Chromosomal Instability Is Correlated with Telomere Erosion And

Total Page:16

File Type:pdf, Size:1020Kb

Chromosomal Instability Is Correlated with Telomere Erosion And Oncogene (1998) 16, 1825 ± 1838 1998 Stockton Press All rights reserved 0950 ± 9232/98 $12.00 http://www.stockton-press.co.uk/onc Chromosomal instability is correlated with telomere erosion and inactivation of G2 checkpoint function in human ®broblasts expressing human papillomavirus type 16 E6 oncoprotein Leonid Filatov, Vita Golubovskaya, John C Hurt, Laura L Byrd, Jonathan M Phillips and William K Kaufmann Department of Pathology and Laboratory Medicine, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7295, USA Cell cycle checkpoints and tumor suppressor gene functions Introduction appear to be required for the maintenance of a stable genome in proliferating cells. In this study chromosomal Chromosomal instability is common in cancer cells destabilization was monitored in relation to telomere (Holliday, 1989; Hartwell and Kastan, 1994). Not only structure, lifespan control and G2 checkpoint function. do cancers display abnormalities of chromosomes, be Replicative senescence was inactivated in secondary they polyploidy, aneuploidy, interstitial deletions and cultures of human skin ®broblasts by expressing the human ampli®cations, or a single marker chromosome, but papillomavirus type 16 (HPV-16) E6 oncoprotein to malignant cells also appear to acquire such abnormal- inactivate p53. Chromosome aberrations were enumerated ities at increased rates in comparison to their normal during in vitro aging of isogenic control (F5neo) and HPV- progenitors. The mechanisms of genetic instability in 16E6-expressing (F5E6) ®broblasts. We found that cancer cells are, therefore, of considerable interest. structural and numerical aberrations in chromosomes were Chromosome instability in human cells may be caused signi®cantly increased in F5E6 cells during aging in vitro by defects in various elements of DNA metabolism and ¯uorescence in situ hybridization (FISH) analysis using including replication, chromosome segregration, repair chromosome-speci®c probes demonstrated the occurrence and recombination processes (Hartwell, 1992; Cohen of rearrangements involving chromosome 4 and 6 in and Levy 1989; Coquelle et al., 1997). Chromosomal genetically unstable F5E6 cells. Flow cytometry and aberrations and alterations in DNA ploidy can be karyotypic analyses revealed increased polyploidy and induced by treatments with various drugs that damage aneuploidy in F5E6 cells only at passages 416, although DNA, including chemotherapeutic agents and chemical these cells displayed defective mitotic spindle checkpoint carcinogens, or by exposure to ionizing and ultraviolet function associated with inactivation of p53 at passages 5 radiations. Remarkably, expression of viral oncopro- and 16. G2 checkpoint function was con®rmed to be teins that inactivate tumor suppressor gene functions gradually but progressively inactivated during in vitro aging also induces chromosomal aberrations (Stewart and of E6-expressing cells. Aging of F5neo ®broblasts was Bacchetti, 1991; Chang et al., 1997), implying that documented during in vitro passaging by induction of a chromosome stability is preserved by tumor suppressor senescence-associated marker, pH 6.0 lysosomal b-galac- gene expression. tosidase. F5E6 cells displayed extension of in vitro lifespan The tumor suppressor genes p53 and pRB serve and did not induce b-galactosidase at high passage. Erosion within checkpoint circuits that regulate cell division. of telomeres during in vitro aging of telomerase-negative Cell cycle checkpoints represent positions of control F5neo cells was demonstrated by Southern hybridization that ensure the completion of dependent events in the and by quantitative FISH analysis on an individual cell cell division cycle and provide more time for DNA level. Telomeric signals diminished continuously as F5neo repair before DNA replication and mitosis (Hartwell cells aged in vitro being reduced by 80% near the time of and Kastan, 1994). Two DNA damage-responsive replicative senescence. Telomeric signals detected by FISH checkpoints act to delay the G1?S and G2?M cycle also decreased continuously during aging of telomerase- phase transitions (Kaufmann and Paules, 1996). negative F5E6 cells, but telomeres appeared to be stabilized Inactivation of p53 ablates G1 checkpoint function at passage 34 when telomerase was expressed. Chromoso- and is associated with gene ampli®cation and mal instability in E6-expressing cells was correlated chromosomal instability in human ®broblasts (Yin et (P50.05) with both loss of telomeric signals and al., 1992; Livingstone et al., 1992; White et al., 1994). inactivation of G2 checkpoint function. The results suggest Ataxia telangiectasia cells that are defective in both G1 that chromosomal stability depends upon a complex and G2 checkpoint functions display enhanced interaction among the systems of telomere length main- frequencies of spontaneous and radiation-induced tenance and cell cycle checkpoints. chromosomal aberrations (Taylor et al., 1976; Zam- petti-Bosseler and Scott, 1981; Ejima and Sasaki, Keywords: chromosome; instability; telomere; cell cycle; 1986). Defects in G2 checkpoint function were checkpoint associated with enhanced frequencies of radiation- induced chromosome breaks in a panel of human cancer lines (Schwartz et al., 1996). Cell cycle Correspondence: WK Kaufmann checkpoints, consequently, appear to preserve genetic Received 14 August 1997; revised 4 November 1997; accepted 5 stability and suppress carcinogenesis (Hartwell, 1992; November 1997 Kaufmann and Kaufman, 1993). Chromosomal instability in HPV-16E6-expressing fibroblasts L Filatov et al 1826 The clastogenic eects of oncogenic viruses have telomeres may be sensed as irreparable DNA damage been related in part to their abilities to bind to and signals by the p53-dependent G1 checkpoint (Dulic et inactivate tumor-suppressor genes (Stewart and Bac- al., 1994; Kaufmann and Paules, 1996). Telomere chetti, 1991; Chang et al., 1997). Certain viruses, such length can be maintained in immortal cells, stem cells as SV40, adenovirus and oncogenic strains of human and germ-line cells by a ribonucleoprotein enzyme, papillomavirus (HPV), alter the functions of the telomerase, which adds new telomeric repeats to protein products of p53 and pRB. In the case of chromosome ends (for review see Greider and Black- HPV-16, the E6 gene product targets p53 for ubiquitin- burn, 1985; Kim et al., 1994). An alternative mediated proteolysis (Schener et al., 1990; Galloway mechanism for telomere maintenance in immortal et al., 1994). A strain of HPV with low oncogenicity human cell lines may involve recombination (Bryan et (HPV-6) expresses an E6 protein that is unable to al., 1995; Rogan et al., 1995). Recently a human target p53 for proteolysis and fails to inactivate the G1 telomeric-repeat binding factor TRF1 was shown to be checkpoint (Galloway et al., 1994). Carcinogenesis by involved in telomere length regulation (van Steensel HPV-16 therefore appears to depend upon inactivation and de Lange, 1997). It was proposed that the binding of p53 function by its E6 gene. HPV-16E6-immorta- of TRF1 controls telomere length in cis by inhibiting lized human urothelial cells displayed high frequencies the action of telomerase at the ends of individual of unstable chromosomal aberrations and stable telomeres (van Steensel and de Lange, 1997). marker chromosomes as an example of the chromoso- To explore further the mechanisms of chromosomal mal instability that develops in HPV-16E6-expressing instability in HPV-16E6-expressing cells that lack the cells (Rezniko et al, 1994). By using an amphotropic replicative senescence checkpoint function, we have retrovirus to induce synchronous expression of HPV- monitored cellular aging during in vitro proliferation 16E6 in neonatal human skin ®broblasts, it was by assay of senescence-associated b-galactosidase possible to monitor the kinetics of cell cycle expression and by quantitative analysis of telomere checkpoint inactivation and chromosomal destabiliza- structure. In an attempt to identify the origin of tion under the in¯uence of a viral oncoprotein. dierent chromosome aberrations we analysed chro- Expression of the HPV-16E6 oncoprotein in neonatal mosomal instability in relation to telomere structure human diploid ®broblasts inactivated the G1 check- and G2 checkpoint function. The development of point (Dulic et al., 1994), but the G2 checkpoint was chromosomal abnormalities was correlated (P50.05) unaected initially (Paules et al., 1995; Levedakou et with both telomere erosion and attenuation of G2 al., 1995) and cells were normal cytogenetically (White checkpoint function in HPV-16E6-expressing cells. et al., 1994). However, as E6-expressing cells aged in Chromosomal stability appears to depend upon a vitro they displayed increased frequencies of chromo- complex interaction among the systems of telomere somal abnormalities including telomere associations, length maintenance and cell cycle checkpoints. chromosomal aberrations and aneuploidy (White et al., 1994; Kaufmann et al., 1997). This chromosomal instability was associated with concurrent attenuation Results of G2 checkpoint function (Paules et al., 1995; Kaufmann et al., 1997). The results suggested that Age-dependent appearance of chromosomal instability in oncogene-mediated inactivation of p53 can lead to F5E6 ®broblasts subsequent genetic alterations during cellular aging that deregulate the G2 checkpoint and induce We used two human ®broblast
Recommended publications
  • Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution
    cancers Review Epigenome Chaos: Stochastic and Deterministic DNA Methylation Events Drive Cancer Evolution Giusi Russo 1, Alfonso Tramontano 2, Ilaria Iodice 1, Lorenzo Chiariotti 1 and Antonio Pezone 1,* 1 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli “Federico II”, 80131 Naples, Italy; [email protected] (G.R.); [email protected] (I.I.); [email protected] (L.C.) 2 Department of Precision Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +39-081-746-3614 Simple Summary: Cancer is a group of diseases characterized by abnormal cell growth with a high potential to invade other tissues. Genetic abnormalities and epigenetic alterations found in tumors can be due to high levels of DNA damage and repair. These can be transmitted to daughter cells, which assuming other alterations as well, will generate heterogeneous and complex populations. Deciphering this complexity represents a central point for understanding the molecular mechanisms of cancer and its therapy. Here, we summarize the genomic and epigenomic events that occur in cancer and discuss novel approaches to analyze the epigenetic complexity of cancer cell populations. Abstract: Cancer evolution is associated with genomic instability and epigenetic alterations, which contribute to the inter and intra tumor heterogeneity, making genetic markers not accurate to monitor tumor evolution. Epigenetic changes, aberrant DNA methylation and modifications of chromatin proteins, determine the “epigenome chaos”, which means that the changes of epigenetic traits are Citation: Russo, G.; Tramontano, A.; randomly generated, but strongly selected by deterministic events.
    [Show full text]
  • Telomere Length Shortening in Microglia: Implication for Accelerated Senescence and Neurocognitive Deficits in HIV
    Article Telomere Length Shortening in Microglia: Implication for Accelerated Senescence and Neurocognitive Deficits in HIV Chiu-Bin Hsiao 1, Harneet Bedi 2, Raquel Gomez 2, Ayesha Khan 2, Taylor Meciszewski 2, Ravikumar Aalinkeel 2, Ting Chean Khoo 3, Anna V. Sharikova 3, Alexander Khmaladze 3 and Supriya D. Mahajan 2,* 1 Medicine Institute, School of Medicine, Infectious Diseases, Drexel University, Positive Health Clinic, Allegheny General Hospital, Allegheny Health Network, Pittsburgh, PA 15212, USA; [email protected] 2 Department of Medicine, Division of Allergy, Immunology & Rheumatology, University at Buffalo’s Clinical Translational Research Center, Buffalo, NY 14203, USA; [email protected] (H.B.); [email protected] (R.G.); [email protected] (A.K.); [email protected] (T.M.); [email protected] (R.A.) 3 Department of Physics, University at Albany SUNY, Albany, NY 12222, USA; [email protected] (T.C.K.); [email protected] (A.V.S.); [email protected] (A.K.) * Correspondence: [email protected]; Tel.: +1-1-716-888-4776 Abstract: The widespread use of combination antiretroviral therapy (cART) has led to the accelerated aging of the HIV-infected population, and these patients continue to have a range of mild to moderate HIV-associated neurocognitive disorders (HAND). Infection results in altered mitochondrial function. The HIV-1 viral protein Tat significantly alters mtDNA content and enhances oxidative stress in immune cells. Microglia are the immune cells of the central nervous system (CNS) that exhibit Citation: Hsiao, C.-B.; Bedi, H.; a significant mitotic potential and are thus susceptible to telomere shortening. HIV disrupts the Gomez, R.; Khan, A.; Meciszewski, T.; normal interplay between microglia and neurons, thereby inducing neurodegeneration.
    [Show full text]
  • Epigenetic Control of Mammalian Centromere Protein Binding: Does DNA Methylation Have a Role?
    Journal of Cell Science 109, 2199-2206 (1996) 2199 Printed in Great Britain © The Company of Biologists Limited 1996 JCS3386 Epigenetic control of mammalian centromere protein binding: does DNA methylation have a role? Arthur R. Mitchell*, Peter Jeppesen, Linda Nicol†, Harris Morrison and David Kipling MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, UK *Author for correspondence (internet [email protected]) †Present address: MRC Reproductive Biology Unit, Edinburgh, UK SUMMARY Chromosome 1 of the inbred mouse strain DBA/2 has a block of minor satellite DNA sequences on chromosome 1. polymorphism associated with the minor satellite DNA at The binding of the CENP-E protein does not appear to be its centromere. The more terminal block of satellite DNA affected by demethylation of the minor satellite sequences. sequences on this chromosome acts as the centromere as We present a model to explain these observations. This shown by the binding of CREST ACA serum, anti-CENP- model may also indicate the mechanism by which the B and anti-CENP-E polyclonal sera. Demethylation of the CENP-B protein recognises specific sites within the arrays minor satellite DNA sequences accomplished by growing of minor satellite DNA on mouse chromosomes. cells in the presence of the drug 5-aza-2′-deoxycytidine results in a redistribution of the CENP-B protein. This protein now binds to an enlarged area on the more terminal Key words: Centromere satellite DNA, Demethylation, Centromere block and in addition it now binds to the more internal antibody INTRODUCTION A common feature of many mammalian pericentromeric domains is that they contain families of repetitive DNA The centromere of mammalian chromosomes is recognised at sequences (Singer, 1982).
    [Show full text]
  • Human Chromosome‐Specific Aneuploidy Is Influenced by DNA
    Article Human chromosome-specific aneuploidy is influenced by DNA-dependent centromeric features Marie Dumont1,†, Riccardo Gamba1,†, Pierre Gestraud1,2,3, Sjoerd Klaasen4, Joseph T Worrall5, Sippe G De Vries6, Vincent Boudreau7, Catalina Salinas-Luypaert1, Paul S Maddox7, Susanne MA Lens6, Geert JPL Kops4 , Sarah E McClelland5, Karen H Miga8 & Daniele Fachinetti1,* Abstract Introduction Intrinsic genomic features of individual chromosomes can contri- Defects during cell division can lead to loss or gain of chromosomes bute to chromosome-specific aneuploidy. Centromeres are key in the daughter cells, a phenomenon called aneuploidy. This alters elements for the maintenance of chromosome segregation fidelity gene copy number and cell homeostasis, leading to genomic instabil- via a specialized chromatin marked by CENP-A wrapped by repeti- ity and pathological conditions including genetic diseases and various tive DNA. These long stretches of repetitive DNA vary in length types of cancers (Gordon et al, 2012; Santaguida & Amon, 2015). among human chromosomes. Using CENP-A genetic inactivation in While it is known that selection is a key process in maintaining aneu- human cells, we directly interrogate if differences in the centro- ploidy in cancer, a preceding mis-segregation event is required. It was mere length reflect the heterogeneity of centromeric DNA-depen- shown that chromosome-specific aneuploidy occurs under conditions dent features and whether this, in turn, affects the genesis of that compromise genome stability, such as treatments with micro- chromosome-specific aneuploidy. Using three distinct approaches, tubule poisons (Caria et al, 1996; Worrall et al, 2018), heterochro- we show that mis-segregation rates vary among different chromo- matin hypomethylation (Fauth & Scherthan, 1998), or following somes under conditions that compromise centromere function.
    [Show full text]
  • Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and P53 Loss
    H OH metabolites OH Article Fructose Causes Liver Damage, Polyploidy, and Dysplasia in the Setting of Short Telomeres and p53 Loss Christopher Chronowski 1, Viktor Akhanov 1, Doug Chan 2, Andre Catic 1,2 , Milton Finegold 3 and Ergün Sahin 1,4,* 1 Huffington Center on Aging, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] (C.C.); [email protected] (V.A.); [email protected] (A.C.) 2 Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; [email protected] 3 Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA; fi[email protected] 4 Department of Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA * Correspondence: [email protected]; Tel.: +1-713-798-6685; Fax: +1-713-798-4146 Abstract: Studies in humans and model systems have established an important role of short telomeres in predisposing to liver fibrosis through pathways that are incompletely understood. Recent studies have shown that telomere dysfunction impairs cellular metabolism, but whether and how these metabolic alterations contribute to liver fibrosis is not well understood. Here, we investigated whether short telomeres change the hepatic response to metabolic stress induced by fructose, a sugar that is highly implicated in non-alcoholic fatty liver disease. We find that telomere shortening in telomerase knockout mice (TKO) imparts a pronounced susceptibility to fructose as reflected in the activation of p53, increased apoptosis, and senescence, despite lower hepatic fat accumulation in TKO mice compared to wild type mice with long telomeres. The decreased fat accumulation in TKO Citation: Chronowski, C.; Akhanov, is mediated by p53 and deletion of p53 normalizes hepatic fat content but also causes polyploidy, V.; Chan, D.; Catic, A.; Finegold, M.; Sahin, E.
    [Show full text]
  • The Diversity of Plant Sex Chromosomes Highlighted Through Advances in Genome Sequencing
    G C A T T A C G G C A T genes Review The Diversity of Plant Sex Chromosomes Highlighted through Advances in Genome Sequencing Sarah Carey 1,2 , Qingyi Yu 3,* and Alex Harkess 1,2,* 1 Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL 36849, USA; [email protected] 2 HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA 3 Texas A&M AgriLife Research, Texas A&M University System, Dallas, TX 75252, USA * Correspondence: [email protected] (Q.Y.); [email protected] (A.H.) Abstract: For centuries, scientists have been intrigued by the origin of dioecy in plants, characterizing sex-specific development, uncovering cytological differences between the sexes, and developing theoretical models. Through the invention and continued improvements in genomic technologies, we have truly begun to unlock the genetic basis of dioecy in many species. Here we broadly review the advances in research on dioecy and sex chromosomes. We start by first discussing the early works that built the foundation for current studies and the advances in genome sequencing that have facilitated more-recent findings. We next discuss the analyses of sex chromosomes and sex-determination genes uncovered by genome sequencing. We synthesize these results to find some patterns are emerging, such as the role of duplications, the involvement of hormones in sex-determination, and support for the two-locus model for the origin of dioecy. Though across systems, there are also many novel insights into how sex chromosomes evolve, including different sex-determining genes and routes to suppressed recombination. We propose the future of research in plant sex chromosomes should involve interdisciplinary approaches, combining cutting-edge technologies with the classics Citation: Carey, S.; Yu, Q.; to unravel the patterns that can be found across the hundreds of independent origins.
    [Show full text]
  • The P53/P73 - P21cip1 Tumor Suppressor Axis Guards Against Chromosomal Instability by Restraining CDK1 in Human Cancer Cells
    Oncogene (2021) 40:436–451 https://doi.org/10.1038/s41388-020-01524-4 ARTICLE The p53/p73 - p21CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells 1 1 2 1 2 Ann-Kathrin Schmidt ● Karoline Pudelko ● Jan-Eric Boekenkamp ● Katharina Berger ● Maik Kschischo ● Holger Bastians 1 Received: 2 July 2020 / Revised: 2 October 2020 / Accepted: 13 October 2020 / Published online: 9 November 2020 © The Author(s) 2020. This article is published with open access Abstract Whole chromosome instability (W-CIN) is a hallmark of human cancer and contributes to the evolvement of aneuploidy. W-CIN can be induced by abnormally increased microtubule plus end assembly rates during mitosis leading to the generation of lagging chromosomes during anaphase as a major form of mitotic errors in human cancer cells. Here, we show that loss of the tumor suppressor genes TP53 and TP73 can trigger increased mitotic microtubule assembly rates, lagging chromosomes, and W-CIN. CDKN1A, encoding for the CDK inhibitor p21CIP1, represents a critical target gene of p53/p73. Loss of p21CIP1 unleashes CDK1 activity which causes W-CIN in otherwise chromosomally stable cancer cells. fi Vice versa 1234567890();,: 1234567890();,: Consequently, induction of CDK1 is suf cient to induce abnormal microtubule assembly rates and W-CIN. , partial inhibition of CDK1 activity in chromosomally unstable cancer cells corrects abnormal microtubule behavior and suppresses W-CIN. Thus, our study shows that the p53/p73 - p21CIP1 tumor suppressor axis, whose loss is associated with W-CIN in human cancer, safeguards against chromosome missegregation and aneuploidy by preventing abnormally increased CDK1 activity.
    [Show full text]
  • Cytogenetics of Fraxinus Mandshurica and F. Quadrangulata: Ploidy Determination and Rdna Analysis
    Tree Genetics & Genomes (2020) 16:26 https://doi.org/10.1007/s11295-020-1418-6 ORIGINAL ARTICLE Cytogenetics of Fraxinus mandshurica and F. quadrangulata: ploidy determination and rDNA analysis Nurul Islam-Faridi1,2 & Mary E. Mason3 & Jennifer L. Koch4 & C. Dana Nelson5,6 Received: 22 July 2019 /Revised: 1 January 2020 /Accepted: 16 January 2020 # The Author(s) 2020 Abstract Ashes (Fraxinus spp.) are important hardwood tree species in rural, suburban, and urban forests of the eastern USA. Unfortunately, emerald ash borer (EAB, Agrilus planipennis) an invasive insect pest that was accidentally imported from Asia in the late 1980s–early 1990s is destroying them at an alarming rate. All North American ashes are highly susceptible to EAB, although blue ash (F. quadrangulata) may have some inherent attributes that provide it some protection. In contrast Manchurian ash (F. mandshurica) is relatively resistant to EAB having coevolved with the insect pest in its native range in Asia. Given its level of resistance, Manchurian ash has been considered for use in interspecies breeding programs designed to transfer resistance to susceptible North American ash species. One prerequisite for successful interspecies breeding is consistency in chromosome ploidy level and number between the candidate species. In the current study, we cytologically determined that both Manchurian ash and blue ash are diploids (2n) and have the same number of chromosomes (2n =2x = 46). We also characterized these species’ ribosomal gene families (45S and 5S rDNA) using fluorescence in situ hybridization (FISH). Both Manchurian and blue ash showed two 45S rDNA and one 5S rDNA sites, but blue ash appears to have an additional site of 45S rDNA.
    [Show full text]
  • The Longest Telomeres: a General Signature of Adult Stem Cell Compartments
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press The longest telomeres: a general signature of adult stem cell compartments Ignacio Flores,1 Andres Canela,1 Elsa Vera,1 Agueda Tejera,1 George Cotsarelis,2 and María A. Blasco1,3 1Telomeres and Telomerase Group, Molecular Oncology Program, Spanish National Cancer Centre (CNIO), Madrid E-28029, Spain; 2University of Pennsylvania School of Medicine, M8 Stellar-Chance Laboratories, Philadelphia, Pennsylvania 19104, USA Identification of adult stem cells and their location (niches) is of great relevance for regenerative medicine. However, stem cell niches are still poorly defined in most adult tissues. Here, we show that the longest telomeres are a general feature of adult stem cell compartments. Using confocal telomere quantitative fluorescence in situ hybridization (telomapping), we find gradients of telomere length within tissues, with the longest telomeres mapping to the known stem cell compartments. In mouse hair follicles, we show that cells with the longest telomeres map to the known stem cell compartments, colocalize with stem cell markers, and behave as stem cells upon treatment with mitogenic stimuli. Using K15-EGFP reporter mice, which mark hair follicle stem cells, we show that GFP-positive cells have the longest telomeres. The stem cell compartments in small intestine, testis, cornea, and brain of the mouse are also enriched in cells with the longest telomeres. This constitutes the description of a novel general property of adult stem cell compartments. Finally, we make the novel finding that telomeres shorten with age in different mouse stem cell compartments, which parallels a decline in stem cell functionality, suggesting that telomere loss may contribute to stem cell dysfunction with age.
    [Show full text]
  • Telomere-To-Telomere Assembly of a Complete Human X Chromosome W
    https://doi.org/10.1038/s41586-020-2547-7 Accelerated Article Preview Telomere-to-telomere assembly of a W complete human X chromosome E VI Received: 30 July 2019 Karen H. Miga, Sergey Koren, Arang Rhie, Mitchell R. Vollger, Ariel Gershman, Andrey Bzikadze, Shelise Brooks, Edmund Howe, David Porubsky, GlennisE A. Logsdon, Accepted: 29 May 2020 Valerie A. Schneider, Tamara Potapova, Jonathan Wood, William Chow, Joel Armstrong, Accelerated Article Preview Published Jeanne Fredrickson, Evgenia Pak, Kristof Tigyi, Milinn Kremitzki,R Christopher Markovic, online 14 July 2020 Valerie Maduro, Amalia Dutra, Gerard G. Bouffard, Alexander M. Chang, Nancy F. Hansen, Amy B. Wilfert, Françoise Thibaud-Nissen, Anthony D. Schmitt,P Jon-Matthew Belton, Cite this article as: Miga, K. H. et al. Siddarth Selvaraj, Megan Y. Dennis, Daniela C. Soto, Ruta Sahasrabudhe, Gulhan Kaya, Telomere-to-telomere assembly of a com- Josh Quick, Nicholas J. Loman, Nadine Holmes, Matthew Loose, Urvashi Surti, plete human X chromosome. Nature Rosa ana Risques, Tina A. Graves Lindsay, RobertE Fulton, Ira Hall, Benedict Paten, https://doi.org/10.1038/s41586-020-2547-7 Kerstin Howe, Winston Timp, Alice Young, James C. Mullikin, Pavel A. Pevzner, (2020). Jennifer L. Gerton, Beth A. Sullivan, EvanL E. Eichler & Adam M. Phillippy C This is a PDF fle of a peer-reviewedI paper that has been accepted for publication. Although unedited, the Tcontent has been subjected to preliminary formatting. Nature is providing this early version of the typeset paper as a service to our authors and readers. The text andR fgures will undergo copyediting and a proof review before the paper is published in its fnal form.
    [Show full text]
  • Arabidopsis MZT1 Homologs GIP1 and GIP2 Are Essential for Centromere Architecture
    Arabidopsis MZT1 homologs GIP1 and GIP2 are essential for centromere architecture Morgane Batzenschlagera, Inna Lermontovab, Veit Schubertb, Jörg Fuchsb, Alexandre Berra, Maria A. Koinic, Guy Houlnéa, Etienne Herzoga, Twan Ruttenb, Abdelmalek Aliouaa, Paul Franszc, Anne-Catherine Schmita, and Marie-Edith Chaboutéa,1 aInstitut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, 67000 Strasbourg, France; bLeibniz Institute of Plant Genetics and Crop Plant Research OT Gatersleben, D-06466 Stadt Seeland, Germany; and cSwammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands Edited by James A. Birchler, University of Missouri, Columbia, MO, and approved May 12, 2015 (received for review April 2, 2015) Centromeres play a pivotal role in maintaining genome integrity Previously, we characterized the γ-tubulin complex protein 3- by facilitating the recruitment of kinetochore and sister-chromatid interacting proteins (GIPs), GIP1 and GIP2 (Table S1), as es- cohesion proteins, both required for correct chromosome segre- sential for the recruitment of γ-tubulin complexes at microtubule gation. Centromeres are epigenetically specified by the presence (MT) organizing centers in Arabidopsis (7, 8). This function seems of the histone H3 variant (CENH3). In this study, we investigate the conservedinthehumanandSchizosaccharomyces pombe GIP role of the highly conserved γ-tubulin complex protein 3-interact- homologs named mitotic spindle organizing protein 1 (MZT1) ing proteins (GIPs) in Arabidopsis centromere regulation. We show (9–11). More recently, we localized GIPs at the nucleoplasm pe- that GIPs form a complex with CENH3 in cycling cells. GIP depletion riphery, close to chromocenters, where they modulate the nuclear in the gip1gip2 knockdown mutant leads to a decreased CENH3 architecture (12, 13).
    [Show full text]
  • BIOTECH Basics of Each Chromosome Are Repeating Sequences of DNA Known As Telomeres
    What You Need to Know n DNA is organized into small structures known as chromosomes. At the ends BIOTECH Basics of each chromosome are repeating sequences of DNA known as telomeres. n Every time the cell divides and copies its DNA, the very end of the telomere is unable to be copied and the total telomere length is shortened. n Telomeres act as a buffer to protect the genes near the ends of the chro- mosome from being degraded by the Telomeres shortening process. the aglets of the genomic world n When the telomeres become too short, the cell stops dividing. This is called senescence and is associated hink about your fa- times. Telomere length varies between with aging. Tvorite pair of lace- individuals and across cell type but there up shoes. Focus on the may be as many as 15,000 nucleotides at n An enzyme known as telomerase is active in a small number of cells to keep shoelaces from those shoes, specifically the tip of a chromosome. telomeres long. Most adult cells have on the tips where the small plastic or met- When a cell divides, the chromosomes no telomerase present. al coverings wrap around the lace. Those are copied by specific enzymes and pro- coverings, known as aglets, protect the vide each daughter cell with a complete n There seems to be a link between long telomeres and longevity. Possibly ends from damage and keep the fibers set of genetic information. Unfortunately, those individuals who live long lives are of the lace from unraveling. If the aglet the copying enzymes are unable to com- producing a very low level of telom- wears away, the end becomes frayed and pletely reproduce the very end of each erase in their adult cells.
    [Show full text]