Leon Hartman Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Leon Hartman Thesis ! ! ! "#$%&'(#)%*$!*+!&,*-#,.*)%/!/*00'$%)%12! %$!)31!/*,#(!0*41(!*,5#$%206! !"#$%&#'$#()$#%*#+#! ! ! 7!)312%2!2'80%))14!+*,!)31!415,11!*+!9*/)*,!*+!:3%(*2*&3.! ;'$1!<=<=! ! !"#$%&'()*'$% ! ! :,%$/%&#(!2'&1,>%2*,?!:,*+122*,!@%$4#!A(#/-#((!! 722*/%#)1!2'&1,>%2*,2?!:,*+122*,!"#41(1%$1!>#$!B&&1$! ! :,*+122*,!9#0%1$!C%/-2! ! ! +,-)('.)! D*,#(! ,11+2! 3#>1! 2'2)#%$14! 4#0#51! *+! %$/,1#2%$5! 2/#(1! #$4! +,1E'1$/.! 4'1! )*! )31! 0#$%+12)#)%*$2!*+!/(%0#)1!/3#$516!0*2)!$*)#8(.!%$/,1#214!21#!2',+#/1!)10&1,#)',16!(1#4%$5! )*! )31! 8,1#-4*F$! *+! /*,#(2G! %$),#/1(('(#,! 2.08%*2%2! F%)3! 4%$*+(#51((#)1! #(5#1! *+! )31! +#0%(.! ,-./$0)$+$#12#2! %H1H6! 8(1#/3%$5H! I3%2! 3#2! %$)1$2%+%14! )31! $114! )*! '$41,2)#$4! #$4! 1$3#$/1! /*,#(!)31,0#(!)*(1,#$/1H!I31!21#!#$10*$16!!"#$%&#'$#()$#%*#+#6!3#2!&,*>1$!#$!%41#(!0*41(! +*,!0#$.!/*,#(!2)'4%12!4'1!)*!%)2!/(*21!&3.(*51$1)%/!,1(#)%*$23%&!#$4!23#,14!),#%)26!&#,)%/'(#,(.! %)2! 2.08%*2%2! F%)3! ,-./$0)$+$#12#2H! C*F1>1,6! 12)#8(%2314! !3()$#%*#+#( /(*$#(! (%$12! #,1! $*)! #>#%(#8(1!%$!7'2),#(%#6!)3'2!(%0%)%$5!)31!#8%(%).!*+!7'2),#(%#$!2/%1$)%2)2!)*!/*$4'/)!,121#,/3!F%)3! )3%2!0*41(H!D'()',12!*+!!3()$#%*#+#!*,%5%$#((.!2*',/14!+,*0!)31!J,1#)!A#,,%1,!K11+!LJAKM!3#>1! 811$!12)#8(%2314!#)!I31!N$%>1,2%).!*+!"1(8*',$1!LN*"M6!7'2),#(%#6!)*!#44,122!)3%2!5#&H! O$!)3%2!)312%26!O!412/,%81!F*,-!'$41,)#-1$!)*!%$>12)%5#)1!)31!8#/)1,%#(!#22*/%#)12!*+!!3()$#%*#+#! #2! %)! 3#2! 811$! 3.&*)312%214! )3#)! )3121! 3*(*8%*$)! 01081,2! %$+('1$/1! /$%4#,%#$! )31,0#(! )*(1,#$/1H!7$10*$12!+,*0!)31!N*"!!3()$#%*#+#!/*((1/)%*$!F1,1!'214!)*!)12)!)3%2!3.&*)312%2! #$4!)*!#%4!)31%,!41>1(*&01$)!#2!7'2),#(%#$!/*,#(!0*41(2H!P%,2)6!)31!8#/)1,%#(!#22*/%#)12!*+!+*',! N*"!!3()$#%*#+#!51$*).&12!F1,1!/3#,#/)1,%214!8.!01)#8#,/*4%$5!*+!)31!QRS!,KT7!51$12!)*! &,*>%41!8#21(%$1!8#/)1,%#(!0%/,*8%*01!4#)#6!#$4!)*!#22122!)31!2%0%(#,%).!*+!)31!51$*).&12!)*! )31!1U%2)%$5!0*41(2!#$4!1#/3!*)31,H!S1/*$46!)31!%$+('1$/1!*+!)31,0#(!2),122!*$!)31!8#/)1,%#(! /*00'$%)%12!*+!*$1!51$*).&1!F#2!1U&(*,146!#5#%$!8.!01)#8#,/*4%$5H!I3%,46!)31!+1#2%8%(%).!*+! 51$1,#)%$5! 5$*)*8%*)%/! !3()$#%*#+#! /'()',12! 8.! #$)%8%*)%/! 1U&*2',1! F#2! )12)146! 2%$/1! 5$*)*8%*)12!/*'(4!31(&!1U&(#%$!)31!,*(12!*+!8#/)1,%#!%$!/$%4#,%#$!31#()3!#$4!)31,0#(!)*(1,#$/1H! P%$#((.6!!3()$#%*#+#!F1,1!%$*/'(#)14!F%)3!+,11!,#4%/#(!2/#>1$5%$5!8#/)1,%#!81+*,1!1U&*2',1!)*! )31,0#(!2),122!)*!41)1,0%$1!F31)31,!&,*8%*)%/!%$*/'(#)%*$!/*'(4!0%)%5#)1!8(1#/3%$5H! 7//*,4%$5!)*!0.!+%$4%$526!8#/)1,%#(!/*00'$%)%12!*+!JAKV*,%5%$!!3()$#%*#+#!51$*).&12!#,1!$*)! 2%5$%+%/#$)(.! 4%++1,1$)! +,*0! 1#/3! *)31,! #$4! #,1! /*0&#,#8(1! )*! )3*21! *+! *)31,! !3()$#%*#+#! 0*41(2H!W$>%,*$01$)#(!2),122*,2!4,%>1!/3#$512!%$!!3()$#%*#+#G2!8#/)1,%#(!/*00'$%)%126!8')! )31!/*00'$%)%12!#,1!51$1,#((.!2)#8(1!'$41,!)31,0#(!2),122!'$)%(!#!)10&1,#)',1!)3,123*(4!%2! 1U/11414H!X3%(2)!#$)%8%*)%/!),1#)01$)!2%5$%+%/#$)(.!,14'/12!8#/)1,%#(!(*#46!%)!4*12!$*)!51$1,#)1! ),'1! !3()$#%*#+#! 5$*)*8%*)12H! I31! #8%(%).! *+! &,*8%*)%/! %$*/'(#)%*$! )*! 0%)%5#)1! 8(1#/3%$5! %$! )31,0#((.!2),12214!!3()$#%*#+#!%2!'$/(1#,!4'1!)*!$*$V,1)1$)%*$!*+!&,*8%*)%/!8#/)1,%#!%$!)31! ),1#)14!#$10*$12H!I31,1+*,16!#//*,4%$5!)*!)3%2!F*,-!)31!3.&*)312%2!*+!8#/)1,%#(!%$+('1$/1!*$! ! %! ! /$%4#,%#$! )31,0#(! )*(1,#$/1! ,10#%$2! '$&,*>1$H! T1>1,)31(1226! )3121! +%$4%$52! %0&,*>1! *',! '$41,2)#$4%$5!*+!/$%4#,%#$!0%/,*8%*01!4.$#0%/2!#$4!#4>#$/1!)31!,1/1$)(.!12)#8(%2314!JAKV *,%5%$!!3()$#%*#+#!/'()',12!#2!0*41(2!+*,!/*,#(!,121#,/3!%$!7'2),#(%#H! ! ! ! %%! ! +./$#01"23*"$)-% 45#(&2(*676*676(&2(.#+6(8#(72729( O)!%2!)31!+1#)31,2!)3#)!#((*F!)31!8%,4!)*!+(.! Y!"#*,%!&,*>1,8!Y! ! O!F*'(4!+%,2)!(%-1!)*!)3#$-!0.!2'&1,>%2*,6!:,*+!A(#/-#((6!+*,!&,*>%4%$5!)3%2!*&&*,)'$%).H!".!:39! 3#2!%)2!,**)2!%$!31,!81(%1+!%$!016!+*,!F3%/3!O!#0!>1,.!5,#)1+'(H!O!F*'(4!#(2*!(%-1!)*!)3#$-!:,*+! >#$!B&&1$!+*,!31,!%$>#('#8(1!%$&')!#$4!5'%4#$/1!*>1,!)31!(#2)!)3,11!.1#,2H! 7!3%53(%53)!*+!0.!,121#,/3!1U&1,%1$/1!3#2!811$!)31!/*((15%#(%).!O!3#>1!1$Z*.14!F%)3!2*!0#$.! (#8!01081,26!#$4!)31!2'&&*,)!)31.!3#>1!5%>1$!01H!I3%2!%$/('412!0.!+,%1$42!+,*0!SF%$8',$1! N$%>1,2%).[!C'536!A1$6!C*#$56!#$4!7(1U6!#$4!+,*0!I31!N$%>1,2%).!*+!"1(8*',$1[!J%#4#6!S#06! J%'(%#6!@*'%26!K*.6!S*&3%16!K'8.6!C%23#06!K*23#$6!:#),%/-6!\1,1$6!;'2)%$!#$4!X%$5H!O!,121,>1!#! 2&1/%#(!)3#$-!.*'!)*!723(1.!+*,!31,!+,%1$423%&6!#22%2)#$/16!#$4!(1#41,23%&!*+!)31!5,*'&H! O!F*'(4!#(2*!(%-1!)*!#/-$*F(1451!C#$$#3!#$4!\#)!+*,!31(&%$5!)*!41>1(*&!01)3*42!'214!8.!)31! 5,*'&6!#$4!\#)!#5#%$!+*,!*',!0')'#(!0*,#(1V8**2)%$5!1U/3#$512H! O!F*'(4!(%-1!)*!1U&,122!0.!5,#)%)'41!)*!)31!)1/3$%/%#$2!F3*!0#41!0.!(%+1!1#2%1,!81/#'21!)31.! 4*$G)!Z'2)!)#(-!)31!)#(-6!8')!#(2*!F#(-!)31!F#(-?!K181//#6!;#2*$6!S)1&31$!#$4!P,#$/#H!I31.!F1,1! #((!51$1,*'2!F%)3!)31%,!)%01!#$4!1U&1,)!#4>%/1H! ".!)%01!#)!)31!"#U!:(#$/-!O$2)%)')1!+*,!"#,%$1!"%/,*8%*(*5.!F#2!)31!3%53(%53)!*+!0.!:39H! I31,1+*,16!O!)3#$-!0.!3*2)6!:%1,6!+*,!0#-%$5!)3%2!#!2&1/%#(!1U&1,%1$/1!)3,*'53!3%2!&#)%1$/16! 51$1,*2%).!#$4!+,%1$423%&6!#$4!+*,!2)#,)%$5!01!*$!0.!K!Z*',$1.H! P%$#((.6!O!414%/#)1!)3%2!F*,-!)*!0.!0*)31,6!+#)31,!#$4!2%2)1,!F3*!3#>1!#(F#.2!811$!)31,1!+*,! 01!F%)3!(*>1!#$4!2'&&*,)6!#$4!)*!@*'%21!F3*21!(*>1!#$4!&*2%)%>%).!-1&)!01!5*%$5!)3,*'53!)31! 3%532!#$4!(*F2H! ! ! ! %%%! ! 4".1'(')5#$% O!31,18.!41/(#,1!)3#)!)3%2!2'80%22%*$!%2!0.!*F$!F*,-!#$4!)*!)31!812)!*+!0.!-$*F(1451!%)! /*$)#%$2! $*! 0#)1,%#(2! &,1>%*'2(.! &'8(%2314! *,! F,%))1$! 8.! #$*)31,! &1,2*$6! *,! 2'82)#$)%#(! &,*&*,)%*$2! *+! 0#)1,%#(! F3%/3! 3#>1! 811$! #//1&)14! +*,! )31! #F#,4! *+! #$.! *)31,! 415,11! *,! 4%&(*0#! #)! SF%$8',$1! *,! #$.! *)31,! 14'/#)%*$#(! %$2)%)')%*$6! 1U/1&)! F31,1! 4'1! #/-$*F(145101$)! %2! 0#41! %$! )31! 0#$'2/,%&)H! 7$.! /*$),%8')%*$! 0#41! )*! )31! ,121#,/3! 8.! *)31,26!F%)3!F3*0!O!3#>1!F*,-14!#)!SF%$8',$1!*,!1(21F31,16!%2!1U&(%/%)(.!#/-$*F(14514!%$! )31!,1&*,)H!O!#(2*!41/(#,1!)3#)!)31!%$)1((1/)'#(!/*$)1$)!*+!)3%2!,1&*,)!%2!)31!&,*4'/)!*+!0.!*F$! F*,-6!1U/1&)!)*!)31!1U)1$)!)3#)!#22%2)#$/1!+,*0!*)31,2!%$!)31!&,*Y1/)\2!412%5$!#$4!/*$/1&)%*$! *,!%$!2).(16!&,121$)#)%*$!#$4!(%$5'%2)%/!1U&,122%*$!%2!#/-$*F(14514H! ! ! ! S%5$14?!! 9#)1?!<]!;#$'#,.!<=<=! ! ! ! ! %>! ! 6',1"%#7%8#$)"$)-% +,-)('.)%99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%5! +./$#01"23*"$)-%99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%555! 4".1'(')5#$%9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%5:! 6',1"%#7%8#$)"$)-%9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%:! !5-)%#7%;53<("-%9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%:555! !5-)%#7%6',1"-%9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%=5! 8>'?)"(%@A%B"$"('1%5$)(#2<.)5#$%999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999%@! QHQ!D*,#(!,11+2!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q! QH<!I31!/*,#(!*,5#$%20!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!<! QH^!D*,#(!2.08%*212!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!^! QH^HQ!S.08%*4%$%#/1#1!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!^! QH^H<!A#/)1,%#!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!_! QH^H^!A#/)1,%#(!+'$/)%*$2?!:#)3*51$!&,*)1/)%*$!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!]! QH^H_!A#/)1,%#(!+'$/)%*$2?!T'),%1$)!/./(%$5!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!`! QH^Ha!A#/)1,%#(!+'$/)%*$2?!C*2)!41>1(*&01$)!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q=! QH_!O0&#/)2!*$!/*,#(!,11+2!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!QQ! QH_HQ!T#)',#(!1>1$)2!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!QQ! QH_H<!C'0#$!#/)%>%).!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!QQ! QHa!S*(')%*$2!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q_! QHaHQ!D(%0#)1!/3#$51!0%)%5#)%*$!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q_! QHaH<!722%2)14!1>*(')%*$!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Qa! QHR!D$%4#,%#$!0*41(!#$%0#(2!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!QR! QHRHQ(4-)5#!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q]! QHRH<(62.#&0'&277#(821&2+'$'!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q]! QHRH^(9$%&#'$#(%#77$)#!HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH!Q`!
Recommended publications
  • Appendix to Taxonomic Revision of Leopold and Rudolf Blaschkas' Glass Models of Invertebrates 1888 Catalogue, with Correction
    http://www.natsca.org Journal of Natural Science Collections Title: Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities Author(s): Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud Source: Callaghan, E., Egger, B., Doyle, H., & E. G. Reynaud. (2020). Appendix to Taxonomic revision of Leopold and Rudolf Blaschkas’ Glass Models of Invertebrates 1888 Catalogue, with correction of authorities. Journal of Natural Science Collections, Volume 7, . URL: http://www.natsca.org/article/2587 NatSCA supports open access publication as part of its mission is to promote and support natural science collections. NatSCA uses the Creative Commons Attribution License (CCAL) http://creativecommons.org/licenses/by/2.5/ for all works we publish. Under CCAL authors retain ownership of the copyright for their article, but authors allow anyone to download, reuse, reprint, modify, distribute, and/or copy articles in NatSCA publications, so long as the original authors and source are cited. TABLE 3 – Callaghan et al. WARD AUTHORITY TAXONOMY ORIGINAL SPECIES NAME REVISED SPECIES NAME REVISED AUTHORITY N° (Ward Catalogue 1888) Coelenterata Anthozoa Alcyonaria 1 Alcyonium digitatum Linnaeus, 1758 2 Alcyonium palmatum Pallas, 1766 3 Alcyonium stellatum Milne-Edwards [?] Sarcophyton stellatum Kükenthal, 1910 4 Anthelia glauca Savigny Lamarck, 1816 5 Corallium rubrum Lamarck Linnaeus, 1758 6 Gorgonia verrucosa Pallas, 1766 [?] Eunicella verrucosa 7 Kophobelemon (Umbellularia) stelliferum
    [Show full text]
  • Dilution-To-Extinction Culturing of SAR11 Members and Other Marine Bacteria from the Red Sea
    Dilution-to-extinction culturing of SAR11 members and other marine bacteria from the Red Sea Thesis written by Roslinda Mohamed In Partial Fulfillment of the Requirements For the Degree of Master of Science (MSc.) in Marine Science King Abdullah University of Science and Technology Thuwal, Kingdom of Saudi Arabia December 2013 2 The thesis of Roslinda Mohamed is approved by the examination committee. Committee Chairperson: Ulrich Stingl Committee Co-Chair: NIL Committee Members: Pascal Saikaly David Ngugi King Abdullah University of Science and Technology 2013 3 Copyright © December 2013 Roslinda Mohamed All Rights Reserved 4 ABSTRACT Dilution-to-extinction culturing of SAR11 members and other marine bacteria from the Red Sea Roslinda Mohamed Life in oceans originated about 3.5 billion years ago where microbes were the only life form for two thirds of the planet’s existence. Apart from being abundant and diverse, marine microbes are involved in nearly all biogeochemical processes and are vital to sustain all life forms. With the overgrowing number of data arising from culture-independent studies, it became necessary to improve culturing techniques in order to obtain pure cultures of the environmentally significant bacteria to back up the findings and test hypotheses. Particularly in the ultra-oligotrophic Red Sea, the ubiquitous SAR11 bacteria has been reported to account for more than half of the surface bacterioplankton community. It is therefore highly likely that SAR11, and other microbial life that exists have developed special adaptations that enabled them to thrive successfully. Advances in conventional culturing have made it possible for abundant, unculturable marine bacteria to be grown in the lab.
    [Show full text]
  • Desulfuribacillus Alkaliarsenatis Gen. Nov. Sp. Nov., a Deep-Lineage
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Extremophiles (2012) 16:597–605 DOI 10.1007/s00792-012-0459-7 ORIGINAL PAPER Desulfuribacillus alkaliarsenatis gen. nov. sp. nov., a deep-lineage, obligately anaerobic, dissimilatory sulfur and arsenate-reducing, haloalkaliphilic representative of the order Bacillales from soda lakes D. Y. Sorokin • T. P. Tourova • M. V. Sukhacheva • G. Muyzer Received: 10 February 2012 / Accepted: 3 May 2012 / Published online: 24 May 2012 Ó The Author(s) 2012. This article is published with open access at Springerlink.com Abstract An anaerobic enrichment culture inoculated possible within a pH range from 9 to 10.5 (optimum at pH with a sample of sediments from soda lakes of the Kulunda 10) and a salt concentration at pH 10 from 0.2 to 2 M total Steppe with elemental sulfur as electron acceptor and for- Na? (optimum at 0.6 M). According to the phylogenetic mate as electron donor at pH 10 and moderate salinity analysis, strain AHT28 represents a deep independent inoculated with sediments from soda lakes in Kulunda lineage within the order Bacillales with a maximum of Steppe (Altai, Russia) resulted in the domination of a 90 % 16S rRNA gene similarity to its closest cultured Gram-positive, spore-forming bacterium strain AHT28. representatives. On the basis of its distinct phenotype and The isolate is an obligate anaerobe capable of respiratory phylogeny, the novel haloalkaliphilic anaerobe is suggested growth using elemental sulfur, thiosulfate (incomplete as a new genus and species, Desulfuribacillus alkaliar- T T reduction) and arsenate as electron acceptor with H2, for- senatis (type strain AHT28 = DSM24608 = UNIQEM mate, pyruvate and lactate as electron donor.
    [Show full text]
  • Development of a Free Radical Scavenging Probiotic to Mitigate Coral Bleaching
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Title: Development of a free radical scavenging probiotic to mitigate coral bleaching 2 Running title: Making a probiotic to mitigate coral bleaching 3 4 Ashley M. Dungana#, Dieter Bulachb, Heyu Linc, Madeleine J. H. van Oppena,d, Linda L. Blackalla 5 6 aSchool of Biosciences, The University of Melbourne, Melbourne, VIC, Australia 7 bMelbourne Bioinformatics, The University of Melbourne, Melbourne, VIC, Australia 8 cSchool of Earth Sciences, The University of Melbourne, Melbourne, VIC, Australia 9 dAustralian Institute of Marine Science, Townsville, QLD, Australia 10 11 12 #Address correspondence to Ashley M. Dungan, [email protected] 13 14 Abstract word count: 211 words 15 Text word count: 4838 words 16 17 Keywords: symbiosis, Exaiptasia diaphana, Exaiptasia pallida, probiotic, antioxidant, ROS, 18 Symbiodiniaceae, bacteria 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.07.02.185645; this version posted July 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 19 ABSTRACT 20 Corals are colonized by symbiotic microorganisms that exert a profound influence on the 21 animal’s health.
    [Show full text]
  • Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship Between Total Bacterial Diversity and Actinobacteria Diversity
    Mar. Drugs 2014, 12, 899-925; doi:10.3390/md12020899 OPEN ACCESS marine drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Article Bioprospecting from Marine Sediments of New Brunswick, Canada: Exploring the Relationship between Total Bacterial Diversity and Actinobacteria Diversity Katherine Duncan 1, Bradley Haltli 2, Krista A. Gill 2 and Russell G. Kerr 1,2,* 1 Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mail: [email protected] 2 Department of Chemistry, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; E-Mails: [email protected] (B.H.); [email protected] (K.A.G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-902-566-0565; Fax: +1-902-566-7445. Received: 13 November 2013; in revised form: 7 January 2014 / Accepted: 21 January 2014 / Published: 13 February 2014 Abstract: Actinomycetes are an important resource for the discovery of natural products with therapeutic properties. Bioprospecting for actinomycetes typically proceeds without a priori knowledge of the bacterial diversity present in sampled habitats. In this study, we endeavored to determine if overall bacterial diversity in marine sediments, as determined by 16S rDNA amplicon pyrosequencing, could be correlated with culturable actinomycete diversity, and thus serve as a powerful tool in guiding future bioprospecting efforts. Overall bacterial diversity was investigated in eight marine sediments from four sites in New Brunswick, Canada, resulting in over 44,000 high quality sequences (x̄ = 5610 per sample). Analysis revealed all sites exhibited significant diversity (H’ = 5.4 to 6.7).
    [Show full text]
  • Kaistella Soli Sp. Nov., Isolated from Oil-Contaminated Soil
    A001 Kaistella soli sp. nov., Isolated from Oil-contaminated Soil Dhiraj Kumar Chaudhary1, Ram Hari Dahal2, Dong-Uk Kim3, and Yongseok Hong1* 1Department of Environmental Engineering, Korea University Sejong Campus, 2Department of Microbiology, School of Medicine, Kyungpook National University, 3Department of Biological Science, College of Science and Engineering, Sangji University A light yellow-colored, rod-shaped bacterial strain DKR-2T was isolated from oil-contaminated experimental soil. The strain was Gram-stain-negative, catalase and oxidase positive, and grew at temperature 10–35°C, at pH 6.0– 9.0, and at 0–1.5% (w/v) NaCl concentration. The phylogenetic analysis and 16S rRNA gene sequence analysis suggested that the strain DKR-2T was affiliated to the genus Kaistella, with the closest species being Kaistella haifensis H38T (97.6% sequence similarity). The chemotaxonomic profiles revealed the presence of phosphatidylethanolamine as the principal polar lipids;iso-C15:0, antiso-C15:0, and summed feature 9 (iso-C17:1 9c and/or C16:0 10-methyl) as the main fatty acids; and menaquinone-6 as a major menaquinone. The DNA G + C content was 39.5%. In addition, the average nucleotide identity (ANIu) and in silico DNA–DNA hybridization (dDDH) relatedness values between strain DKR-2T and phylogenically closest members were below the threshold values for species delineation. The polyphasic taxonomic features illustrated in this study clearly implied that strain DKR-2T represents a novel species in the genus Kaistella, for which the name Kaistella soli sp. nov. is proposed with the type strain DKR-2T (= KACC 22070T = NBRC 114725T). [This study was supported by Creative Challenge Research Foundation Support Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF- 2020R1I1A1A01071920).] A002 Chitinibacter bivalviorum sp.
    [Show full text]
  • The Sea Anemone Exaiptasia Diaphana (Actiniaria: Aiptasiidae) Associated to Rhodoliths at Isla Del Coco National Park, Costa Rica
    The sea anemone Exaiptasia diaphana (Actiniaria: Aiptasiidae) associated to rhodoliths at Isla del Coco National Park, Costa Rica Fabián H. Acuña1,2,5*, Jorge Cortés3,4, Agustín Garese1,2 & Ricardo González-Muñoz1,2 1. Instituto de Investigaciones Marinas y Costeras (IIMyC). CONICET - Facultad de Ciencias Exactas y Naturales. Universidad Nacional de Mar del Plata. Funes 3250. 7600 Mar del Plata. Argentina, [email protected], [email protected], [email protected]. 2. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). 3. Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Ciudad de la Investigación, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica. 4. Escuela de Biología, Universidad de Costa Rica, San Pedro, 11501-2060 San José, Costa Rica, [email protected] 5. Estación Científica Coiba (Coiba-AIP), Clayton, Panamá, República de Panamá. * Correspondence Received 16-VI-2018. Corrected 14-I-2019. Accepted 01-III-2019. Abstract. Introduction: The sea anemones diversity is still poorly studied in Isla del Coco National Park, Costa Rica. Objective: To report for the first time the presence of the sea anemone Exaiptasia diaphana. Methods: Some rhodoliths were examined in situ in Punta Ulloa at 14 m depth, by SCUBA during the expedition UCR- UNA-COCO-I to Isla del Coco National Park on 24th April 2010. Living anemones settled on rhodoliths were photographed and its external morphological features and measures were recorded in situ. Results: Several indi- viduals of E. diaphana were observed on rodoliths and we repeatedly observed several small individuals of this sea anemone surrounding the largest individual in an area (presumably the founder sea anemone) on rhodoliths from Punta Ulloa.
    [Show full text]
  • Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity Between Symbiodinium Spp
    ORIGINAL RESEARCH published: 18 April 2016 doi: 10.3389/fphys.2016.00128 Partitioning of Respiration in an Animal-Algal Symbiosis: Implications for Different Aerobic Capacity between Symbiodinium spp. Thomas D. Hawkins *, Julia C. G. Hagemeyer, Kenneth D. Hoadley, Adam G. Marsh and Mark E. Warner * College of Earth, Ocean and Environment, School of Marine Science and Policy, University of Delaware, Lewes, DE, USA Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, Edited by: such as the partitioning of total respiration between the host and symbiont, remains Graziano Fiorito, Stazione Zoologica Anton Dohrn, Italy incomplete. Specifically, we know little about how the relationship between host and Reviewed by: symbiont respiration varies between different holobionts (host-symbiont combinations). Daniel Wangpraseurt, We applied molecular and biochemical techniques to investigate aerobic respiratory University of Copenhagen, Denmark capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals Susana Enríquez, Universidad Nacional Autónoma de infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of México, Mexico Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, *Correspondence: and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host Thomas D. Hawkins [email protected]; mitochondrial copy number, were reliable predictors of holobiont respiration. There Mark E. Warner was a positive association between symbiont density and host CS specific activity [email protected] (mg protein−1), and a negative correlation between host- and symbiont CS specific Specialty section: activities. Notably, partitioning of total CS activity between host and symbiont in this This article was submitted to natural E.
    [Show full text]
  • The Subway Microbiome: Seasonal Dynamics and Direct Comparison Of
    Gohli et al. Microbiome (2019) 7:160 https://doi.org/10.1186/s40168-019-0772-9 RESEARCH Open Access The subway microbiome: seasonal dynamics and direct comparison of air and surface bacterial communities Jostein Gohli1* , Kari Oline Bøifot1,2, Line Victoria Moen1, Paulina Pastuszek3, Gunnar Skogan1, Klas I. Udekwu4 and Marius Dybwad1,2 Abstract Background: Mass transit environments, such as subways, are uniquely important for transmission of microbes among humans and built environments, and for their ability to spread pathogens and impact large numbers of people. In order to gain a deeper understanding of microbiome dynamics in subways, we must identify variables that affect microbial composition and those microorganisms that are unique to specific habitats. Methods: We performed high-throughput 16S rRNA gene sequencing of air and surface samples from 16 subway stations in Oslo, Norway, across all four seasons. Distinguishing features across seasons and between air and surface were identified using random forest classification analyses, followed by in-depth diversity analyses. Results: There were significant differences between the air and surface bacterial communities, and across seasons. Highly abundant groups were generally ubiquitous; however, a large number of taxa with low prevalence and abundance were exclusively present in only one sample matrix or one season. Among the highly abundant families and genera, we found that some were uniquely so in air samples. In surface samples, all highly abundant groups were also well represented in air samples. This is congruent with a pattern observed for the entire dataset, namely that air samples had significantly higher within-sample diversity. We also observed a seasonal pattern: diversity was higher during spring and summer.
    [Show full text]
  • Feasibility of Bacterial Probiotics for Mitigating Coral Bleaching
    Feasibility of bacterial probiotics for mitigating coral bleaching Ashley M. Dungan ORCID: 0000-0003-0958-2177 Thesis submitted in total fulfilment of the requirements of the degree of Doctor of Philosophy September 2020 School of BioSciences The University of Melbourne Declaration This is to certify that: 1. This thesis comprises only of my original work towards the PhD, except where indicated in the preface. 2. Due acknowledgements have been made in the text to all other material used. 3. The thesis is under 100,000 words, exclusive of tables, bibliographies, and appendices. Signed: Date: 11 September 2020 ii General abstract Given the increasing frequency of climate change driven coral mass bleaching and mass mortality events, intervention strategies aimed at enhancing coral thermal tolerance (assisted evolution) are urgently needed in addition to strong action to reduce carbon emissions. Without such interventions, coral reefs will not survive. The seven chapters in my thesis explore the feasibility of using a host-sourced bacterial probiotic to mitigate bleaching starting with a history of reactive oxygen species (ROS) as a biological explanation for bleaching (Chapter 1). In part because of the difficulty to experimentally manipulate corals post-bleaching, I use Great Barrier Reef (GBR)-sourced Exaiptasia diaphana as a model organism for this system, which I describe in Chapter 2. The comparatively high levels of physiological and genetic variability among GBR anemone genotypes make these animals representatives of global E. diaphana diversity and thus excellent model organisms. The ‘oxidative stress theory for coral bleaching’ provides rationale for the development of a probiotic with a high free radical scavenging ability.
    [Show full text]
  • Zoologische Verhandelingen
    Corals of the South-west Indian Ocean: VI. The Alcyonacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs Y. Benayahu, A. Shlagman & M.H. Schleyer Benayahu, Y., A. Shlagman & M.H. Schleyer. Corals of the South-west Indian Ocean: VI. The Alcyo- nacea (Octocorallia) of Mozambique, with a discussion on soft coral distribution on south equatorial East African reefs. Zool. Verh. Leiden 345, 31.x.2003: 49-57, fig. 1.— ISSN 0024-1652/ISBN 90-73239-89-3. Y. Benayahu & A. Shlagman. Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel (e-mail: [email protected]). M.H. Schleyer. Oceanographic Research Institute, P.O. Box 10712, Marine Parade 4056, Durban, South Africa. Key words: Mozambique; East African reefs; Octocorallia; Alcyonacea. A list of 46 species of Alcyonacea is presented for the coral reefs of the Segundas Archipelago and north- wards in Mozambique, as well as a zoogeographical record for the Bazaruto Archipelago in southern Mozambique. Among the 12 genera listed, Rhytisma, Lemnalia and Briareum were recorded on Mozambi- can reefs for the first time and the study yielded 27 new zoogeographical records. The survey brings the number of soft coral species listed for Mozambique to a total of 53. A latitudinal pattern in soft coral diversity along the south equatorial East African coast is presented, with 46 species recorded in Tanza- nia, 46 along the northern coast of Mozambique, dropping to 29 in the Bazaruto Archipelago in southern Mozambique and rising again to 38 along the KwaZulu-Natal coast in South Africa.
    [Show full text]
  • Changes in Multi-Level Biodiversity and Soil Features in a Burned Beech Forest in the Southern Italian Coastal Mountain
    Article Changes in Multi-Level Biodiversity and Soil Features in a Burned Beech Forest in the Southern Italian Coastal Mountain Adriano Stinca 1,* , Maria Ravo 2, Rossana Marzaioli 1,*, Giovanna Marchese 2, Angela Cordella 2, Flora A. Rutigliano 1 and Assunta Esposito 1 1 Department of Environmental Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy; fl[email protected] (F.A.R.); [email protected] (A.E.) 2 Genomix4Life S.r.l., Via Allende, 84081 Baronissi (Salerno), Italy; [email protected] (M.R.); [email protected] (G.M.); [email protected] (A.C.) * Correspondence: [email protected] (A.S.); [email protected] (R.M.) Received: 1 August 2020; Accepted: 8 September 2020; Published: 11 September 2020 Abstract: In the context of global warming and increasing wildfire occurrence, this study aims to examine, for the first time, the changes in multi-level biodiversity and key soil features related to soil functioning in a burned Mediterranean beech forest. Two years after the 2017 wildfire, changes between burned and unburned plots of beech forest were analyzed for plant communities (vascular plant and cover, bryophytes diversity, structural, chorological, and ecological variables) and soil features (main chemical properties, microbial biomass and activity, bacterial community composition, and diversity), through a synchronic study. Fire-induced changes in the micro-environmental conditions triggered a secondary succession process with colonization by many native pioneer plant species. Indeed, higher frequency (e.g., Scrophularia vernalis L., Rubus hirtus Waldst. and Kit. group, and Funaria hygrometrica Hedw.) or coverage (e.g., Verbascum thapsus L.
    [Show full text]