Human Health Recreational Ambient Water Quality Criteria Or Swimming Advisories for Microcystins and Cylindrospermopsin

Total Page:16

File Type:pdf, Size:1020Kb

Human Health Recreational Ambient Water Quality Criteria Or Swimming Advisories for Microcystins and Cylindrospermopsin United States Office of Water EPA 822-P-16-002 Environmental Mail Code 4304T December 2016 Protection Agency Human Health Recreational Ambient Water Quality Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin Draft Human Health Recreational Ambient Water Quality Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin Draft Prepared by: U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC EPA Document Number: 822-P-16-002 Date: December 2016 NOTICES This information is distributed solely for the purpose of obtaining scientific views on the content of this document. It does not represent and should not be construed to represent any final agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Human Health Recreational Ambient Water Quality Criteria or ii Swimming Advisories for Microcystins and Cylindrospermopsin – Draft FOREWORD Section 304(a) of the Clean Water Act requires the Administrator of the Environmental Protection Agency to publish water quality criteria that accurately reflect the latest scientific knowledge on the kind and extent of all identifiable effects on health and welfare that might be expected from the presence of pollutants in any body of water, including ground water. U.S. Environmental Protection Agency (EPA) is publishing these recommended values under Clean Water Act (CWA) 304(a) for states to consider as the basis for swimming advisories for notification purposes in recreational waters to protect the public. Alternatively, states may consider using these same values when adopting new or revised water quality standards (WQS). If adopted as WQS and approved by EPA under CWA 303(c), the WQS could be used for all CWA purposes. States may also wish to consider using these values as both swimming advisory values and WQS. EPA envisions that if states decide to use the values as swimming advisory values they might do so in a manner similar to their current recreational water advisory programs. This draft document has undergone an EPA intra-agency peer review process. Final review by the Health and Ecological Criteria Division, Office of Science and Technology, Office of Water, U.S. Environmental Protection Agency has been completed and the document is approved for publication. These values were derived using the existing peer-reviewed and published science on the adverse human health effects of these toxins, established criteria methodologies, and recreation-specific exposure parameters from EPA's Exposure Factors Handbook. The term “water quality criteria” is used in two sections of the CWA§304(a)(1) and §303(c)(2). The term has a different program impact in each section. In section 304, the term represents a non-regulatory, scientific assessment of effects on human health or aquatic life. The criteria recommendations presented in this document are such a scientific assessment. If water quality criteria associated with specific designated uses are adopted by a state or authorized tribe as water quality standards under section 303, and approved by EPA, they become applicable Clean Water Act water quality standards in ambient waters within that state or tribe. Water quality criteria adopted in state or tribal water quality standards could have the same numerical values as criteria developed under section 304. Alternatively, states and authorized tribes may derive numeric criteria based on other scientifically defensible methods but the criteria must be protective of designated uses. It is not until their adoption as part of state or tribal water quality standards, and subsequent approval by EPA, that criteria become Clean Water Act applicable water quality standards. Guidelines to assist in modifying the criteria recommendations presented in this document are contained in the Water Quality Standards Handbook (U.S. EPA 2012b). This handbook and additional guidance on the development of WQS and other water-related programs of this agency have been developed by EPA which along with additional guidance on the development of water quality standards and other water-related programs of this Agency have been developed by the Office of Water. This document provides recommendations only. It does not establish or affect legal rights or obligations. It does not establish a binding norm and cannot be finally determinative of the issues addressed. Agency decisions in any particular situation will be made by applying the Clean Water Act and EPA regulations on the basis of specific facts presented and scientific information then available. Human Health Recreational Ambient Water Quality Criteria or iii Swimming Advisories for Microcystins and Cylindrospermopsin – Draft /signed/ Elizabeth Southerland Director Office of Science and Technology Human Health Recreational Ambient Water Quality Criteria or iv Swimming Advisories for Microcystins and Cylindrospermopsin – Draft ACKNOWLEDGMENTS The development of this document was made possible through an effort led by John Ravenscroft, EPA Project Manager, Health and Ecological Criteria Division, Office of Science and Technology, Office of Water. Additionally, the following Office of Science and Technology staff provided valuable contributions to the development and review of this document: Tracy Bone, Dr. Lesley D’Anglada, Ashley Harper, Ana-Maria Murphy-Teixidor, and Lars Wilcut, and Oakridge Institute for Science and Education (ORISE) fellow Meghann Niesen. EPA gratefully acknowledges the valuable contributions of EPA Internal Technical Reviewers who reviewed this document. This recreational Ambient Water Quality Criteria (AWQC) was provided for review and comment from a formal internal agency review by staff in the following U.S. EPA Program and Regional Offices: U.S. EPA Office of Children’s Health Protection: Suril Mehta U.S. EPA Office of General Counsel: David Berol, Lee Schroer U.S. EPA Office of Policy: Sharon Cooperstein U.S. EPA Office of Research and Development: Neil Chernoff, Paula Estornell (on detail), Elizabeth Hilborn, Christopher Impellitteri, Nicole Shao U.S. EPA Office of Water Office of Ground Water and Drinking Water: Hannah Holsinger, Mike Muse Office of Science and Technology: Tracy Bone Office of Wastewater Management: David Hair, Virginia Kibler Office of Wetlands, Oceans, and Watersheds: Rosaura Conde, Katharine Dowell U.S. EPA Regional Offices Region 1: Toby Stover Region 4: Joel Hansel Region 5: Meghan Hemkin Region 7: Amy Shields Region 8: Alfred Basile, Tina Laidlaw Technical support was provided by ICF and its subcontractor Bigelow Laboratory for Ocean Sciences. Human Health Recreational Ambient Water Quality Criteria or v Swimming Advisories for Microcystins and Cylindrospermopsin – Draft TABLE OF CONTENTS NOTICES ........................................................................................................................................ ii FOREWORD ................................................................................................................................. iii ACKNOWLEDGMENTS .............................................................................................................. v TABLE OF CONTENTS ............................................................................................................... vi LIST OF FIGURES ..................................................................................................................... viii LIST OF TABLES ......................................................................................................................... ix ACRONYMS AND ABBREVIATIONS ...................................................................................... xi 1.0 EXECUTIVE SUMMARY ..................................................................................................... 1 2.0 INTRODUCTION AND BACKGROUND ............................................................................ 3 2.1 Clean Water Act ................................................................................................................... 6 2.2 International and State Guidelines ....................................................................................... 7 3.0 NATURE OF THE STRESSORS ......................................................................................... 15 3.1 Cyanobacteria and Cyanobacterial Blooms ....................................................................... 15 3.2 Cyanotoxins ........................................................................................................................ 21 3.2.1 Chemical and Physical Properties ............................................................................... 21 3.2.2 Sources and Occurrence .............................................................................................. 24 3.2.3 Environmental Fate ..................................................................................................... 30 3.2.4 Toxicokinetics ............................................................................................................. 33 4.0 PROBLEM FORMULATION .............................................................................................. 34 4.1 Conceptual Model .............................................................................................................. 34 4.2 Analysis Plan .....................................................................................................................
Recommended publications
  • Cyanobacterial Bioactive Molecules — an Overview of Their Toxic Properties
    701 REVIEW / SYNTHE` SE Cyanobacterial bioactive molecules — an overview of their toxic properties Pranita Jaiswal, Pawan Kumar Singh, and Radha Prasanna Abstract: Allelopathic interactions involving cyanobacteria are being increasingly explored for the pharmaceutical and en- vironmental significance of the bioactive molecules. Among the toxic compounds produced by cyanobacteria, the biosyn- thetic pathways, regulatory mechanisms, and genes involved are well understood, in relation to biotoxins, whereas the cytotoxins are less investigated. A range of laboratory methods have been developed to detect and identify biotoxins in water as well as the causal organisms; these methods vary greatly in their degree of sophistication and the information they provide. Direct molecular probes are also available to detect and (or) differentiate toxic and nontoxic species from en- vironmental samples. This review collates the information available on the diverse types of toxic bioactive molecules pro- duced by cyanobacteria and provides pointers for effective exploitation of these biologically and industrially significant prokaryotes. Key words: cyanobacteria, bioactive molecules, cyanotoxins, NRP (non-ribosomal peptide), biocontrol agent. Re´sume´ : Les effets alle´lopathiques des cyoanobacte´ries sont de plus en explore´s pour identifier les mole´cules bioactives importantes d’un point de vue pharmaceutique ou environnemental. Parmi les compose´s toxiques produits par les cyano- bacte´ries, les biotoxines sont bien connues quant aux voies, aux me´canismes re´gulateurs et aux ge`nes implique´s dans leur biosynthe`se, alors que les cytotoxines sont moins e´tudie´es. Une varie´te´ de me´thodes de laboratoire ont e´te´ de´veloppe´es afin de de´tecter et d’identifier les biotoxines de l’eau et les agents qui en sont responsables; elles diffe`rent grandement quant a` leur degre´ de sophistication et a` l’information qu’elles ge´ne`rent.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Occurrence of a Cyanobacterial Neurotoxin, Anatoxin-A, in New
    OCCURRENCE OF THE CYANOBACTERIAL NEUROTOXIN, ANATOXIN-A, IN NEW YORK STATE WATERS by Xingye Yang A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy Degree State University of New York College of Environmental Science and Forestry Syracuse, New York January 2007 Approved: Faculty of Chemistry ---------------------------------------------- ------------------------------------------------ Gregory L. Boyer, Major Professor William Shields, Chairperson, Examination Committee ------------------------------------------------ ------------------------------------------------- John P. Hassett, Faculty Chair Dudley J. Raynal, Dean, Instruction and Graduate Studies UMI Number: 3290535 Copyright 2008 by Yang, Xingye All rights reserved. UMI Microform 3290535 Copyright 2008 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 Acknowledgements I would like to express my sincerest gratitude to Dr. Gregory L. Boyer, my major professor and academic advisor for his guidance, support, and assistance over the past years. He has provided me with invaluable knowledge and skills. I thank Dr. David J. Kieber for his advice and instrument support. I acknowledge Dr. John P. Hassett for his support on both my research and my career. I appreciate Dr. Francis X. Webster for his help on chemical characterization. I thank Dr. James P. Nakas for advice on my career development. Thanks are also due to Dr. William Shields for serving as chairman of this examination committee. I appreciate critical reviews and comments on the thesis from all the examiners on this committee. I would like to thank Dr. Israel Cabasso and Dr.
    [Show full text]
  • Western Lake Erie Harmful Algal Blooms
    Harmful Algal Bloom Research Initiative Thomas Bridgeman, PhD University of Toledo Nov 30, 2016 Toledo Water Crisis, August 2014 Algal toxin in treated Toledo water exceeded 1.0 ug/L limit recommended by the WHO ‘Do not drink’ advisory Aug 2-4 500,000 residents temporarily without potable water Lake Erie Water Intake Toledo Blade CBS News Ohio Department of Higher Education Response Major algal groups in Lakes Diatoms Greens Blue-greens (Cyanobacteria) Common Harmful “Algae” (Cyanobacteria) Anabaena Aphanizomenon Microcystis (Dolichospermum) Planktothrix Lyngbya Lyngbya wollei and Microcystis sp. D. Hartsen T. Crail Why are harmful algae harmful? Microcystis toxins Planktothrix toxins Microcystin (FDF) Anatoxin Lyngbyatoxin Aplysiatoxin Anabaena toxins Lyngbya toxins Microcystin Saxitoxin Cylindrospermopsin Lyngbyatoxin Anatoxin (VFDF) Aplysiatoxin Saxitoxin Aphanizomenon toxins Cylindrospermopsin Anatoxin Saxitoxin Freshwater HABs are increasing worldwide Lake Taihu, China Lake Winnipeg Baltic Sea Lake Erie and Grand Lake St. Marys 13-Year Record of HABs August 2002 August 2003 Microcystis HABs in Lake Erie Western Lake Erie Harmful Algal Blooms 40000 35000 Catastrophic 30000 25000 20000 15000 Unacceptable 10000 5000 (ml/m2/y) Biovolume Microcystis Microcystis Biovolume (ml/m2/y) Biovolume Microcystis Acceptable 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2011 bloom from the International Space Station 2003 Michalak et al. 2013 2014: Winds and water currents concentrated the bloom along the Ohio shore Toledo Water Intake Not a Lake Problem, it’s a LAND problem Ohio Drainage Not just a Northern Ohio Problem Cincinnati Water Intake (H. Raymond, OEPA) The Greening of Lake Erie (Eutrophication) • Between1920 and 1964 Lake Erie algae biomass increased nearly 6 fold.
    [Show full text]
  • Chemical and Biological Study of Aplysiatoxin Derivatives Showing Inhibition of Potassium Cite This: RSC Adv.,2019,9,7594 Channel Kv1.5†
    RSC Advances View Article Online PAPER View Journal | View Issue Chemical and biological study of aplysiatoxin derivatives showing inhibition of potassium Cite this: RSC Adv.,2019,9,7594 channel Kv1.5† Yang-Hua Tang,‡ab Jing Wu,‡c Ting-Ting Fan,a Hui-Hui Zhang,a Xiao-Xia Gong,a Zheng-Yu Cao,e Jian Zhang,*c Hou-Wen Lin *d and Bing-Nan Han *a Three new aplysiatoxins, neo-debromoaplysiatoxin D (1), oscillatoxin E (2) and oscillatoxin F (3), accompanied by four known analogues (4–7), were identified from the marine cyanobacterium Lyngbya sp. Structural frames differ amongst these metabolites, and therefore we classified compounds 1 and 4– 6 as aplysiatoxins as they possess 6/12/6 and 6/10/6 tricyclic ring systems featuring a macrolactone ring, and compounds 2, 3 and 7 as oscillatoxins that feature a hexane-tetrahydropyran in a spirobicyclic system. Bioactivity experiments showed that compounds 1 and 4–6 presented significant expression of phosphor-PKCd whereas compounds 2, 5 and 7 showed the most potent blocking activity against Received 5th February 2019 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. potassium channel Kv1.5 with IC values of 0.79 Æ 0.032 mM, 1.28 Æ 0.080 mM and 1.47 Æ 0.138 mM, Accepted 25th February 2019 50 respectively. Molecular docking analysis supplementing the binding interaction of oscillatoxin E (2) and DOI: 10.1039/c9ra00965e oscillatoxin F (3) with Kv1.5 showed oscillatoxin E (2) with a strong binding affinity of À37.645 kcal molÀ1 À rsc.li/rsc-advances and oscillatoxin F (3) with a weaker affinity of À32.217 kcal mol 1, further supporting the experimental data.
    [Show full text]
  • Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices
    biosensors Review Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices Antonella Miglione 1 , Maria Napoletano 1 and Stefano Cinti 1,2,* 1 Department of Pharmacy, University Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; [email protected] (A.M.); [email protected] (M.N.) 2 BAT Center–Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University Naples Federico II, 80055 Naples, Italy * Correspondence: [email protected] Abstract: The adoption of electrochemical principles to realize on-field analytical tools for detecting pollutants represents a great possibility for food safety and environmental applications. With respect to the existing transduction mechanisms, i.e., colorimetric, fluorescence, piezoelectric etc., electrochemical mechanisms offer the tremendous advantage of being easily miniaturized, connected with low cost (commercially available) readers and unaffected by the color/turbidity of real matrices. In particular, their versatility represents a powerful approach for detecting traces of emerging pollutants such as cyanotoxins. The combination of electrochemical platforms with nanomaterials, synthetic receptors and microfabrication makes electroanalysis a strong starting point towards decentralized monitoring of toxins in diverse matrices. This review gives an overview of the electrochemical biosensors that have been developed to detect four common cyanotoxins, namely microcystin-LR, anatoxin-a, saxitoxin and cylindrospermopsin. The manuscript provides the readers a quick guide to understand the main electrochemical platforms that have been realized so far, and the presence of a comprehensive table provides a perspective at a glance. Keywords: electroanalysis; screen printed electrodes; voltammetry; impedance; aptamer; Citation: Miglione, A.; Napoletano, microcystin-LR; anatoxin-a; saxitoxin; cylindrospermopsin M.; Cinti, S. Electrochemical Biosensors for Tracing Cyanotoxins in Food and Environmental Matrices.
    [Show full text]
  • Author's Personal Copy
    Author's personal copy Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Encyclopedia of Toxicology. The copy attached is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research, and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution's administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial From Hambright, K.D., Zamor, R.M., Easton, J.D., Allison, B., 2014. Algae. In: Wexler, P. (Ed.), Encyclopedia of Toxicology, 3rd edition vol 1. Elsevier Inc., Academic Press, pp. 130–141. ISBN: 9780123864543 Copyright © 2014 Elsevier, Inc. unless otherwise stated. All rights reserved. Academic Press Author's personal copy Algae KD Hambright and RM Zamor, Plankton Ecology and Limnology Laboratory, University of Oklahoma Biological Station, and Program in Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK, USA JD Easton and B Allison, Plankton Ecology and Limnology Laboratory, University of Oklahoma Biological Station, University of Oklahoma, Kingston, OK, USA Ó 2014 Elsevier Inc. All rights reserved. This article is a revision of the previous edition article by Keiko Okamoto and Lora E. Fleming, volume 1, pp 68–76, Ó 2005, Elsevier Inc.
    [Show full text]
  • Running Head: CYANOBACTERIA, Β-METHYLAMINO-L-ALANINE
    Running head: CYANOBACTERIA, b-METHYLAMINO-L-ALANINE, AND NEURODEGENERATION Cyanobacteria, β-Methylamino-L-Alanine, and Neurodegeneration Jonathan Hunyadi Lourdes University CYANOBACTERIA, b-METHYLAMINO-L-ALANINE, AND NEURODEGENERATION 2 ABSTRACT Research has found a potential link between the non-proteinogenic amino acid b-methylamino-L-alanine (BMAA) and neurodegenerative diseases. First identified on the island of Guam with a rare form of amyotrophic lateral sclerosis (ALS) commonly called “Guam disease”, the source of BMAA was identified to be cyanobacteria. Due primarily to eutrophication, cyanobacteria can form large “algal blooms” within water bodies. A major concern during cyanobacterial blooms is the production of high concentrations of cyanotoxins such as BMAA. Cyanotoxin biosynthesis is dependent on the presence of specific genes as well as environmental regulating factors. Numerous techniques are capable of analyzing cyanobacteria and cyanotoxins which include: microscopy, pigment spectroscopy, polymerase chain reaction, microarrays, enzyme-linked immunosorbent assays, and liquid chromatography. Liquid chromatography is the primary technique used to analyze BMAA, however, there has been controversy regarding its detection within nervous tissue samples. While BMAAs role in neurodegeneration is unclear, dietary intake has been demonstrated to produce both b-amyloid plaques and tau tangles within Vervet monkeys, hallmarks of both Alzheimer’s disease and Guam disease. Two of the dominant hypothesized mechanisms of BMAA neurotoxicity are glutamate excitotoxicity, by which BMAA functions as a glutamate agonist causing endoplasmic reticulum stress and initiates a cascade leading to tau hyperphosphorylation, and protein incorporation, by which BMAA enters neurons and becomes mis-incorporated within proteins, leading to misfolding and aggregation. As a result of this research, alanine supplements have entered clinical trials for both Alzheimer’s disease and ALS to compete with BMAA in protein incorporation.
    [Show full text]
  • Debromoaplysiatoxin in Lyngbya-Dominated Mats on Manatees (Trichechus Manatus Latirostris) in the Florida King's Bay Ecosyst
    Toxicon 52 (2008) 385–388 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Short communication Debromoaplysiatoxin in Lyngbya-dominated mats on manatees (Trichechus manatus latirostris) in the Florida King’s Bay ecosystem Kendal E. Harr a,*, Nancy J. Szabo b, Mary Cichra c, Edward J. Phlips c a FVP Consultants, Inc., 7805 SW 19th Place, Gainesville, FL 32607, USA b Analytical Toxicology Core Laboratory, Center for Environmental & Human Toxicology, University of Florida, Box 110885, Gainesville, FL 32611, USA c Department of Fisheries and Aquatic Sciences, University of Florida, 7922 NW 71st Street, Gainesville, FL 32653, USA article info abstract Article history: Proliferation of the potentially toxic cyanobacterium, Lyngbya, in Florida lakes and rivers Received 10 March 2008 has raised concerns about ecosystem and human health. Debromoaplysiatoxin (DAT) Received in revised form 14 May 2008 was measured in concentrations up to 6.31 mg/g wet weight lyngbyatoxin A equivalents Accepted 15 May 2008 (WWLAE) in Lyngbya-dominated mats collected from natural substrates. DAT was also Available online 5 June 2008 detected (up to 1.19 mg/g WWLAE) in Lyngbya-dominated mats collected from manatee dorsa. Ulcerative dermatitis found on manatees is associated with, but has not been proven Keywords: to be caused by DAT. Debromoaplysiatoxin Dermatitis Ó 2008 Elsevier Ltd. All rights reserved. Lyngbya Manatee Florida Over the past century, widespread increases in Although the majority of research has focused on eutrophication rates have led to a global magnification of L. majuscula, two freshwater Lyngbya species are known harmful algal blooms in aquatic ecosystems (Hallegraeff, to be toxigenic, Lyngbya wollei (Carmichael et al., 1997) 1993; Phlips, 2002).
    [Show full text]
  • Neighborhood Lakes and Ponds Workshop
    Neighborhood Lakes and Ponds Workshop January 27th, 2016 ǀ 1:00AM to 4:30PM Rookery Bay NERR Education Center, Naples, FL Serge Thomas, Ph.D. Florida Gulf Coast University [email protected], 239-590-7148 7632 ponds in 2013 in Lee County Thomas, unpublished Thomas, unpublished Chapter 62-40 of the Florida Administrative Code Stormwater runoff to be slowed down in order to: prevent erosion allow siltation/sedimentation prior to reaching natural hydrosystems, promote soil filtration over adequate soils and thus permitting pollutant removal let the aquifer recharge to ultimately protect the delicate floral and faunal balances of the downstream coasts. Through Chapter 62-40, stormwater pollutants to be reduced by 80% with respect to the State Water Quality Standards and changed to 95% reduction when such stormwater emptied into an Outstanding Florida Waterway (OFW). • Removal of at least 80% of pollutant load for class III and 95% removal for class I and class II waters. (Livingston 1993). Reduction: • Total Suspended Solids (TSS) = 75 to 85% • Total Nitrogen (TN) = 37 to 60% • Total Phosphorus (TP) = 59 to 85% • Metals = 40 to 80% • Slow down water runoffs to the sea and rivers thus mimicking the original hydro-patterns (infiltration during the dry season & deliveries during the rainy months) Top-down control 10% Carnivores III 10% Carnivores II 10% Carnivores I 10% Grazers Primary producers Bottom-up Nutrients control The Good algae The Good algae … are the ones we cannot see Glacial lake appearance LIMITED NUTRIENTS The Good algae, HOWEVER, in S. Fl. … are the ones we CAN see!!! !!! LIMITED NUTRIENTS !!! The Key component are the healthy benthic algae (periphyton): The Key component are the healthy benthic algae (periphyton): “Periphyton is a complex community of microscopic organisms and especially algae that are adapted to remove the tiny bits of nutrients from the water.
    [Show full text]
  • Chemical and Biological Study of Novel Aplysiatoxin Derivatives from the Marine Cyanobacterium Lyngbya Sp
    toxins Article Chemical and Biological Study of Novel Aplysiatoxin Derivatives from the Marine Cyanobacterium Lyngbya sp. Hui-Hui Zhang 1 , Xin-Kai Zhang 1, Ran-Ran Si 2, Si-Cheng Shen 1, Ting-Ting Liang 3, Ting-Ting Fan 1, Wei Chen 1, Lian-Hua Xu 1,* and Bing-Nan Han 1,* 1 Department of Development Technology of Marine Resources, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] (H.-H.Z.); [email protected] (X.-K.Z.); [email protected] (S.-C.S.); [email protected] (T.-T.F.); [email protected] (W.C.) 2 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; [email protected] 3 School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China; [email protected] * Correspondence: [email protected] (L.-H.X.); [email protected] (B.-N.H.); Tel.: +86-571-8684-3303 (B.-N.H.) Received: 15 September 2020; Accepted: 20 November 2020; Published: 23 November 2020 Abstract: Since 1970s, aplysiatoxins (ATXs), a class of biologically active dermatoxins, were identified from the marine mollusk Stylocheilus longicauda, whilst further research indicated that ATXs were originally metabolized by cyanobacteria. So far, there have been 45 aplysiatoxin derivatives discovered from marine cyanobacteria with various geographies. Recently, we isolated two neo-debromoaplysiatoxins, neo-debromoaplysiatoxin G (1) and neo-debromoaplysiatoxin H (2) from the cyanobacterium Lyngbya sp. collected from the South China Sea. The freeze-dried cyanobacterium was extracted with liquid–liquid extraction of organic solvents, and then was subjected to multiple chromatographies to yield neo-debromoaplysiatoxin G (1) (3.6 mg) and neo-debromoaplysiatoxin H(2) (4.3 mg).
    [Show full text]
  • Cyanobacteria and Cyanotoxins: from Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects
    Toxins 2013, 5, 1896-1917; doi:10.3390/toxins5101896 OPEN ACCESS toxins ISSN 2072-6651 www.mdpi.com/journal/toxins Review Cyanobacteria and Cyanotoxins: From Impacts on Aquatic Ecosystems and Human Health to Anticarcinogenic Effects Giliane Zanchett and Eduardo C. Oliveira-Filho * Universitary Center of Brasilia—UniCEUB—SEPN 707/907, Asa Norte, Brasília, CEP 70790-075, Brasília, Brazil; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +55-61-3388-9894. Received: 11 August 2013; in revised form: 15 October 2013 / Accepted: 17 October 2013 / Published: 23 October 2013 Abstract: Cyanobacteria or blue-green algae are among the pioneer organisms of planet Earth. They developed an efficient photosynthetic capacity and played a significant role in the evolution of the early atmosphere. Essential for the development and evolution of species, they proliferate easily in aquatic environments, primarily due to human activities. Eutrophic environments are conducive to the appearance of cyanobacterial blooms that not only affect water quality, but also produce highly toxic metabolites. Poisoning and serious chronic effects in humans, such as cancer, have been described. On the other hand, many cyanobacterial genera have been studied for their toxins with anticancer potential in human cell lines, generating promising results for future research toward controlling human adenocarcinomas. This review presents the knowledge that has evolved on the topic of toxins produced by cyanobacteria, ranging from their negative impacts to their benefits. Keywords: cyanobacteria; proliferation; cyanotoxins; toxicity; cancer 1. Introduction Cyanobacteria or blue green algae are prokaryote photosynthetic organisms and feature among the pioneering organisms of planet Earth.
    [Show full text]