Angler's Guide To

Total Page:16

File Type:pdf, Size:1020Kb

Angler's Guide To This brochure was written by Scott Meyer, Fishery Biologist, Division of Sport Fish, Alaska Department of Fish and Game, Homer, Alaska. For more information contact the Alaska Department of Fish and Game, Division of Sport Fish: Anchorage (907) 267-2218 Homer (907) 235-8191 http://www.sf.adfg.state.ak.us/statewide/html/sf_home.html This brochure was funded in part through a grant from the National Fish and Wildlife Foundation. Angler’s Guide to the ROCKFISHES of Alaska: BIOLOGY and FISHERY MANAGEMENT Ages, in years, of common rockfishes in the sport harvest. Typical ages in Approximate Species the sport harvest maximum age Pelagic Dusky 7-30 75 Black 9-25 55 Dark 7-30 90 Yellowtail 7-25 65 Non-pelagic Yelloweye 15-50 120 Tiger 20-55 115 Quillback 15-50 90 Silvergray 10-30 80 China 15-40 80 Yelloweye rockfish,Sebastes ruberrimus Copper 10-30 60 Alaska sport fishing regulations divide rockfish into ROCKFISH are among the more two groups based on their preferred habitats: interesting and colorful fishes in the North Pacific Ocean. They also are particularly vulnerable to 1. Pelagic species are found throughout the water overfishing. Maintaining healthy populations requires column, typically in large schools above or around knowledge of their biology as well as innovative rocky shelves or pinnacles. There are six species approaches to fishery management. in this group, but only the black, dusky, dark, and yellowtail rockfish are common in Alaska. Widow There are over 30 species of rockfish (genus rockfish are rarely caught and blue rockfish have not Sebastes) in the Gulf of Alaska, but fewer than 10 yet been confirmed in Alaska. are commonly caught in the recreational fishery. Rockfish have large scales, large fin spines, 2. Non-pelagic species usually stay close to the and smaller spines on the head and gill covers. bottom, often in rocky areas, and generally in Depending on species, adult rockfish may reach 8 deeper water than pelagic species. They are typically to 40 inches in length. Color ranges from bright red, solitary or in small schools, often with a mixture orange, or yellow to blander black and gray. Pelagic of species in an area. Some species are “cryptic”— species resemble bass and are commonly misnamed hiding in cracks or under rocks. All but the six “black bass” or “sea bass.” Yelloweye rockfish are pelagic species mentioned above are non-pelagic. often misnamed “red snapper.” In fact, there are no The most common non-pelagics include yelloweye, true basses (family Serranidae) or snappers (family quillback, copper, silvergray, tiger, and China Lutjanidae) in Alaska, as these fishes prefer warmer rockfish. Rougheye and shortraker rockfish typically waters at lower latitudes. Lingcod, greenlings, and inhabit very deep bays and deep waters along the sculpins (such as Irish lords) are also sometimes edge of the continental shelf, and are often found on mistaken for rockfish. softer bottoms. Rockfish are members of the family Scorpaenidae, or “scorpion fishes,” named for their venomous Life in the Slow Lane fin spines. Although some scorpion fishes have extremely toxic venom, rockfish venom is mildly Rockfish are among the longest-living vertebrates toxic and typically causes only pain or swelling. on earth. Non-pelagic species generally live longer Rockfish venom sacs are located at the base of the than pelagic (see table). Yelloweye rockfish, for dorsal and anal fin spines and, in a few species, example, can reach over 100 years, and rougheye other fins as well. Rockfish do not attack with their and shortraker rockfish occasionally exceed 150 venom, but rather use it only for defense. years. Some of the rockfish you catch today were frolicking in kelp beds in the 1930s, and a few may Black rockfish,Sebastes melanops Dusky rockfish,Sebastes ciliatus have been around when Alaska was purchased from No Free Lunch Russia in 1867. Rockfish are an integral part of the food chain Most rockfishes do not start reproducing until in the North Pacific. They eat a variety of foods, they are at least 5-7 years old, and some may not including plankton, adult and larval crabs, shrimp, reproduce until they’re 15-20 years old or more. and small fishes such as sand lance, herring, and Rockfish don’t lay eggs like most fishes. Instead, they juvenile rockfish. In turn, rockfish are eaten by larger mate and fertilize the eggs internally. The developing rockfish, lingcod, Pacific cod, sablefish, halibut, embryos receive nourishment from the female. After Chinook (king) salmon, sculpins, sharks, seabirds, several months, the females give birth to thousands marine mammals, and humans. or millions of tiny larvae. Most of the larvae die when swept offshore by currents or eaten by other animals. The survivors grow while riding the currents Vulnerable to Overfishing for several months, then settle onto the ocean floor Rockfish are more vulnerable to overfishing than and hide in kelp, eelgrass, or around rocks. As the most other fishes. Anglers can easily locate their juvenile fish grow and mature they move to adult preferred rocky habitat using navigational charts habitats in deeper water. or sonar. Once found, rockfish are relatively easy The survival of larval rockfish is believed to be closely to catch. Most species grow quickly in the first few linked to oceanographic factors such as temperature, years of life, becoming fairly large before they are currents, and food availability. Rockfish are long-lived mature. Harvesting fish before they can reproduce and can produce millions of offspring each year, impairs the population’s ability to replace itself. allowing their populations to persist through long A major factor contributing to rockfish vulnerability periods where conditions are unfavorable for survival is that their swim bladder (a balloon-like organ used of offspring. to adjust buoyancy) is not vented. When rockfish are Tagging studies have shown that although pelagic brought to the surface from deep water, the gases species can move hundreds of miles, most were in the swim bladder expand, compressing internal recaptured within 20 miles of the tagging site. Non- organs and often pushing the stomach inside out pelagic species, on the other hand, generally have into the mouth cavity. Other injuries may include small home ranges, and may rarely venture more than ruptured swim bladders, ruptured blood vessels a few hundred yards from their favorite reef. For this in internal organs, gas bubbles inside the eye, and reason, heavy fishing pressure can reduce rockfish bulging eyes. The photographs of yelloweye, China, populations in local areas. and silvergray rockfish in this brochure all show bulging eyes as a result of pressure changes. Fish The abundance of most rockfish species in Alaska is unknown. Assessment of nearshore rockfish stocks is difficult and expensive. Many sampling gears cannot be used in the rocky habitats favored by nearshore rockfishes. Submersibles and remotely operated vehicles have been used to assess populations in selected preferred habitats, but these methods are costly to apply over large areas. Assessment methods are complex and still under development. Given the lack of information on stock status, fishery management has proceeded cautiously. Recreational and subsistence fisheries in Alaska are managed under some of the most restrictive bag limits on the Pacific Coast, usually with special provisions for less productive non-pelagic species such as yelloweye Quillback rockfish,Sebastes maliger rockfish. Recreational harvest has varied from year to year but generally increased in southeast and southcentral Alaska since the late 1970s. Anglers have released about as many rockfish as they with inflated swim bladders cannot submerge on harvested, not all of which survived. Commercial their own, and when released at the surface are rockfish fisheries are managed under harvest caps unlikely to survive. that include directed harvest, and in some cases, When you consider their ease of capture, limited incidental catch (or “bycatch”) in fisheries for other movements, late maturity, low annual productivity, species. Commercial fishery regulations often include and low survival rate when released, it is easy to trip limits to manage within the caps. Mandatory see why rockfish populations are vulnerable to retention has been implemented in some fisheries overfishing. in recent years to improve accounting of removals by species. Despite these measures, it is widely believed that the true level of fishery removals is Management Hurdles not well understood and that additional controls and Rockfish are excellent table fare and have long measures may be warranted. been harvested in commercial, recreational, and subsistence fisheries from California to Alaska. But some rockfish populations have been severely Marine Reserves— reduced through overfishing, even when managers were aware of the potential for overfishing and took An Effective Tool? steps to limit harvest. From British Columbia to Marine reserves, or areas that are closed to some or southern California, populations of several species all fishing, are increasingly being used in the eastern are now at a small fraction of their unfished level, Pacific for sustainable management of rockfish and the status of other species has not yet been fisheries. The potential short-term benefits of determined. Several fisheries have been severely reserves include rebuilding overfished populations, restricted in order to rebuild rockfish populations. protecting essential spawning or nursery habitat, Because the annual production of new fish is so enhancing genetic and species diversity, and low, sustaining a harvest year after year requires reducing bycatch. Protection of spawners guarantees maintaining a high abundance of spawners. Envision some level of reproduction, and larvae and juvenile a rockfish population as a low-interest savings fish may disperse from closed areas to areas where account. To live off the interest (sustain a moderate fishing is open. In the long term, reserves have harvest), you have to maintain a large balance.
Recommended publications
  • FISH LIST WISH LIST: a Case for Updating the Canadian Government’S Guidance for Common Names on Seafood
    FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood Authors: Christina Callegari, Scott Wallace, Sarah Foster and Liane Arness ISBN: 978-1-988424-60-6 © SeaChoice November 2020 TABLE OF CONTENTS GLOSSARY . 3 EXECUTIVE SUMMARY . 4 Findings . 5 Recommendations . 6 INTRODUCTION . 7 APPROACH . 8 Identification of Canadian-caught species . 9 Data processing . 9 REPORT STRUCTURE . 10 SECTION A: COMMON AND OVERLAPPING NAMES . 10 Introduction . 10 Methodology . 10 Results . 11 Snapper/rockfish/Pacific snapper/rosefish/redfish . 12 Sole/flounder . 14 Shrimp/prawn . 15 Shark/dogfish . 15 Why it matters . 15 Recommendations . 16 SECTION B: CANADIAN-CAUGHT SPECIES OF HIGHEST CONCERN . 17 Introduction . 17 Methodology . 18 Results . 20 Commonly mislabelled species . 20 Species with sustainability concerns . 21 Species linked to human health concerns . 23 Species listed under the U .S . Seafood Import Monitoring Program . 25 Combined impact assessment . 26 Why it matters . 28 Recommendations . 28 SECTION C: MISSING SPECIES, MISSING ENGLISH AND FRENCH COMMON NAMES AND GENUS-LEVEL ENTRIES . 31 Introduction . 31 Missing species and outdated scientific names . 31 Scientific names without English or French CFIA common names . 32 Genus-level entries . 33 Why it matters . 34 Recommendations . 34 CONCLUSION . 35 REFERENCES . 36 APPENDIX . 39 Appendix A . 39 Appendix B . 39 FISH LIST WISH LIST: A case for updating the Canadian government’s guidance for common names on seafood 2 GLOSSARY The terms below are defined to aid in comprehension of this report. Common name — Although species are given a standard Scientific name — The taxonomic (Latin) name for a species. common name that is readily used by the scientific In nomenclature, every scientific name consists of two parts, community, industry has adopted other widely used names the genus and the specific epithet, which is used to identify for species sold in the marketplace.
    [Show full text]
  • Sebastes Miniatus) from Oregon Waters
    INFORMATION REPORTS NUMBER 2012-05 FISH DIVISION Oregon Department of Fish and Wildlife Age, growth and female maturity of vermilion rockfish (Sebastes miniatus) from Oregon waters The Oregon Department of Fish and Wildlife prohibits discrimination in all of its programs and services on the basis of race, color, national origin, age, sex or disability. If you believe that you have been discriminated against as described above in any program, activity, or facility, please contact the ADA Coordinator, 3406 Cherry Avenue NE, Salem, OR 97303, 503-947-6000. This material will be furnished in alternate format for people with disabilities if needed. Please call (503-947-6000) to request. Age, growth and female maturity of vermilion rockfish (Sebastes miniatus) from Oregon waters Robert W. Hannah Lisa A. Kautzi Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, Oregon 97365, U.S.A. December 2012 Introduction Recent changes in U.S. fishery management standards have placed increased emphasis on implementing precautionary harvest levels for all stocks, even those that are only minor components of commercial or recreational fisheries. Precautionary harvest levels are especially critical for long-lived, late-maturing, unassessed stocks that have been harvested for many years in mixed-stock fisheries, such as several nearshore Pacific rockfishes (Sebastes) on the U.S west coast. For these typically data-poor stocks, qualitative evaluations of stock vulnerability to overfishing are a useful starting point in developing precautionary management measures (e.g. Patrick et al. 2010, Ormseth and Spencer 2011). Vulnerability analyses in turn depend on accurate basic life history information, such as age, growth and female maturity as a function of length or age.
    [Show full text]
  • Rockfish Populations Around Galiano Island Freedom to Swim: Research Component for Rockfish Recovery Project
    GALIANO CONSERVANCY ASSOCIATION Rockfish populations around Galiano Island Freedom to Swim: Research Component for Rockfish Recovery Project 2013 Rockfish populations around Galiano Island Page 2 of 18 Executive Summary Rockfish (Sebastes), of the Scorpionfish family, are unique to the Pacific Northwest. As of 2012 there are 8 species listed as threatened or of special concern by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC). Canary, Quillback and Yellowmouth rockfish are listed as ‘threatened’; Rougheye Type I, Rougheye Type II, Darkblotched, Longspine Thornyhead, and Yelloweye (outside waters and inside waters populations) rockfish are listed as ‘special concern’. Both species of Rougheye and both populations of Yelloweye rockfish are also listed under the Species At Risk Act as ‘special concern’. These predatory fish can live at great depths, and tend to live very long lives of 80 or more years (Lamb and Edgell, 2010). These factors, when combined with their primarily territorial lifestyles, have made them particularly susceptible to overharvest. There is a strong need to protect these species with enforced no‐take marine protected areas, and we can only hope that recent conservation efforts will be enough to recover some of the most depleted populations (Lamb and Edgell, 2010; McConnell and Dinnel, 2002). In the late 1980s the commercial rockfish fishery boomed, which led to a series of management responses in the 1990s to attempt to recover the rapidly depleting stocks in BC (Yamanaka and Logan, 2010). This also occurred in the US as a direct result of pressure on the salmon stocks ‐ fishermen were urged to divert their attentions to bottom fish (McConnell and Dinnel, 2002).
    [Show full text]
  • Stock Assessment of the Yelloweye Rockfish (Sebastes Ruberrimus) in State and Federal Waters Off California, Oregon and Washington
    Stock assessment of the yelloweye rockfish (Sebastes ruberrimus) in state and Federal waters off California, Oregon and Washington by Vladlena Gertseva and Jason M. Cope Northwest Fisheries Science Center U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service 2725 Montlake Boulevard East Seattle, Washington 98112-2097 December 2017 1 This report may be cited as: Gertseva, V. and Cope, J.M. 2017. Stock assessment of the yelloweye rockfish (Sebastes ruberrimus) in state and Federal waters off California, Oregon and Washington. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock- assessments/ 2 Table of Contents Acronyms used in this document ..................................................................... 6 Executive Summary ............................................................................................ 7 Stock ............................................................................................................................. 7 Catches ......................................................................................................................... 7 Data and assessment .................................................................................................. 8 Stock biomass ............................................................................................................. 9 Recruitment ...............................................................................................................
    [Show full text]
  • Rockfish (Sebastes) That Are Evolutionarily Isolated Are Also
    Biological Conservation 142 (2009) 1787–1796 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Rockfish (Sebastes) that are evolutionarily isolated are also large, morphologically distinctive and vulnerable to overfishing Karen Magnuson-Ford a,b, Travis Ingram c, David W. Redding a,b, Arne Ø. Mooers a,b,* a Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 b IRMACS, Simon Fraser University, 8888 University Drive, Burnaby BC, Canada V5A 1S6 c Department of Zoology and Biodiversity Research Centre, University of British Columbia, #2370-6270 University Blvd., Vancouver, Canada V6T 1Z4 article info abstract Article history: In an age of triage, we must prioritize species for conservation effort. Species more isolated on the tree of Received 23 September 2008 life are candidates for increased attention. The rockfish genus Sebastes is speciose (>100 spp.), morpho- Received in revised form 10 March 2009 logically and ecologically diverse and many species are heavily fished. We used a complete Sebastes phy- Accepted 18 March 2009 logeny to calculate a measure of evolutionary isolation for each species and compared this to their Available online 22 April 2009 morphology and imperilment. We found that evolutionarily isolated species in the northeast Pacific are both larger-bodied and, independent of body size, morphologically more distinctive. We examined Keywords: extinction risk within rockfish using a compound measure of each species’ intrinsic vulnerability to Phylogenetic diversity overfishing and categorizing species as commercially fished or not. Evolutionarily isolated species in Extinction risk Conservation priorities the northeast Pacific are more likely to be fished, and, due to their larger sizes and to life history traits Body size such as long lifespan and slow maturation rate, they are also intrinsically more vulnerable to overfishing.
    [Show full text]
  • Management Plan for the Rougheye/Blackspotted Rockfish Complex (Sebastes Aleutianus and S
    DRAFT SPECIES AT RISK ACT MANAGESPECIESMENT PLAN AT RISK SERIES ACT MANAGEMENT PLAN SERIES MANAGEMENT PLAN FOR THE ROUGHEYE/BLACKSPOTTEDMANAGEMENT PLAN FOR THE ROCKFISH ROUGHEY E COMPLEXROCKFISHROUGHEYE (SEBASTES ALEUTIANUSROCKFISH COMPLEX AND S. MELANOSTICTUS(SEBASTES ALEUTIANUS) AND LONGSPINE AND S. THORNYHEADMELANOSTICTUS (SEBASTOLOBUS) AND LONGSPINE ALTIVELIS THORNYHE) IN AD CANADA(SEBAST OLOBUS ALTIVELIS)INCANADA SEBASTES ALEUTIANUS; SEBASTES MELANOSTICTUS SEBASTES ASEBASTOLOBUSLEUTIANUS; SEBASTES ALTIVELIS MEL ANOSTICTUS SEBASTOLOBUS ALTIVELIS S. aleutianus S. melanostictus 2012 Photo Credit: DFO Sebastolobus altivelis 2012 About the Species at Risk Act Management Plan Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to manage species of special concern to prevent them from becoming endangered or threatened.” What is a species of special concern? Under SARA, a species of special concern is a wildlife species that could become threatened or endangered because of a combination of biological characteristics and identified threats. Species of special concern are included in the SARA List of Wildlife Species at Risk. What is a management plan? Under SARA, a management plan is an action-oriented planning document that identifies the conservation activities and land use measures needed to ensure, at a minimum, that a species of special concern does not become threatened or endangered. For many species, the ultimate aim of the management plan will be to alleviate human threats and remove the species from the List of Wildlife Species at Risk.
    [Show full text]
  • Management Plan for the Yelloweye Rockfish (Sebastes Ruberrimus) in Canada
    Proposed Species at Risk Act Management Plan Series Management Plan for the Yelloweye Rockfish (Sebastes ruberrimus) in Canada Yelloweye Rockfish 2018 Recommended citation: Fisheries and Oceans Canada. 2018. Management Plan for the Yelloweye Rockfish (Sebastes ruberrimus) in Canada [Proposed]. Species at Risk Act Management Plan Series. Fisheries and Oceans Canada, Ottawa. iv + 32 pp. Additional copies: For copies of the management plan, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the SAR Public Registry. Cover illustration: K.L. Yamanaka, Fisheries and Oceans Canada Également disponible en français sous le titre « Plan de gestion visant le sébaste aux yeux jaunes (Sebastes ruberrimus) au Canada [Proposition]» © Her Majesty the Queen in Right of Canada, represented by the Minister of the Environment, 2018. All rights reserved. ISBN ISBN to be included by SARA Responsible Agency Catalogue no. Catalogue no. to be included by SARA Responsible Agency Content (excluding the illustrations) may be used without permission, with appropriate credit to the source. Management Plan for the Yelloweye Rockfish [Proposed] 2018 Preface The federal, provincial, and territorial government signatories under the Accord for the Protection of Species at Risk (1996) agreed to establish complementary legislation and programs that provide for effective protection of species at risk throughout Canada. Under the Species at Risk Act (S.C. 2002, c.29) (SARA), the federal competent ministers are responsible for the preparation of a management plan for species listed as special concern and are required to report on progress five years after the publication of the final document on the Species at Risk Public Registry.
    [Show full text]
  • Stock Assessment of the Yelloweye Rockfish (Sebastes Ruberrimus) in State and Federal Waters Off California, Oregon and Washington
    Agenda Item E.8 Attachment 5 September 2017 DRAFT Disclaimer: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by NOAA Fisheries. It does not represent and should not be construed to represent any agency determination or policy. Stock assessment of the yelloweye rockfish (Sebastes ruberrimus) in state and Federal waters off California, Oregon and Washington by Vladlena Gertseva and Jason M. Cope Northwest Fisheries Science Center U.S. Department of Commerce National Oceanic and Atmospheric Administration National Marine Fisheries Service 2725 Montlake Boulevard East Seattle, Washington 98112-2097 1 POST-STAR DRAFT 08/14/2017 This report may be cited as: Gertseva, V. and Cope, J.M. 2017. Stock assessment of the yelloweye rockfish (Sebastes ruberrimus) in state and Federal waters off California, Oregon and Washington. Pacific Fishery Management Council, Portland, OR. Available from http://www.pcouncil.org/groundfish/stock-assessments/ 2 Table of Contents Acronyms used in this document ..................................................................... 4 Executive Summary ........................................................................................... 5 Stock ..................................................................................................................................... 5 Catches ................................................................................................................................
    [Show full text]
  • Estimating Fish Abundance and Community Composition on Rocky Habitats in the San Juan Islands Using a Small Remotely Operated Vehicle
    STATE OF WASHINGTON January 2013 Estimating Fish Abundance and Community Composition on Rocky Habitats in the San Juan Islands Using a Small Remotely Operated Vehicle by Robert E. Pacunski, Wayne A. Palsson, and H. Gary Greene Washington Department of FISH AND WILDLIFE Fish Program Fish Management Division FPT 13-02 Estimating Fish Abundance and Community Composition on Rocky Habitats in the San Juan Islands Using a Small Remotely Operated Vehicle Robert E. Pacunski1, Wayne A. Palsson1,2, and H. Gary Greene3 1Washington Department of Fish and Wildlife, 600 Capitol Way N., Olympia, WA 98501 2Present Address: Alaska Fisheries Science Center, 7600 Sand Point Way NE, Seattle, WA 98115. 3Tombolo Habitat Institute, 2267 Deer Harbor Road, East Sound, WA 98245 1 2 Abstract Estimating the abundance of marine fishes living in association with rocky habitats has been a long- standing problem because traditional net surveys are compromised by the nature of the seafloor and direct visual methods, such as scuba or submersibles, are limited or costly. In this study we used a small ROV to survey rocky habitats in the San Juan Islands (SJI) of Washington State to estimate the abundance of rockfishes (Sebastes spp), greenlings (Hexagrammidae), and other northeastern Pacific marine fishes living in nearshore, rocky habitats. The sampling frame was generated by multibeam echosounding surveys (MBES) and geological interpretation and by using charts of known rocky habitats where MBES data were not available. The survey was a stratified-random design with depths less than, or greater than, 36.6 m (120 ft) as the two depth strata. The ROV was deployed from a 12 m survey vessel fitted with an ultra-short baseline tracking system and a clump weight tethered to the ROV during most transects.
    [Show full text]
  • Rockfishflyer.Pdf
    Save our fisheries Misidentifying species of Rockfish threatens to close our fisheries. Learn to identify these species. Large mouth Pale strip along & large eye lateral line Freckles on gill cover and throat area black rockfish quillback rockfish copper rockfish Orange on a Gray lateral line Bright yellow eye Usually dark edges on fins gray background Reddish and mottled with gray Slightly Anal fin slanted Rounded fins forked Juvenile RETURN TO DEPTH IN OCEAN tail RETURN TO DEPTH IN OCEAN canary rockfish vermillion rockfish yelloweye rockfish Broad yellow stripe Skin flaps Profile slightly starting on dorsal fin on snout concave Large mouth White spotting Large mouth & small teeth bocaccio rockfish CHINA rockfish cabezon All Rockfish in Puget Sound must be returned to depth immediately. Photos provided by Steve Axtell, Washington Department of Fish & Wildlife Save our rockfish - save our fisheries FISH CAN SURVIVE BAROTRAUMA There are many methods to descend a rockfish. Puget Sound AnglersPRACTICE recommends the THE Shelton FOLLOWING Fish Descender Amazingly, rockfish that look dead at the surface can or SFD. The SFD isTECHNIQUES effective and inexpensive. AND It allows “pop” back to life if quickly returned to a native depth you to continue fishing immediately after releasing a de- range. Because of this, rockfish that you must, or want scended rockfishSAVE when ROCKFISH used inline. For more LIKE information THIS! to, toss back should be quickly recompressed. visit www.sheltonproducts.com/SFD.html Inverted barbless hook with weight Inverted barbless hook with weight: Hook fish through Shelton Fish Descender www.sheltonproducts.com lower lip from inside to outside, to keep hook from puncturing an extruded stomach and to prevent line cuts Shelton Fish Descender: Hook sh through to eyes.
    [Show full text]
  • Multiple Paternity and Maintenance of Genetic Diversity in the Live-Bearing Rockfishes Sebastes Spp
    Vol. 357: 245–253, 2008 MARINE ECOLOGY PROGRESS SERIES Published April 7 doi: 10.3354/meps07296 Mar Ecol Prog Ser Multiple paternity and maintenance of genetic diversity in the live-bearing rockfishes Sebastes spp. John R. Hyde1, 2,*, Carol Kimbrell2, Larry Robertson2, Kevin Clifford3, Eric Lynn2, Russell Vetter2 1Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, California 92093-0203, USA 2Southwest Fisheries Science Center, NOAA/NMFS, 8604 La Jolla Shores Dr., La Jolla, California 92037, USA 3Oregon Coast Aquarium, 2820 SE Ferry Slip Rd, Newport, Oregon 97365, USA ABSTRACT: The understanding of mating systems is key to the proper management of exploited spe- cies, particularly highly fecund, r-selected fishes, which often show strong discrepancies between census and effective population sizes. The development of polymorphic genetic markers, such as codominant nuclear microsatellites, has made it possible to study the paternity of individuals within a brood, helping to elucidate the species’ mating system. In the present study, paternity analysis was performed on 35 broods, representing 17 species of the live-bearing scorpaenid genus Sebastes. We report on the finding of multiple paternity from several species of Sebastes and show that at least 3 sires can contribute paternity to a single brood. A phylogenetically and ecologically diverse sample of Sebastes species was examined, with multiple paternity found in 14 of the 35 broods and 10 of the 17 examined species, we suggest that this behavior is not a rare event within a single species and is likely common throughout the genus. Despite high variance in reproductive success, Sebastes spp., in general, show moderate to high levels of genetic diversity.
    [Show full text]
  • Multiscale Habitat Suitability Modeling for Canary Rockfish
    MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST By Portia Naomi Saucedo A Thesis Presented to The Faculty of Humboldt State University In Partial Fulfillment of the Requirements for the Degree Master of Science in Natural Resources: Environmental and Natural Resource Sciences Committee Membership Dr. Jim Graham, Committee Chair Dr. Brian Tissot, Committee Member Dr. Joe Tyburczy, Committee Member Dr. Alison Purcell O’Dowd, Graduate Coordinator July 2017 ABSTRACT MULTISCALE HABITAT SUITABILITY MODELING FOR CANARY ROCKFISH (SEBASTES PINNIGER) ALONG THE NORTHERN CALIFORNIA COAST Portia N. Saucedo Detailed spatially-explicit data of the potential habitat of commercially important rockfish species are a critical component for the purposes of marine conservation, evaluation, and planning. Predictive habitat modeling techniques are widely used to identify suitable habitat in un-surveyed regions. This study elucidates the predicted distribution of canary rockfish (Sebastes pinniger) along the largely un-surveyed northern California coast using data from visual underwater surveys and predictive terrain complexity covariates. I used Maximum Entropy (MaxEnt) modelling software to identify regions of suitable habitat for S. pinniger greater than nine cm in total length at two spatial scales. The results of this study indicate the most important environmental covariate was proximity to the interface between hard and soft substrate. I also examined the predicted probability of presence for each model run. MaxEnt spatial predictions varied in predicted probability for broad-scale and each of the fine-scale regions. Uncertainty in predictions was considered at several levels and spatial uncertainty was quantified and mapped. The predictive modeling efforts allowed spatial predictions outside the sampled area at both the broad- and fine-scales accessed.
    [Show full text]