LNA: Fast Protein Classification Using a Laplacian Characterization of Tertiary Structure Nicolas Bonnel, Pierre-François Marteau

Total Page:16

File Type:pdf, Size:1020Kb

LNA: Fast Protein Classification Using a Laplacian Characterization of Tertiary Structure Nicolas Bonnel, Pierre-François Marteau LNA: Fast Protein Classification Using A Laplacian Characterization of Tertiary Structure Nicolas Bonnel, Pierre-François Marteau To cite this version: Nicolas Bonnel, Pierre-François Marteau. LNA: Fast Protein Classification Using A Laplacian Characterization of Tertiary Structure. IEEE/ACM Transactions on Computational Biology and Bioinformatics, Institute of Electrical and Electronics Engineers, 2012, 9 Issue: 5, pp.1451 - 1458. 10.1109/TCBB.2012.64. hal-00639663 HAL Id: hal-00639663 https://hal.archives-ouvertes.fr/hal-00639663 Submitted on 9 Nov 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LNA: Fast Protein Classification Using A Laplacian Characterization of Tertiary Structure Nicolas Bonnel and Pierre-Francois Marteau IRISA-UBS, Universit´ede Bretagne Sud, France [email protected], [email protected] November 9, 2011 Abstract Proteins having similar functional properties may have a very different primary structure, but they usu- 1 Motivation: ally share similar tertiary structures. During the past two decades, a lot of tertiary structures have been In the last two decades, a lot of protein 3D shapes discovered, and 3D fold protein data banks such as have been discovered, characterized and made avail- PDB [4] are quickly growing (PDB holds 79000 pro- able thanks to the Protein Data Bank (PDB), that tein files as of November 2011). It is therefore crucial is nevertheless growing very quickly. New scalable to be able to efficiently search through this database. methods are thus urgently required to search through Best methods designed to compare or match pro- the PDB efficiently. tein 3D structures involve heavy computations. [16] compares Cα distance matrices, [30] extendedly com- bines aligned fragment pairs based on local geometry, 2 Results: [18] compares lists of feature of primary, secondary and tertiary structures, [34, 28] maximize the TM- We present in this paper an approach entitled LNA score which is independent of protein lengths con- (Laplacian Norm Alignment) that performs struc- trary to the Root Mean Square Deviation (RMSD: tural comparison of two proteins with dynamic pro- [19]). [35] compares intra-molecular residue-residue gramming algorithms. This is achieved by charac- relationship. [14, 22] first align secondary struc- terizing each residue in the protein with scalar fea- ture elements (SSE) and then refine the alignment tures. The feature values are calculated using a to residue level. Some approaches are based on con- Laplacian operator applied on the graph correspond- tact maps matching which is though to be NP-hard ing to the adjacency matrix of the residues. The as descibed by [15]: [6, 3, 12]. [27] uses double dy- weighted Laplacian operator we use estimates at var- namic programming on vector of Cβ distances and is ious scales local deformations of the topology where used to build the CATH [9] classification. each residue is located. On some benchmarks widely On the other hand, a few methods are a lot faster, shared by the community we obtain qualitatively sim- nevertheless at the cost of results quality. [33] en- ilar results compared to other competing approaches, hances BLAST [2] by using a structural alphabet and but with an algorithm one or two order of magni- corresponding substitution matrix. [23, 24] enhance tudes faster. 180,000 protein comparisons can be BLAST using an alphabet corresponding to residue done within 1 seconds with a single recent GPU, positions in the Ramachandran plot [29]. [7] char- which makes our algorithm very scalable and suitable acterizes proteins as sequences of α angles (dihedral for real-time database querying across the Web. angle between four consecutive α carbons) and com- pares them by searching common fixed length pat- 3 Introduction terns. [21] performs a global alignment of structural signatures. Proteins are made of a sequence of amino acids We present in this paper a novel way for describing (residues) that folds in a 3 dimensional structure. protein 3D structures. While Cartesian coordinates 1 of a residue are dependent upon a reference coordi- rotation. nate system and only give information about its loca- The tertiary structure of a protein is usually en- tion, differential coordinates carry information about coded as sequence of 3D Cartesian space coordinates the local topology and the orientation of local struc- for each atom of each amino acid. We simplify this tural details. We use the norm of Laplacian coordi- sequence by only keeping carbon alpha (Cα) 3D po- nates of residues at different scales to encode a se- sitions for each residue. quence of multivariate local deformation descriptors. The norm of the Laplacian coordinates presents the 4.1 Computation of the Laplacian co- great advantage to be invariant to translation and ordinates of each residue rotation. The Laplacian operator have been used in various A protein P of length n is defined by a sequence of 3D P methods, mainly for 3D computer vision and 3D mod- coordinates p1,p2,...,pn. Let Ω (σ) be the weighted eling. [25] performs articulated shape matching. [11] adjacency matrix of an undirected graph with one P uses this operator to smoothen, enhance or check the node per residue for the protein P . The weight Ωij(σ) quality of triangular meshes. of each edge eij for 1 ≤ i,j ≤ n is computed using a Dynamic programming algorithms can then be Gaussian kernel: used to match these multivariate descriptor sequences and achieve similar classification or clustering results 2 −kpi−pj k compared to other approaches. These dynamic pro- P e σ2 if |i − j| > 1 2 Ωij(σ)= gramming algorithms in O(n ) time complexity re- 0 otherwise and in this case there is no edge quire few memory and can be efficiently implemented (1) on Graphical Processing Unit (GPU) for an even Let the diagonal matrix DP (σ) be defined as: faster computation time. This allows to compare one protein structure against 180,000 others within a sec- P P D (σ)= Ω (σ) (2) ond time span. ii ij j In the following, we describe how we compute the X Laplacian coordinates of residues and their norm. We The discrete Laplace operator LP (σ) of the protein then present two dynamic programming algorithms P is given by: derived from [26] and [31] for global and local align- −1 ment respectively and compare our approach with LP (σ)= I − DP (σ) ΩP (σ) (3) state of the art methods on two protein datasets known to be difficult to categorize. We show that By applying this operator to the vector of the our approach outperforms the fastest know methods residue 3D Cartesian positions, we obtain a vector of and provides qualitatively similar results than most 3D Laplacian coordinates for each residue. Finally, of the best known approaches, with algorithms one we build a sequence P (σ) = p1(σ), p2(σ),..., pn(σ) or two order of magnitude faster. of Euclidean norms of the Laplacian coordinates for each residue, as showne on figuree 1. e e Since we use a Gaussian kernel, the norm of the 4 Method and algorithm Laplacian coordinates is usually higher in the periph- ery of the protein than in the center, as shown on Our method, called Laplacian Norm Alignment figure 2(b). Hence, beta sheets generate a lowly de- (LNA), characterizes proteins as a multi-dimensional formed surface, the norm of Laplacian coordinates of sequence of quantity of deformation at different scales their residues is quite low. A contrario coils can have of the local space in which residues are embedded. a high norm of Laplacian coordinates corresponding More precisely, the discrete Laplace operator (dis- to their residues if they are found in the periphery crete Laplacian) is used to measure the divergence of the protein. Alpha helices rarely go through the of the gradient of residue positions in a graph that center of the protein: for each alpha helix, a ’side’ describes a protein weighted adjacency map. Lapla- is near the center of the protein and the other near cian coordinates of residues are resilient to translation the periphery. Consequently, consecutive residues in but not to rotation. This limitation is overcome by the chain have a norm of their Laplacian coordinates only keeping for each residue the Euclidean norm of that vary: thus, alpha helices correspond to a saw- its Laplacian coordinates that is indeed invariant to tooth shape as shown on figure 2(a). 2 (0,2) 2 norms of Laplacian coordinates: one corresponding 2 to coordinates computed with σ < 10A˚ (local de- (2,1) (-2,1) 0.64 scription) and the other with σ > 20A˚ (more global 1 0.17 3 description). 0.57 (0,0) Hence a protein P of length n can be characterized 4 by a sequence P = p1, p2,..., pn of k-dimensional 0.15 0.33 0.14 vectors defined as follows: e e e e pi =[pi(σ1), pi(σ2),..., pi(σk)], 1 ≤ i ≤ n (4) 5 (-1,-2) wheree σe1,σ2,...,σe k are alle in [2; 50]. (a) Graph ΩP (3) with its weights (solid lines). 4.3 Sequence comparison 1 0 −0.16 −0.53 −0.31 We propose 2 dynamic programming approaches for 0 1 0 −0.81 −0.19 global and local comparison of proteins. Given two −0.55 0 1 0 −0.45 sequences P and Q of respective length m and n, both −0.47 −0.53 0 1 0 approaches perform computations in O(m.n) time, −0.53 −0.24 −0.23 0 1 and use k-dimensionale e vectors for the characteriza- (b) Laplacian operator LP (3) tion of residues.
Recommended publications
  • Current Topics in Computational Molecular Biology Edited by Tao Jiang Ying Xu Michael Q. Zhang a Bradford Book the MIT Press
    Current Topics in Computational Molecular Biology edited by Tao Jiang Ying Xu Michael Q. Zhang A Bradford Book The MIT Press Cambridge, Massachusetts London, England Contents Preface vii I INTRODUCTION 1 1 The Challenges Facing Genomic Informatics 3 Temple F. Smith H COMPARATIVE SEQUENCE AND GENOME ANALYSIS 9 2 Bayesian Modeling and Computation in Bioinformatics Research 11 Jun S. Liu 3 Bio-Sequence Comparison and Applications 45 Xiaoqiu Huang 4 Algorithmic Methods for Multiple Sequence Alignment 71 Tao Jiang and Lusheng Wang 5 Phylogenetics and the Quartet Method 111 Paul Kearney 6 Genome Rearrangement 135 David Sankoff and Nadia El-Mabrouk 7 Compressing DNA Sequences 157 Ming Li HI DATA MINING AND PATTERN DISCOVERY 173 8 Linkage Analysis of Quantitative Traits 175 Shizhong Xu , 9 Finding Genes by Computer: Probabilistic and Discriminative Approaches 201 Victor V. Solovyev 10 Computational Methods for Promoter Recognition 249 Michael Q. Zhang 11 Algorithmic Approaches to Clustering Gene Expression Data 269 Ron Shamir and Roded Sharan 12 KEGG for Computational Genomics 301 Minoru Kanehisa and Susumu Goto vi Contents 13 Datamining: Discovering Information from Bio-Data 317 Limsoon Wong IV COMPUTATIONAL STRUCTURAL BIOLOGY 343 14 RNA Secondary Structure Prediction 345 Zhuozhi Wang and Kaizhong Zhang 15 Properties and Prediction of Protein Secondary Structure 365 Victor V. Solovyev and Ilya N. Shindyalov 16 Computational Methods for Protein Folding: Scaling a Hierarchy of Complexities 403 Hue Sun Chan, Huseyin Kaya, and Seishi Shimizu 17 Protein Structure Prediction by Comparison: Homology-Based Modeling 449 Manuel C. Peitsch, Torsten Schwede, Alexander Diemand, and Nicolas Guex 18 Protein Structure Prediction by Protein Threading and Partial Experimental Data 467 Ying Xu and Dong Xu 19 Computational Methods for Docking and Applications to Drug Design: Functional Epitopes and Combinatorial Libraries 503 Ruth Nussinov, Buyong Ma, and Haim J.
    [Show full text]
  • Bonnie Berger Named ISCB 2019 ISCB Accomplishments by a Senior
    F1000Research 2019, 8(ISCB Comm J):721 Last updated: 09 APR 2020 EDITORIAL Bonnie Berger named ISCB 2019 ISCB Accomplishments by a Senior Scientist Award recipient [version 1; peer review: not peer reviewed] Diane Kovats 1, Ron Shamir1,2, Christiana Fogg3 1International Society for Computational Biology, Leesburg, VA, USA 2Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel 3Freelance Writer, Kensington, USA First published: 23 May 2019, 8(ISCB Comm J):721 ( Not Peer Reviewed v1 https://doi.org/10.12688/f1000research.19219.1) Latest published: 23 May 2019, 8(ISCB Comm J):721 ( This article is an Editorial and has not been subject https://doi.org/10.12688/f1000research.19219.1) to external peer review. Abstract Any comments on the article can be found at the The International Society for Computational Biology (ISCB) honors a leader in the fields of computational biology and bioinformatics each year with the end of the article. Accomplishments by a Senior Scientist Award. This award is the highest honor conferred by ISCB to a scientist who is recognized for significant research, education, and service contributions. Bonnie Berger, Simons Professor of Mathematics and Professor of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology (MIT) is the 2019 recipient of the Accomplishments by a Senior Scientist Award. She is receiving her award and presenting a keynote address at the 2019 Joint International Conference on Intelligent Systems for Molecular Biology/European Conference on Computational Biology in Basel, Switzerland on July 21-25, 2019. Keywords ISCB, Bonnie Berger, Award This article is included in the International Society for Computational Biology Community Journal gateway.
    [Show full text]
  • ISMB 99 August 6 – 10, 1999 Heidelberg, Germany the Seventh
    ______________________________________ Welcome to ISMB 99 August 6 – 10, 1999 Heidelberg, Germany The Seventh International Conference on Intelligent Systems for Molecular Biology ______________________________________ Final Program and Detailed Schedule Friday, August 6, 1999 Tutorial Day The tutorials will take place in the following rooms: 8:30 – 12:30 (Coffee break around 10:30) Tutorial #1 Trübnersaal Piere Baldi Probabilistic graphical models Tutorial #2 Robert-Schumann-Zimmer Douglas L. Brutlag Bioinformatics and Molecular Biology Tutorial #3 Ballsaal Martin Reese The challenge of annotating a complete eukaryotic genome: A case study in Drosophila melanogaster Tutorial #4 Gustav-Mahler-Zimmer Tandy Warnow Computational and statistical Junhyong Kim challenges involved in reconstructing evolutionary trees Tutorial #5 Sebastian-Münster-Saal Thomas Werner The biology and bioinformatics of regulatory regions in genomes Lunch (on this day served in "Grosser Saal" on the ground floor) 13:30 – 17:30 (Coffee break around 15:30) Tutorial #6 Sebastian-Münster-Saal Rob Miller EST Clustering Alan Christoffels Winston Hide Tutorial #7 Trübnersaal Kevin Karplus Getting the most out of hidden Markov Melissa Cline models Christian Barrett Tutorial #8 Robert-Schumann-Zimmer Arthur Lesk Sequence-structure relationships and evolutionary structure changes in proteins Tutorial #9 Gustav-Mahler-Zimmer David States PERL abstractions for databases and Brian Dunford distributed computing Shore Tutorial # 10 Ballsaal Zoltan Szallasi Genetic network analysis
    [Show full text]
  • Parallelization of Dynamic Programming Recurrences in Computational Biology Arpith Jacob Washington University in St
    Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 2010 Parallelization of dynamic programming recurrences in computational biology Arpith Jacob Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/etd Recommended Citation Jacob, Arpith, "Parallelization of dynamic programming recurrences in computational biology" (2010). All Theses and Dissertations (ETDs). 169. https://openscholarship.wustl.edu/etd/169 This Dissertation is brought to you for free and open access by Washington University Open Scholarship. It has been accepted for inclusion in All Theses and Dissertations (ETDs) by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS School of Engineering and Applied Science Department of Computer Science and Engineering Thesis Examination Committee: Jeremy Buhler, Chair Michael Brent Ron Cytron Mark Franklin Robert Morley Bill Smart David Taylor PARALLELIZATION OF DYNAMIC PROGRAMMING RECURRENCES IN COMPUTATIONAL BIOLOGY by Arpith Chacko Jacob A dissertation presented to the Graduate School of Arts and Sciences of Washington University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December 2010 Saint Louis, Missouri copyright by Arpith Chacko Jacob 2010 ABSTRACT OF THE THESIS Parallelization of dynamic programming recurrences in computational biology by Arpith Chacko Jacob Doctor of Philosophy in Computer Science Washington University in St. Louis, 2010 Research Advisor: Professor Jeremy Buhler The rapid growth of biosequence databases over the last decade has led to a per- formance bottleneck in the applications analyzing them. In particular, over the last five years DNA sequencing capacity of next-generation sequencers has been doubling every six months as costs have plummeted.
    [Show full text]
  • PLOS Computational Biology Associate Editor Handbook Second Edition Version 2.6
    PLOS Computational Biology Associate Editor Handbook Second Edition Version 2.6 Welcome and thank you for your support of PLOS Computational Biology and the Open Access movement. PLOS Computational Biology is one of the four community run, Open Access journals published by the Public Library of Science. The journal features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery. Since its launch in 2005, PLOS Computational Biology has grown not only in the number of papers published, but also in recognition as a quality publication and community resource. We have every reason to expect that this trend will continue and our team of Associate Editors play an invaluable role in this process. Associate Editors oversee the peer review process for the journal, including evaluating submissions, selecting reviewers, assessing reviewer comments, and making editorial decisions. Together with fellow Editorial Board members and the PLOS CB Team, Associate Editors uphold journal policies and ethical standards and work to promote the PLOS mission to provide free public access to scientific research. PLOS Computational Biology is one of a suite of influential journals published by PLOS. Information about the other journals, the PLOS business model, PLOS innovations in scientific publishing, and Open Access copyright and licensure can be found in Appendix IX. Table of Contents PLOS Computational Biology Editorial Board Membership ................................................................................... 2 Manuscript Evaluation .....................................................................................................................................
    [Show full text]
  • Predicting RNA Binding Proteins Using Discriminative Methods
    Predicting RNA binding proteins using discriminative methods by Shweta Bhandare M.S. Department of Interdisciplinary Telecommunications, University of Colorado at Boulder 2003 B.E., College of Engineering, University of Goa, 1995 A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Computer Science 2017 This thesis entitled: Predicting RNA binding proteins using discriminative methods written by Shweta Bhandare has been approved for the Department of Computer Science Prof. Robin Dowell Dr. Debra S. Goldberg Prof. Larry E. Hunter Dr. Daniel Weaver Date The final copy of this thesis has been examined by the signatories, and we find that both the content and the form meet acceptable presentation standards of scholarly work in the above mentioned discipline. iii Bhandare, Shweta (Ph.D., Computer Science) Predicting RNA binding proteins using discriminative methods Thesis directed by Prof. Robin Dowell and Dr. Debra S. Goldberg This thesis examines the role of computational methods in identifying the motifs utilized by RNA-binding proteins (RBPs). RBPs play an important role in post-transcriptional regulation and identify their targets in a highly specific fashion through recognition of primary sequence and/or secondary structure hence making the prediction a complex problem. I applied the existing k-spectrum kernel method to a support vector machine and verified the published binding sites of two RBPs: Human antigen R (HuR) and Tristetraprolin (TTP). These RBPs exhibit opposing effects to the bound messenger RNA (mRNA) transcript but have simi- lar binding preferences.
    [Show full text]
  • Research in Computational Molecular Biology
    Terry Speed Haiyan Huang (Eds.) Research in Computational Molecular Biology 1 lth Annual International Conference, RECOMB 2007 Oakland, CA, USA, April 21-25, 2007 Proceedings Sprin ger Table of Contents QNet: A Tool for Querying Protein Interaction Networks 1 Banu Dost, Tomer Shlomi, Nitin Gupta, Eytan Ruppin, Vineet Bafna, and Roded Sharan Pairwise Global Alignment of Protein Interaction Networks by Matching Neighborhood Topology 16 Rohit Singh, Jinbo Xu, and Bonnie Berger Reconstructing the Topology of Protein Complexes 32 Allister Bernard, David S. Vaughn, and Alexander J. Hartemink Network Legos: Building Blocks of Cellular Wiring Diagrams 47 T.M. Murali and Corban G. Rivera An Efficient Method for Dynamic Analysis of Gene Regulatory Networks and in silico Gene Perturbation Experiments 62 Abhishek Garg, Ioannis Xenarios, Luis Mendoza, and Giovanni DeMicheli A Feature-Based Approach to Modeling Protein-DNA Interactions 77 Eilon Sharon and Eran Segal Network Motif Discovery Using Subgraph Enumeration and Symmetry-Breaking 92 Joshua A. Grochow and Manolis Kellis Nucleosome Occupancy Information Improves de novo Motif Discovery 107 Leelavati Narlikar, Raluca Gordan, and Alexander J. Hartemink Framework for Identifying Common Aberrations in DNA Copy Number Data 122 Amir Ben-Dor, Doron Lipson, Anya Tsalenko, Mark Reimers, Lars O. Baumbusch, Michael T. Barrett, John N. Weinstein, Anne-Lise B0rresen-Dale, and Zohar Yakhini Estimating Genome-Wide Copy Number Using Allele Specific Mixture Models 137 Wenyi Wang, Benilton Carvalho, Nate Miller, Jonathan Pevsner, Aravinda Chakravarti, and Rafael A. Irizarry GIMscan: A New Statistical Method for Analyzing Whole-Genome Array CGH Data 151 Yanxin Shi, Fan Guo, Wei Wu, and Eric P.
    [Show full text]
  • Safe and Complete Algorithms for Dynamic Programming Problems
    Safe and Complete Algorithms for Dynamic Programming Problems, with an Application to RNA Folding Niko Kiirala Department of Computer Science and Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland [email protected].fi Leena Salmela1 Department of Computer Science and Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland leena.salmela@helsinki.fi Alexandru I. Tomescu1 Department of Computer Science and Helsinki Institute for Information Technology HIIT, University of Helsinki, Finland alexandru.tomescu@helsinki.fi Abstract Many bioinformatics problems admit a large number of solutions, with no way of distinguishing the correct one among them. One approach of coping with this issue is to look at the partial solutions common to all solutions. Such partial solutions have been called safe, and an algorithm outputting all safe solutions has been called safe and complete. In this paper we develop a general technique that automatically provides a safe and complete algorithm to problems solvable by dynamic programming. We illustrate it by applying it to the bioinformatics problem of RNA folding, assuming the simplistic folding model maximizing the number of paired bases. Our safe and complete algorithm has time complexity O(n3M(n)) and space complexity O(n3) where n is the length of the RNA sequence and M(n) ∈ Ω(n) is the time complexity of arithmetic operations on O(n)-bit integers. We also implement this algorithm and show that, despite an exponential number of optimal solutions, our algorithm is efficient in practice. 2012 ACM Subject Classification Theory of computation → Dynamic programming; Applied computing → Life and medical sciences; Applied computing → Molecular structural biology; Theory of computation → Design and analysis of algorithms Keywords and phrases RNA secondary structure, RNA folding, Safe solution, Safe and complete algorithm, Counting problem Digital Object Identifier 10.4230/LIPIcs.CPM.2019.8 Funding Leena Salmela: Supported by Academy of Finland (grants 308030 and 314170).
    [Show full text]
  • 2018 ISCB Accomplishments by a Senior Scientist Award
    MESSAGE FROM ISCB 2018 ISCB accomplishments by a senior scientist award Christiana N. Fogg1, Diane E. Kovats2*, Ron Shamir3 1 Freelance Writer, Kensington, Maryland, United States of America, 2 International Society for Computational Biology, 3 Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel * [email protected] Each year, the International Society for Computational Biology (ISCB) recognizes a leader in the fields computational biology and bioinformatics with the Accomplishments by a Senior Scientist Award. This is the highest award bestowed by ISCB in recognition of a scientist's sig- nificant research, education, and service contributions. Ruth Nussinov, Senior Principal Scien- tist and Principal Investigator at the National Cancer Institute, National Institutes of Health and Professor Emeritus in the Department of Human Molecular Genetics & Biochemistry, School of Medicine at Tel Aviv University, Israel, is being honored as the 2018 winner of the a1111111111 Accomplishment by a Senior Scientist Award. She will receive her award and present a keynote a1111111111 address at ISCB's premiere annual meeting, the 2018 Intelligent Systems for Molecular Biology a1111111111 (ISMB) conference in Chicago, Illinois, being held on July 6±10, 2018. a1111111111 a1111111111 Ruth Nussinov: In search of biological significance Ruth Nussinov (Fig 1) is a computational biologist with research interests that have touched every aspect of the field, from her PhD research on RNA secondary structure prediction to her visionary work on DNA sequence analysis, to proposing that all protein (and other biomacro- OPEN ACCESS molecules) conformations preexist and that all dynamic proteins are allosteric, to her current Citation: Fogg CN, Kovats DE, Shamir R (2018) studies focused on Ras signaling in cancer.
    [Show full text]
  • Here Have Been Major Community Efforts on Algorithm and Software Development
    ACM-BCB 2013 ACM-BCB Organization Committee Steering Committee Chair Poster Chairs Local Arrangement Chairs Amarda Shehu Aidong Zhang Dongxiao Zhu George Mason University State University of New York at Buffalo Wayne State University Liliana Florea Yu-Ping Wang Johns Hopkins University General Chairs Tulane University Sridhar Hannenhalli Women in Bioinformatics University of Maryland Industry Chairs Panel Chair Cathy H. Wu Anastasia Christianson May Dongmei Wang University of Delaware & AstraZeneca Pharmaceutical Georgia Tech & Emory University Georgetown University Michael Liebman Strategic Medicine Program Chairs Panel Chair Iosif Vaisman Srinivas Aluru Health Informatics George Mason University Georgia Institute of Technology Symposium Chairs Donna Slonim Maricel G. Kann Tufts University University of Maryland, Baltimore County Publicity Chair Philip Payne Jianlin Cheng Workshop Chair Ohio State University University of Missouri, Columbia Ümit V. Çatalyürek Ohio State University Exhibit/System Demo Chair Proceedings Chair Nathan Edwards Jing Gao Tutorial Chairs Georgetown University State University of New York at Buffalo Clare Bates Congdon University of Southern Maine PhD Forum Chair Registration Chair Vasant Honavar Yanni Sun Preetam Ghosh Iowa State University Michigan State University Virginia Commonwealth University ACM‐BCB 2013 Conference Schedule Sunday Monday Tuesday Wednesday Sep. 22 Sep. 23 Sep. 24 Sep. 25 8:15am – 8:30am Opening Remarks 8:30am – 10:00am 8:30am – 10:25am 8:30am – 9:30am Paper Session 7 Paper Session 4 Keynote
    [Show full text]
  • Pacific Symposium on Biocomputing 2010
    Pacific Symposium on Biocomputing 15:v-viii PACIFIC SYMPOSIUM ON BIOCOMPUTING 2010 This year marks the 15th year of PSB. Started in 1996 by Teri Klein and Larry Hunter, the meeting was a session within the Hawaii International Conference on Systems Sciences Conference (HICSS) for a couple of years. The interest in biocomputing was great and was threatening to alter the balance of attendees within the HICSS meeting, and so the organizers asked Teri and Larry to find an alternative. Taking advantage of the nice meeting opportunities in Hawaii immediately following New Year’s Day, they created PSB with a simple formula: oral presentation of peer reviewed papers in emerging areas of biocomputing, interactive poster sessions, and lively discussion sessions on these topics. They invited Keith Dunker and Russ Altman to join the team for the second PSB, and we have been working together ever since. In fifteen years, we have had some papers that have made remarkable impact. Using Google Scholar, the top 15 papers, in terms of citations over the last 15 years are listed below (with number of citations listed as of September 2009, followed by the reference). Obviously, there are other great papers, especially ones that have been written in the last few years, that have not yet had time to rise to the top of this list. Nevertheless, the list provides highlights of the last 15 years in biocomputing challenges. (573) REVEAL, A General Reverse Engineering Algorithm for Inference of GeneticNetwork Architectures S. Liang, S. Fuhrman and R. Somogyi; Pacific Symposium on Biocomputing 3:18-29 (1998).
    [Show full text]
  • Computational Biology: Moving Into the Future One Click at a Time
    MESSAGE FROM ISCB Computational Biology: Moving into the Future One Click at a Time Christiana N. Fogg1*, Diane E. Kovats2 1 Freelance Science Writer, Kensington, Maryland, United States of America, 2 Executive Director, International Society for Computational Biology, La Jolla, California, United States of America * [email protected] Overview Computational biology has grown and matured into a discipline at the heart of biological research. In honor of the tenth anniversary of PLOS Computational Biology, Phil Bourne, Win Hide, Janet Kelso, Scott Markel, Ruth Nussinov, and Janet Thornton shared their memories of the heady beginnings of computational biology and their thoughts on the field’s promising and provocative future. Philip E. Bourne Philip Bourne (Fig 1) began his scientific career in the wet lab, like many of his computational biology contemporaries. He earned his PhD in physical chemistry from the Flinders University of South Australia and pursued postdoctoral training at the University of Sheffield, where he began studying protein structure. Bourne accepted his first academic position in 1995 in the Department of Pharmacology at the University of California, San Diego (UCSD), rose to the rank of professor, and was associate vice chancellor for Innovation and Industry Alliances of the Office of Research Affairs. During his time at UCSD, he built a broad research program that used bioinformatics and systems biology to examine protein structure and function, evolu- tion, drug discovery, disease, and immunology. Bourne also developed the Research Collabora- tory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) and Immune Epitope OPEN ACCESS Database (IEDB), which have become valuable data resources for the research community.
    [Show full text]