Effects of Tnfaip8 Knockdown on Egfr and Igf-1R Signaling and Cytotoxicities of Targeted Drugs in Non-Small Cell Lung Cancer Cells

Total Page:16

File Type:pdf, Size:1020Kb

Effects of Tnfaip8 Knockdown on Egfr and Igf-1R Signaling and Cytotoxicities of Targeted Drugs in Non-Small Cell Lung Cancer Cells EFFECTS OF TNFAIP8 KNOCKDOWN ON EGFR AND IGF-1R SIGNALING AND CYTOTOXICITIES OF TARGETED DRUGS IN NON-SMALL CELL LUNG CANCER CELLS A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biochemistry and Molecular Biology By Timothy Francis Day, B.S. Washington, DC February 25, 2015 Copyright 2015 by Timothy Francis Day All Rights Reserved ii EFFECTS OF TNFAIP8 KNOCKDOWN ON EGFR AND IGF-1R SIGNALING AND CYTOTOXICITIES OF TARGETED DRUGS IN NON-SMALL CELL LUNG CANCER CELLS Timothy Francis Day, B.S. Thesis Advisor: Usha N. Kasid, Ph.D. ABSTRACT Lung cancer is the most commonly diagnosed cancer and leading cause of cancer-related deaths worldwide. Non-small cell lung carcinoma (NSCLC) accounts for 85% of lung cancer cases. Molecular therapies targeting epidermal growth factor receptor (EGFR) have been developed for NSCLC. However, resistance of NSCLC to various therapies is a major clinical challenge. Previous studies from our laboratory and others have shown that tumor necrosis factor-α-inducible protein 8 (TNFAIP8), the first discovered member of a highly conserved TNFAIP8 family, is an oncogenic and metastatic molecule. TNFAIP8 (T8) expression is induced by NF-κB and is high in many cancers including NSCLC. This thesis project investigates the effects of T8 shRNA (shT8) on EGFR signaling in NSCLC cells. Since acquired resistance to EGFR-targeted tyrosine kinase inhibitors (TKIs) has been associated with activation of insulin-like growth factor-1 receptor (IGF-1R), the effects of shT8 on IGF-1R signaling were also studied. The shRNA silencing of T8 resulted in inhibition of growth factor (EGF, IGF-1, FGF-1, VEGF)-stimulated cell migration in A549 lung cancer cells. T8 knockdown cells showed increased expression of sorting nexin 1 (SNX1), a regulator of EGFR expression through endosomal trafficking, and siRNA silencing of SNX1 partially restored EGFR expression in shT8 cells. Decreased levels of EGF-inducible pEGFR and pERK were observed in shT8 cells as compared to control cells. T8 knockdown cells also showed increased expression of IGF-1 iii binding protein 3 (IGFBP3), a negative regulator of IGF-1R signaling. Consistently, IGF-1- inducible expression of pIGF-1R and pAKT was decreased, and siRNA silencing of IGFBP3 resulted in increased pIGF-1R and pAKT levels in shT8 cells. In preliminary studies, cytotoxic effects of EGFR and IGF-1R TKIs, gefitinib and AG-1024, were enhanced in shT8 cells. Aberrant regulations of EGFR and IGF-1R signaling are hallmarks of several other tumors including breast, melanoma and pancreatic cancers. Present studies suggest that TNFAIP8 plays an important role in EGFR and IGF-1R signaling in lung cancer cells, and offer a rationale for development of T8 knockdown models of a wide range of TKI-resistant tumor cells. Ultimately, these efforts may lead to a new strategy for preventing or delaying resistance to EGFR and IGF- 1R-targeted therapeutics. iv ACKNOWLEDGEMENTS THIS WORK WAS SUPPORTED, IN PART, BY MY PRE-DOCTORAL FELLOWSHIP AWARD W81XWH-10-1-0107 FROM THE DEPARTMENT OF DEFENSE. I WOULD LIKE TO THANK MY MENTOR, DR. USHA KASID. HER GREAT PATIENCE AND GUIDANCE HAS HELPED ME BECOME A MORE THOUGHTFUL AND ANALYTICAL SCIENTIST. I WOULD LIKE TO THANK MY THESIS COMMITTEE MEMBERS, DRS. DANIEL DJAKIEW, CAROLYN HURLEY, MARY BETH MARTIN, AND RAJA MAZUMDER. I HAVE BENEFITED GREATLY FROM EVERY INTERACTION WITH MY COMMITTEE, WHETHER IT WAS ADVICE ON AN EXPERIMENT OR HOW TO THINK ABOUT MY WORK, THEIR HELP HAS GUIDED ME TOWARD BEING A BETTER SCIENTIST. I WOULD LIKE TO THANK MY PARENTS, JIM AND CONNIE, FRIENDS, AND CO-WORKERS FOR THEIR SUPPORT, INTERACTIONS, AND OCCASIONAL DISTRACTIONS. YOUR UNYIELDING CONFIDENCE IN MY GOALS HAS NEVER WAVERED. FINALLY, I WOULD LIKE TO THANK MY WIFE IKUKO. YOU HAVE BEEN MY FOUNDATION THROUGHOUT MY DOCTORAL STUDIES. TOGETHER WE HAVE HAD SO MUCH JOY AND CELEBRATION, AND, WITH OUR WONDERFUL DAUGHTER ANNABELLE, I CANNOT THINK A MORE PERFECT FAMILY. THANK YOU. Many thanks, Timothy Francis Day v TABLE OF CONTENTS ABSTRACT .........................................................................................................................iii ACKNOWLEDGMENTS ...................................................................................................v TABLE OF CONTENTS ....................................................................................................vi LIST OF FIGURES ...................................................................................................x LIST OF TABLES .....................................................................................................xv LIST OF SUPPLEMENTAL FIGURES ...................................................................xvi LIST OF SUPPLEMENTAL TABLES .....................................................................xvi LIST OF ABBREVIATIONS AND PHRASES .......................................................xvii CHAPTER 1. INTRODUCTION ......................................................................................1 1.1 Hypothesis, rationale, and specific aims .............................................................1 1.2. Introduction to non-small cell lung carcinoma (NSCLC) ..................................2 1.2.1. Representative targetable pathways in NSCLC ...................................4 1.3. Introduction to T8 ...............................................................................................5 1.3.1. T8 protein family: an overview. ...........................................................5 1.3.2. TIPE1, an apoptosis inducer regulating the Rac1 pathway. ...............11 1.3.3. TIPE2, a negative regulator of immune homeostasis ..........................11 1.3.4. TIPE3, a novel phosphoinositides transfer protein that promotes cancer .............................................................................................................12 1.3.5. T8 is a novel prosurvival, oncogenic and metastatic molecule: implications in cancer prognosis and therapy response ................................14 vi 1.4. Introduction to shRNA and siRNA silencing of gene expression ......................18 1.5. Introduction to EGFR-induced signal transduction and endocytic mechanisms of EGF-induced internalization and degradation of EGFR...................21 1.5.1. EGFR structure, ligand-induced activation, and signal transduction ...................................................................................................21 1.5.2. Regulation of EGFR expression via endocytic trafficking and other mechanisms....................................................................................25 1.6. EGFR targeted therapies and mechanisms of drug resistance ............................31 1.6.1. EGFR targeted therapies .....................................................................31 1.6.2. Mechanisms of resistance to EGFR targeted therapies .......................35 1.7. Introduction to IGF-1R structure and signal transduction ..................................41 1.8. IGFBP3-mediated regulation of IGF/IGF-1R signal transduction .....................46 1.9. Acquired resistance to EGFR TKIs is associated with activation of IGF-1R pathway: implications of combined targeting of EGFR and IGF-1R in treatment of resistant NSCLC cells ............................................................................................48 CHAPTER 2. MATERIALS AND METHODS ...............................................................54 2.1. Cell lines and culture conditions .........................................................................54 2.2. Antibodies, growth factors, reagents and chemicals ...........................................54 2.3. Plasmid DNA preparations .................................................................................56 2.4. T8 shRNA transient transfections .......................................................................57 2.5. T8 shRNA lentivirus and stable transductions....................................................61 2.6. SNX1 and IGFBP3 siRNA transfections ...........................................................63 2.7. Growth factor treatments ....................................................................................64 2.8. A549 scr and A549 shT8 culture medium treatments ........................................64 vii 2.9. Wound healing assay for cell migration .............................................................66 2.10. RNA isolation, RT-PCR and qRT-PCR ...........................................................66 2.11. Immunoblotting.................................................................................................70 2.12. Immunofluorescence .........................................................................................72 2.13. XTT assay for cell viability ..............................................................................73 2.14. Statistical analysis .............................................................................................74 CHAPTER 3. RESULTS ....................................................................................................75 3.1. Study of the effects of T8 knockdown on EGF-induced signal transduction in non-small cell lung cancer cells ........................................................75 3.1.1. Analysis of T8 transcripts and protein isoforms in various tumor cells.....................................................................................75
Recommended publications
  • Tumor Necrosis Factor‑Α‑Induced Protein‑8 Like 2 Regulates
    6346 MOLECULAR MEDICINE REPORTS 16: 6346-6353, 2017 Tumor necrosis factor‑α‑induced protein‑8 like 2 regulates lipopolysaccharide‑induced rat rheumatoid arthritis immune responses and is associated with Rac activation and interferon regulatory factor 3 phosphorylation CHUNYAN SHI1,2*, YUE WANG1*, GUOHONG ZHUANG1*, ZHONGQUAN QI1, YANPING LI1 and PING YIN3 1Organ Transplantation Institute, Anti‑Cancer Research Center, Medical College, Xiamen University, Xiamen, Fujian 361100; 2The Department of Oncology, Jiujiang People's Hospital, Jiujiang, Jiangxi 332000; 3Department of Pathology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen, Fujian 361100, P.R. China Received October 28, 2016; Accepted June 19, 2017 DOI: 10.3892/mmr.2017.7311 Abstract. The endogenously activated rheumatoid arthritis Introduction (R A) synovial fibroblasts (RSFs) a re li kely to be the key to cur ing the disease. RSFs express Toll‑like receptors (TLRs) rendering Rheumatoid arthritis (RA) is a chronic inflammatory disease them prone to activation by exogenous and endogenous TLR characterized by articular inflammation and leads to joint ligands, resulting in the production of chemokines and cyto- destruction (1,2). RA pathogenesis involves a complex kines Germline deletion of tumor necrosis factor‑α-induced humoral and cellular immune response, including the infiltra- protein‑8 like 2 (TIPE2, also known as TNFAIP8L2) results tion of lymphocytes and monocytes into the synovium. These in fatal inflammation and hypersensitivity to TLR and T cell infiltrating cells and synoviocytes release numerous proin- receptor stimulation. The present study demonstrates an flammatory cytokine and chemokines, including interleukin inverse association between TIPE2 and cytokine gene expres- IL‑6, IL‑1 and tumor necrosis factor‑α (TNF‑α), which may sion in RSFs following lipopolysaccharide (LPS) stimulation.
    [Show full text]
  • Protein Interactions in the Cancer Proteome† Cite This: Mol
    Molecular BioSystems View Article Online PAPER View Journal | View Issue Small-molecule binding sites to explore protein– protein interactions in the cancer proteome† Cite this: Mol. BioSyst., 2016, 12,3067 David Xu,ab Shadia I. Jalal,c George W. Sledge Jr.d and Samy O. Meroueh*aef The Cancer Genome Atlas (TCGA) offers an unprecedented opportunity to identify small-molecule binding sites on proteins with overexpressed mRNA levels that correlate with poor survival. Here, we analyze RNA-seq and clinical data for 10 tumor types to identify genes that are both overexpressed and correlate with patient survival. Protein products of these genes were scanned for binding sites that possess shape and physicochemical properties that can accommodate small-molecule probes or therapeutic agents (druggable). These binding sites were classified as enzyme active sites (ENZ), protein–protein interaction sites (PPI), or other sites whose function is unknown (OTH). Interestingly, the overwhelming majority of binding sites were classified as OTH. We find that ENZ, PPI, and OTH binding sites often occurred on the same structure suggesting that many of these OTH cavities can be used for allosteric modulation of Creative Commons Attribution 3.0 Unported Licence. enzyme activity or protein–protein interactions with small molecules. We discovered several ENZ (PYCR1, QPRT,andHSPA6)andPPI(CASC5, ZBTB32,andCSAD) binding sites on proteins that have been seldom explored in cancer. We also found proteins that have been extensively studied in cancer that have not been previously explored with small molecules that harbor ENZ (PKMYT1, STEAP3,andNNMT) and PPI (HNF4A, MEF2B,andCBX2) binding sites. All binding sites were classified by the signaling pathways to Received 29th March 2016, which the protein that harbors them belongs using KEGG.
    [Show full text]
  • Tumor Necrosis Factor-Α-Induced Protein 8-Like-2 Is Involved in the Activation of Macrophages by Astragalus Polysaccharides in Vitro
    7428 MOLECULAR MEDICINE REPORTS 17: 7428-7434, 2018 Tumor necrosis factor-α-induced protein 8-like-2 is involved in the activation of macrophages by Astragalus polysaccharides in vitro JIE ZHU1, YUANYUAN ZHANG2, FANGHUA FAN1, GUOYOU WU1, ZHEN XIAO1 and HUANQIN ZHOU1 1Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, Zhejiang 310013; 2Department of Pulmonology, The Children's Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310052, P.R. China Received April 6, 2017; Accepted September 11, 2017 DOI: 10.3892/mmr.2018.8730 Abstract. In previous years, studies have shown that Introduction Astragalus polysaccharides (APS) can improve cellular immu- nity and humoral immune function, which has become a focus Macrophages are important immune cells, which are involved of investigations. Tumor necrosis factor-α-induced protein in the stimulation of the innate immune system, including the 8-like 2 (TIPE2) is a negative regulator of immune reactions. release of inflammatory cytokines and inflammatory molecules, However, the effect and underlying mechanisms of TIPE2 on including tumor necrosis-factor (TNF)-α, interleukin (IL)-1β, the APS-induced immune response remains to be fully eluci- IL-6 and nitric oxide (NO) (1,2). These cytokines and inflam- dated. The present study aimed to examine the role of TIPE2 matory molecules are often regulated by the mitogen-activated and its underlying mechanisms in the APS-induced immune protein kinase (MAPK) signaling pathway (3,4). response. The production of nitric oxide (NO) was detected TNF-α-induced protein-8 like 2 (TNFAIP8L2, also known in macrophages in vitro following APS stimulation. In addi- as TIPE2), is a novel member of the TNFAIP8 (TIPE) family.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Lineage-Specific Programming Target Genes Defines Potential for Th1 Temporal Induction Pattern of STAT4
    Downloaded from http://www.jimmunol.org/ by guest on October 1, 2021 is online at: average * The Journal of Immunology published online 26 August 2009 from submission to initial decision 4 weeks from acceptance to publication J Immunol http://www.jimmunol.org/content/early/2009/08/26/jimmuno l.0901411 Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming Seth R. Good, Vivian T. Thieu, Anubhav N. Mathur, Qing Yu, Gretta L. Stritesky, Norman Yeh, John T. O'Malley, Narayanan B. Perumal and Mark H. Kaplan Submit online. Every submission reviewed by practicing scientists ? is published twice each month by http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://www.jimmunol.org/content/suppl/2009/08/26/jimmunol.090141 1.DC1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* • Why • • Material Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of October 1, 2021. Published August 26, 2009, doi:10.4049/jimmunol.0901411 The Journal of Immunology Temporal Induction Pattern of STAT4 Target Genes Defines Potential for Th1 Lineage-Specific Programming1 Seth R. Good,2* Vivian T. Thieu,2† Anubhav N. Mathur,† Qing Yu,† Gretta L.
    [Show full text]
  • TNFAIP8L2/TIPE2 Polyclonal Antibody, FITC Conjugated Catalog No
    Product Name: TNFAIP8L2/TIPE2 Polyclonal Antibody, FITC Conjugated Catalog No. : TAP01-88965R-FITC Intended Use: For Research Use Only. Not for used in diagnostic procedures. Size 100ul Concentration 1ug/ul Gene ID ISO Type Rabbit IgG Clone N/A Immunogen Range Conjugation FITC Subcellular Locations Applications IF(IHC-P) Cross Reactive Species Human, Mouse, Rat Source KLH conjugated synthetic peptide derived from human TNFAIP8L2/TIPE2 Applications with IF(IHC-P)(1:50-200) Dilutions Purification Purified by Protein A. Background TNF Alpha-IP 8L2 (tumor necrosis factor, alpha-induced protein 8-like 2), also known as TIPE2, is a 184 amino acid protein that shares 94% identity with its mouse counterpart and belongs to the TNFAIP8 family. Expressed in spleen, thymus, small intestineand lymph node with lower levels present in colon, lung and skin, TNF Alpha-IP 8L2 plays a role in maintaining immune homeostasis, specifically by acting as a negative regulator of both innate and adaptive immunity. In addition, TNF?IP 8L2 functions as anegative regulator of T-cell receptor function and is thought to promote Fas-induced apoptosis. The gene encoding TNF?IP 8L2 maps to human chromosome 1, which spans 260 million base pairs, contains over 3,000 genes and comprises nearly 8% of the human genome. Synonyms Tumor necrosis factor alpha-induced protein 8-like protein 2; Inflammation factor protein 20; TIPE 2; TIPE-2; TNF alpha-induced protein 8-like protein 2; TNFAIP8-like protein 2; TNFAIP8L2; TP8L2_HUMAN; Tumor necrosis factor alpha-induced protein 8-like protein 2; AW610835; FLJ23467. Storage Aqueous buffered solution containing 1% BSA, 50% glycerol and 0.09% sodium azide.
    [Show full text]
  • KRAS Mutations Are Negatively Correlated with Immunity in Colon Cancer
    www.aging-us.com AGING 2021, Vol. 13, No. 1 Research Paper KRAS mutations are negatively correlated with immunity in colon cancer Xiaorui Fu1,2,*, Xinyi Wang1,2,*, Jinzhong Duanmu1, Taiyuan Li1, Qunguang Jiang1 1Department of Gastrointestinal Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, People's Republic of China 2Queen Mary College, Medical Department, Nanchang University, Nanchang, Jiangxi, People's Republic of China *Equal contribution Correspondence to: Qunguang Jiang; email: [email protected] Keywords: KRAS mutations, immunity, colon cancer, tumor-infiltrating immune cells, inflammation Received: March 27, 2020 Accepted: October 8, 2020 Published: November 26, 2020 Copyright: © 2020 Fu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The heterogeneity of colon cancer tumors suggests that therapeutics targeting specific molecules may be effective in only a few patients. It is therefore necessary to explore gene mutations in colon cancer. In this study, we obtained colon cancer samples from The Cancer Genome Atlas, and the International Cancer Genome Consortium. We evaluated the landscape of somatic mutations in colon cancer and found that KRAS mutations, particularly rs121913529, were frequent and had prognostic value. Using ESTIMATE analysis, we observed that the KRAS-mutated group had higher tumor purity, lower immune score, and lower stromal score than the wild- type group. Through single-sample Gene Set Enrichment Analysis and Gene Set Enrichment Analysis, we found that KRAS mutations negatively correlated with enrichment levels of tumor infiltrating lymphocytes, inflammation, and cytolytic activities.
    [Show full text]
  • Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry Audrey Hoyle University of Maine
    The University of Maine DigitalCommons@UMaine Honors College Spring 5-2018 Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry Audrey Hoyle University of Maine Follow this and additional works at: https://digitalcommons.library.umaine.edu/honors Part of the Biochemistry Commons, and the Microbiology Commons Recommended Citation Hoyle, Audrey, "Identification of TNFAIP8L1 Binding Partners Through Co-Immunoprecipitation and Mass Spectrometry" (2018). Honors College. 335. https://digitalcommons.library.umaine.edu/honors/335 This Honors Thesis is brought to you for free and open access by DigitalCommons@UMaine. It has been accepted for inclusion in Honors College by an authorized administrator of DigitalCommons@UMaine. For more information, please contact [email protected]. IDENTIFICATION OF TNFAIP8L1 BINDING PARTNERS THROUGH CO- IMMUNOPRECIPITATION AND MASS SPECTROMETRY by Audrey Hoyle A Thesis Submitted in Partial Fulfillment of the Requirements for a Degree with Honors (Biochemistry and Microbiology) The Honors College University of Maine May 2018 Advisory Committee: Con Sullivan, Ph.D., Assistant Research Professor (Advisor) Benjamin L. King, Ph.D., Assistant Professor of Bioinformatics Melissa S. Maginnis, Ph.D., Assistant Professor of Microbiology Sally Molloy, Ph.D., Assistant Professor of Genomics Mary S. Tyler, PhD., Professor of Zoology ©2018 Audrey Hoyle All Rights Reserved ABSTRACT The expanded understanding of the gene families and mechanisms governing tumorigenesis pathways has enormous potential for improving current cancer therapies and patient prognoses. One such gene family that participates in the regulation of tumorigenesis is the tumor necrosis factor alpha-induced protein 8 (TNFAIP8) gene family, which is comprised of four members: TNFAIP8, TNFAIP8L1, TNFAIP8L2, and TNFAIP8L3.
    [Show full text]
  • Evolutionary Divergence of the Vertebrate TNFAIP8 Gene Family: Applying the Spotted Gar Orthology Bridge to Understand Ohnolog Loss in Teleosts
    RESEARCH ARTICLE Evolutionary divergence of the vertebrate TNFAIP8 gene family: Applying the spotted gar orthology bridge to understand ohnolog loss in teleosts Con Sullivan1,2*, Christopher R. Lage3, Jeffrey A. Yoder4, John H. Postlethwait5, Carol H. Kim1,2* a1111111111 1 Department of Molecular and Biomedical Sciences, University of Maine, Orono, Maine, United States of America, 2 Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, a1111111111 United States of America, 3 Program in Biology, University of Maine - Augusta, Augusta, Maine, United a1111111111 States of America, 4 Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, a1111111111 North Carolina, United States of America, 5 Institute of Neuroscience, University of Oregon, Eugene, Oregon, a1111111111 United States of America * [email protected] (CS); [email protected] (CHK) OPEN ACCESS Abstract Citation: Sullivan C, Lage CR, Yoder JA, Postlethwait JH, Kim CH (2017) Evolutionary Comparative functional genomic studies require the proper identification of gene orthologs divergence of the vertebrate TNFAIP8 gene family: to properly exploit animal biomedical research models. To identify gene orthologs, compre- Applying the spotted gar orthology bridge to hensive, conserved gene synteny analyses are necessary to unwind gene histories that understand ohnolog loss in teleosts. PLoS ONE 12 are convoluted by two rounds of early vertebrate genome duplication, and in the case of the (6): e0179517. https://doi.org/10.1371/journal. pone.0179517 teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome Editor: Pierre Boudinot, INRA, FRANCE duplication, was sequenced and applied as an orthology bridge to facilitate the identification Received: February 3, 2017 of teleost orthologs to human genes and to enhance the power of teleosts as biomedical Accepted: May 30, 2017 models.
    [Show full text]
  • Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2014 Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis Thomas Porturas University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Cell Biology Commons, and the Molecular Biology Commons Recommended Citation Porturas, Thomas, "Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis" (2014). Publicly Accessible Penn Dissertations. 1409. https://repository.upenn.edu/edissertations/1409 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1409 For more information, please contact [email protected]. Roles of Tnfaip8 Protein in Cell Death, Listeriosis, and Colitis Abstract TNF-alpha-induced protein 8 (TNFAIP8 or TIPE) is a newly described regulator of cancer and infection. However, its precise roles and mechanisms of actions are not well understood. Here I report the generation of TNFAIP8 knockout mice and describe their increased responsiveness to colonic inflammation and esistancer to lethal Listeria monocytogenes infection. TNFAIP8 knockout mice were generated by germ line gene targeting and were born without noticeable developmental abnormalities. Their major organs including those of the immune and digestive systems were macroscopically and microscopically normal. However, compared to wild type mice, TNFAIP8 knockout mice exhibited significant differences in the development of listeriosis and experimentally induced colitis. I discovered that TNFAIP8 regulates L. monocytogenes infection by controlling pathogen invasion and host cell apoptosis potentially in a RAC1 GTPase-dependent manner. TNFAIP8 knockout mice had reduced bacterial load in the liver and spleen and TNFAIP8 knockdown in murine liver HEPA1-6 cells increased apoptosis, reduced bacterial invasion into cells, and resulted in dysregulated RAC1 activation.
    [Show full text]
  • Entrez ID Gene Name Fold Change Q-Value Description
    Entrez ID gene name fold change q-value description 4283 CXCL9 -7.25 5.28E-05 chemokine (C-X-C motif) ligand 9 3627 CXCL10 -6.88 6.58E-05 chemokine (C-X-C motif) ligand 10 6373 CXCL11 -5.65 3.69E-04 chemokine (C-X-C motif) ligand 11 405753 DUOXA2 -3.97 3.05E-06 dual oxidase maturation factor 2 4843 NOS2 -3.62 5.43E-03 nitric oxide synthase 2, inducible 50506 DUOX2 -3.24 5.01E-06 dual oxidase 2 6355 CCL8 -3.07 3.67E-03 chemokine (C-C motif) ligand 8 10964 IFI44L -3.06 4.43E-04 interferon-induced protein 44-like 115362 GBP5 -2.94 6.83E-04 guanylate binding protein 5 3620 IDO1 -2.91 5.65E-06 indoleamine 2,3-dioxygenase 1 8519 IFITM1 -2.67 5.65E-06 interferon induced transmembrane protein 1 3433 IFIT2 -2.61 2.28E-03 interferon-induced protein with tetratricopeptide repeats 2 54898 ELOVL2 -2.61 4.38E-07 ELOVL fatty acid elongase 2 2892 GRIA3 -2.60 3.06E-05 glutamate receptor, ionotropic, AMPA 3 6376 CX3CL1 -2.57 4.43E-04 chemokine (C-X3-C motif) ligand 1 7098 TLR3 -2.55 5.76E-06 toll-like receptor 3 79689 STEAP4 -2.50 8.35E-05 STEAP family member 4 3434 IFIT1 -2.48 2.64E-03 interferon-induced protein with tetratricopeptide repeats 1 4321 MMP12 -2.45 2.30E-04 matrix metallopeptidase 12 (macrophage elastase) 10826 FAXDC2 -2.42 5.01E-06 fatty acid hydroxylase domain containing 2 8626 TP63 -2.41 2.02E-05 tumor protein p63 64577 ALDH8A1 -2.41 6.05E-06 aldehyde dehydrogenase 8 family, member A1 8740 TNFSF14 -2.40 6.35E-05 tumor necrosis factor (ligand) superfamily, member 14 10417 SPON2 -2.39 2.46E-06 spondin 2, extracellular matrix protein 3437
    [Show full text]
  • TNFAIP8: Inflammation, Immunity and Human Diseases
    https://www.scientificarchives.com/journal/journal-of-cellular-immunology Journal of Cellular Immunology Review Article TNFAIP8: Inflammation, Immunity and Human Diseases Suryakant Niture1, John Moore1, Deepak Kumar1 * 1Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University Durham, NC 27707, USA *Correspondence should be addressed to Deepak Kumar; [email protected] Received date: September 21, 2019, Accepted date: October 07, 2019 Copyright: © 2019 Niture S, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Tumor necrosis factor (TNF)-alpha-induced protein 8 (TNFAIP8 /TIPE) family proteins are known to be involved in maintaining immune homeostasis. The TIPE family contains four members: tumor necrosis factor-α-induced protein 8 (TNFAIP8), TNFAIP8 like 1 (TIPE1), TNFAIP8 like 2 (TIPE2), and TNFAIP8 like 3 (TIPE3). Here we review the latest roles and associations of a founding member of TIPE family protein - TNFAIP8 in cellular function/signaling, inflammation, and immunity related human diseases. Keywords: TNFAIP8, Inflammation, Immunity Introduction TNFα induction of TIPE proteins is initiated when TNFα binds with the TNFI/II receptor at the cell surface, Inflammation can be caused by various environmental leading to activation and nuclear localization of NF-kβ factors, including microbial infection and toxic chemical and binding to the target genes [8,9]. exposure. In response to inflammation, immune cells like macrophages, B and T lymphocytes, fibroblasts, The complex biological roles of the TIPE family endothelial cells, and various stromal cells secrete members in immunology are still in the early stages of soluble polypeptide cytokines Tumor Necrosis Factor discovery.
    [Show full text]