Landfill, Marion, IN EM-61 Geonics EM-61 EM Metal Detector Resistivity Injects current into ground Measures resultant voltage Determines apparent resistivity of layers Maps geologic beds and water table Overview of Environmental Geophysics 3 Overview of Geophysical Methods Sting Resistivity Unit Seismic Methods Uses acoustic energy Refraction - Determines velocity and thickness of geologic beds Reflection - Maps geologic layers and bed topography Seistronix Seismograph Overview of Environmental Geophysics 4 Overview of Geophysical Methods Gravity Measures gravitational field Used to determine density of materials under
    [Show full text]
  • NCHRP Synthesis 357 – Use of Geophysics for Transportation
    NATIONAL COOPERATIVE HIGHWAY RESEARCH NCHRP PROGRAM SYNTHESIS 357 Use of Geophysics for Transportation Projects A Synthesis of Highway Practice TRANSPORTATION RESEARCH BOARD EXECUTIVE COMMITTEE 2006 (Membership as of March 2006) OFFICERS Chair: Michael D. Meyer, Professor, School of Civil and Environmental Engineering, Georgia Institute of Technology Vice Chair: Linda S. Watson, Executive Director, LYNX—Central Florida Regional Transportation Authority Executive Director: Robert E. Skinner, Jr., Transportation Research Board MEMBERS MICHAEL W. BEHRENS, Executive Director, Texas DOT ALLEN D. BIEHLER, Secretary, Pennsylvania DOT JOHN D. BOWE, Regional President, APL Americas, Oakland, CA LARRY L. BROWN, SR., Executive Director, Mississippi DOT DEBORAH H. BUTLER, Vice President, Customer Service, Norfolk Southern Corporation and Subsidiaries, Atlanta, GA ANNE P. CANBY, President, Surface Transportation Policy Project, Washington, DC DOUGLAS G. DUNCAN, President and CEO, FedEx Freight, Memphis, TN NICHOLAS J. GARBER, Henry L. Kinnier Professor, Department of Civil Engineering, University of Virginia, Charlottesville ANGELA GITTENS, Vice President, Airport Business Services, HNTB Corporation, Miami, FL GENEVIEVE GIULIANO, Professor and Senior Associate Dean of Research and Technology, School of Policy, Planning, and Development, and Director, METRANS National Center for Metropolitan Transportation Research, USC, Los Angeles SUSAN HANSON, Landry University Professor of Geography, Graduate School of Geography, Clark University JAMES R. HERTWIG, President, CSX Intermodal, Jacksonville, FL ADIB K. KANAFANI, Cahill Professor of Civil Engineering, University of California, Berkeley HAROLD E. LINNENKOHL, Commissioner, Georgia DOT SUE MCNEIL, Professor, Department of Civil and Environmental Engineering, University of Delaware DEBRA L. MILLER, Secretary, Kansas DOT MICHAEL R. MORRIS, Director of Transportation, North Central Texas Council of Governments CAROL A. MURRAY, Commissioner, New Hampshire DOT JOHN R.
    [Show full text]
  • APPLICATION of GEOPHYSICAL TECHNIQUES to MINERALS-RELATED ENVIRONMENTAL PROBLEMS by Ken Watson, David Fitterman, R.W
    APPLICATION OF GEOPHYSICAL TECHNIQUES TO MINERALS-RELATED ENVIRONMENTAL PROBLEMS By Ken Watson, David Fitterman, R.W. Saltus, Anne McCafferty, Gregg Swayze, Stan Church, Kathy Smith, Marty Goldhaber, Stan Robson, and Pete McMahon Open-File Report 01-458 2001 This report is preliminary and had not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North American Stratigraphic Code. Any trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Geophysics in Mineral-Environmental Applications 2 Contents 1 Executive Summary 3 1.1 Application of methods . 3 1.2 Mineral-environmental problems . 3 1.3 Controlling processes . 4 1.4 Geophysical techniques . 5 1.4.1 Electrical and electromagnetic methods . 5 1.4.2 Seismic methods . 6 1.4.3 Thermal methods . 6 1.4.4 Remote sensing methods . 6 1.4.5 Potential field methods . 7 1.4.6 Other geophysical methods . 7 2 Introduction 8 3 Mineral-environmental Applications of Geophysics 10 4 Mineral-environmental Problems 13 4.1 The sources of potentially harmful substances . 15 4.2 Mobility of potentially harmful substances . 15 4.3 Transport of potentially harmful substances . 16 4.4 Pathways for transport of potentially harmful substances . 17 4.5 Interaction of potentially harmful substances with the environment . 18 5 Processes Controlling Mineral-Environmental Problems 18 5.1 Geochemical processes . 19 5.1.1 Chemical Weathering (near-surface reactions) . 19 5.1.2 Deep alteration (reactions at depth) . 20 5.1.3 Microbial catalysis .
    [Show full text]
  • Introductory Geophysics Fall 2013 (Term 201309, A01)
    University of Victoria School of Earth and Ocean Sciences Dept. of Physics and Astronomy COURSE OUTLINE EOS/PHYS 210 Introductory Geophysics Fall 2013 (Term 201309, A01) Class Schedule: Mondays & Thursdays, 11:30{12:45, Elliot 060. Instructor: Dr. Stan Dosso Office: Room A331, Wright Centre for Ocean, Earth and Atmospheric Sciences Email: [email protected] (Please include \EOS 210" or \PHYS 210" in the subject line) Office Hours: 2:30{4:00 pm, Mondays and Thursdays (but welcome to check any time or make an appointment) Course Description: Introduction to seismology, gravity, geomagnetism, paleomagnetism and heat flow, and how they contribute to our understanding of whole Earth structure and plate tectonics. Prerequisites: One of PHYS 110, 112, 120 or 122; MATH 100 and 101. Text: R. J. Lillie, 1999. Whole Earth Geophysics: An Introductory Textbook for Geologists and Geophysicists, Prentice Hall, Toronto. (Selected topics from Chapters 1{10) Course Website: The course website is found on the UVic Moodle system. Go to moodle.uvic.ca and enter your UVic NetLink ID and password. You should then find a list of your courses that are available under Moodle including EOS 210 or PHYS 210. Class notes, hand-outs, assignments, etc. will be available as pdf files at this site. Handout figures, etc. will be posted at the beginning of the week|please download and bring to class. Class notes will be posted the week after they are given in class as an additional resource. Please attend classes and take notes! 1 Grading: Assignments (6{8) | 20 % Midterm Exam (Oct. 24) | 20 % Final Exam (3 hours) | 60 % Notes: Assignments are due in class a week after they are given out in class.
    [Show full text]
  • Overview of Geophysics
    Overview of Geophysics Geophysics is the application of known physical principles to the study of the Earth. Terrestrial systems, like anything else, obey physical laws, and through applications of these laws quantitative predictions about the Earth’s present physical state and future evolution can be inferred. Geophysics, as a hybrid of geology and physics, requires awareness of the relevant geological issues and the ability to tackle them quantitatively. The principal tools of geophysics are seismology, heat flow and gravity analysis, magnetotellurics, and rock and whole-Earth magnetization. Each of these tools which can be brought to bear on a specific problem will yield constraints in terms of modelling, or understanding, a particular process or structure within the Earth. As an example, a standard question in Earth science is ‘what’s below the surface’ of a particular patch of the Earth’s surface, a question one might ask if you were interested in drilling for oil. Illustrated in Figure 1, the surface features may not tell you much (A). However, if you can run a gravimeter over the surface to obtain a gravity profile over the region, and given that you understand and can model how different mass anomalies at depth contribute to the gravity profile you measure (b), you can then invert your gravity profile for the structure under the surface, i.e., you can come up with a subsurface density model which explains the gravity profile you measured ©. (Figure 1) The art and science of inverting data, or performing inversions, is large field encompassing all physical sciences. Formal inversions involve setting up a defined parameter and model space, and incorporating into the inversion how variation of the parameters influence the outcome of the model.
    [Show full text]
  • The Magnetic Field of Planet Earth
    Space Sci Rev DOI 10.1007/s11214-010-9644-0 The Magnetic Field of Planet Earth G. Hulot · C.C. Finlay · C.G. Constable · N. Olsen · M. Mandea Received: 22 October 2009 / Accepted: 26 February 2010 © The Author(s) 2010. This article is published with open access at Springerlink.com Abstract The magnetic field of the Earth is by far the best documented magnetic field of all known planets. Considerable progress has been made in our understanding of its charac- teristics and properties, thanks to the convergence of many different approaches and to the remarkable fact that surface rocks have quietly recorded much of its history. The usefulness of magnetic field charts for navigation and the dedication of a few individuals have also led to the patient construction of some of the longest series of quantitative observations in the history of science. More recently even more systematic observations have been made pos- sible from space, leading to the possibility of observing the Earth’s magnetic field in much more details than was previously possible. The progressive increase in computer power was also crucial, leading to advanced ways of handling and analyzing this considerable corpus G. Hulot () Equipe de Géomagnétisme, Institut de Physique du Globe de Paris (Institut de recherche associé au CNRS et à l’Université Paris 7), 4, Place Jussieu, 75252, Paris, cedex 05, France e-mail: [email protected] C.C. Finlay ETH Zürich, Institut für Geophysik, Sonneggstrasse 5, 8092 Zürich, Switzerland C.G. Constable Cecil H. and Ida M. Green Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0225, USA N.
    [Show full text]