A Hybrid Differential Evolution Augmented Lagrangian Method for Constrained Numerical and Engineering Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Advances in Interior Point Methods and Column Generation
Advances in Interior Point Methods and Column Generation Pablo Gonz´alezBrevis Doctor of Philosophy University of Edinburgh 2013 Declaration I declare that this thesis was composed by myself and that the work contained therein is my own, except where explicitly stated otherwise in the text. (Pablo Gonz´alezBrevis) ii To my endless inspiration and angels on earth: Paulina, Crist´obal and Esteban iii Abstract In this thesis we study how to efficiently combine the column generation technique (CG) and interior point methods (IPMs) for solving the relaxation of a selection of integer programming problems. In order to obtain an efficient method a change in the column generation technique and a new reoptimization strategy for a primal-dual interior point method are proposed. It is well-known that the standard column generation technique suffers from un- stable behaviour due to the use of optimal dual solutions that are extreme points of the restricted master problem (RMP). This unstable behaviour slows down column generation so variations of the standard technique which rely on interior points of the dual feasible set of the RMP have been proposed in the literature. Among these tech- niques, there is the primal-dual column generation method (PDCGM) which relies on sub-optimal and well-centred dual solutions. This technique dynamically adjusts the column generation tolerance as the method approaches optimality. Also, it relies on the notion of the symmetric neighbourhood of the central path so sub-optimal and well-centred solutions are obtained. We provide a thorough theoretical analysis that guarantees the convergence of the primal-dual approach even though sub-optimal solu- tions are used in the course of the algorithm. -
Hybridizations of Metaheuristics with Branch & Bound Derivates
Hybridizations of Metaheuristics With Branch & Bound Derivates Christian Blum1, Carlos Cotta2, Antonio J. Fern´andez2,Jos´e E. Gallardo2, and Monaldo Mastrolilli3 1 ALBCOM research group Universitat Polit`ecnica de Catalunya [email protected] 2 Dept. Lenguajes y Ciencias de la Computaci´on Universidad de M´alaga {ccottap,afdez,pepeg}@lcc.uma.es 3 Istituto Dalle Molle di Studi sull’Intelligenza Artificiale (IDSIA) [email protected] Summary. An important branch of hybrid metaheuristics concerns the hybridiza- tion with branch & bound derivatives. In this chapter we present examples for two different types of hybridization. The first one concerns the use of branch & bound fea- tures within construction-based metaheuristics in order to increase their efficiancy. The second example deals with the use of a metaheuristic, in our case a memetic algorithm, in order to increase the efficiancy of branch & bound, respectively branch & bound derivatives such as beam search. The quality of the resulting hybrid tech- niques is demonstrated by means of the application to classical string problems: the longest common subsequence problem and the shortest common supersequence problem. 1 Introduction One of the basic ingredients of an optimization technique is a mechanism for exploring the search space, that is, the space of valid solutions to the con- sidered optimization problem. Algorithms belonging to the important class of constructive optimization techniques tackle an optimization problem by ex- ploring the search space in form of a tree, a so-called search tree.Thesearch tree is generally defined by an underlying solution construction mechanism. Each path from the root node of the search tree to one of the leaves corre- sponds to the process of constructing a candidate solution. -
Metaheuristics1
METAHEURISTICS1 Kenneth Sörensen University of Antwerp, Belgium Fred Glover University of Colorado and OptTek Systems, Inc., USA 1 Definition A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of guidelines or strategies to develop heuristic optimization algorithms (Sörensen and Glover, To appear). Notable examples of metaheuristics include genetic/evolutionary algorithms, tabu search, simulated annealing, and ant colony optimization, although many more exist. A problem-specific implementation of a heuristic optimization algorithm according to the guidelines expressed in a metaheuristic framework is also referred to as a metaheuristic. The term was coined by Glover (1986) and combines the Greek prefix meta- (metá, beyond in the sense of high-level) with heuristic (from the Greek heuriskein or euriskein, to search). Metaheuristic algorithms, i.e., optimization methods designed according to the strategies laid out in a metaheuristic framework, are — as the name suggests — always heuristic in nature. This fact distinguishes them from exact methods, that do come with a proof that the optimal solution will be found in a finite (although often prohibitively large) amount of time. Metaheuristics are therefore developed specifically to find a solution that is “good enough” in a computing time that is “small enough”. As a result, they are not subject to combinatorial explosion – the phenomenon where the computing time required to find the optimal solution of NP- hard problems increases as an exponential function of the problem size. Metaheuristics have been demonstrated by the scientific community to be a viable, and often superior, alternative to more traditional (exact) methods of mixed- integer optimization such as branch and bound and dynamic programming. -
Chapter 8 Constrained Optimization 2: Sequential Quadratic Programming, Interior Point and Generalized Reduced Gradient Methods
Chapter 8: Constrained Optimization 2 CHAPTER 8 CONSTRAINED OPTIMIZATION 2: SEQUENTIAL QUADRATIC PROGRAMMING, INTERIOR POINT AND GENERALIZED REDUCED GRADIENT METHODS 8.1 Introduction In the previous chapter we examined the necessary and sufficient conditions for a constrained optimum. We did not, however, discuss any algorithms for constrained optimization. That is the purpose of this chapter. The three algorithms we will study are three of the most common. Sequential Quadratic Programming (SQP) is a very popular algorithm because of its fast convergence properties. It is available in MATLAB and is widely used. The Interior Point (IP) algorithm has grown in popularity the past 15 years and recently became the default algorithm in MATLAB. It is particularly useful for solving large-scale problems. The Generalized Reduced Gradient method (GRG) has been shown to be effective on highly nonlinear engineering problems and is the algorithm used in Excel. SQP and IP share a common background. Both of these algorithms apply the Newton- Raphson (NR) technique for solving nonlinear equations to the KKT equations for a modified version of the problem. Thus we will begin with a review of the NR method. 8.2 The Newton-Raphson Method for Solving Nonlinear Equations Before we get to the algorithms, there is some background we need to cover first. This includes reviewing the Newton-Raphson (NR) method for solving sets of nonlinear equations. 8.2.1 One equation with One Unknown The NR method is used to find the solution to sets of nonlinear equations. For example, suppose we wish to find the solution to the equation: xe+=2 x We cannot solve for x directly. -
Cancer Treatment Optimization
CANCER TREATMENT OPTIMIZATION A Thesis Presented to The Academic Faculty by Kyungduck Cha In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology April 2008 CANCER TREATMENT OPTIMIZATION Approved by: Professor Eva K. Lee, Advisor Professor Renato D.C. Monteiro H. Milton Stewart School of Industrial H. Milton Stewart School of Industrial and Systems Engineering and Systems Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Earl R. Barnes Professor Nolan E. Hertel H. Milton Stewart School of Industrial G. W. Woodruff School of Mechanical and Systems Engineering Engineering Georgia Institute of Technology Georgia Institute of Technology Professor Ellis L. Johnson Date Approved: March 28, 2008 H. Milton Stewart School of Industrial and Systems Engineering Georgia Institute of Technology To my parents, wife, and son. iii ACKNOWLEDGEMENTS First of all, I would like to express my sincere appreciation to my advisor, Dr. Eva Lee for her invaluable guidance, financial support, and understanding throughout my Ph.D program of study. Her inspiration provided me many ideas in tackling with my thesis problems and her enthusiasm encouraged me to produce better works. I would also like to thank Dr. Earl Barnes, Dr. Ellis Johnson, Dr. Renato D.C. Monteiro, and Dr. Nolan Hertel for their willingness to serve on my dissertation committee and for their valuable feedbacks. I also thank my friends, faculty, and staff, at Georgia Tech, who have contributed to this thesis in various ways. Specially, thank you to the members at the Center for Operations Research in Medicine and HealthCare for their friendship. -
Evaluation of Emerging Metaheuristic Strategies on Opimal Transmission Pricing
Evaluation of Emerging Metaheuristic Strategies on Opimal Transmission Pricing José L. Rueda, Senior Member, IEEE István Erlich, Senior Member, IEEE Institute of Electrical Power Systems Institute of Electrical Power Systems University Duisburg-Essen University Duisburg-Essen Duisburg, Germany Duisburg, Germany [email protected] [email protected] Abstract--This paper provides a comparative assessment of the In practice, there are several factors that can influence the capabilities of three metaheuristic algorithms for solving the adoption of a particular scheme of transmission pricing. Thus, problem of optimal transmission pricing, whose formulation is existing literature on definition of pricing mechanisms is vast. based on principle of equivalent bilateral exchanges. Among the Particularly, the principle of Equivalent Bilateral Exchange selected algorithms are Covariance Matrix Adaptation (EBE), which was originally proposed in [5], has proven to be Evolution Strategy (CMA-ES), Linearized Biogeography-based useful for pool system by providing suitable price signals Optimization (LBBO), and a novel swarm variant of the Mean- reflecting variability in the usage rates and charges across Variance Mapping Optimization (MVMO-SM). The IEEE 30 transmission network. In [6], an optimization problem was bus system is used to perform numerical comparisons on devised based on EBE in order enable exploration of multiple convergence speed, achieved optimum solutions, and computing solutions in deciding equivalent bilateral exchanges. In the effort. 2011 competition on testing evolutionary algorithms for real- Index Terms--Equivalent bilateral exchanges, evolutionary world optimization problems (CEC11), this problem was mechanism, metaheuristics, transmission pricing. solved by different metaheuristic algorithms, most of them constituting extended or hybridized variants of genetic I. -
The Central Curve in Linear Programming
THE CENTRAL CURVE IN LINEAR PROGRAMMING JESUS´ A. DE LOERA, BERND STURMFELS, AND CYNTHIA VINZANT Abstract. The central curve of a linear program is an algebraic curve specified by linear and quadratic constraints arising from complementary slackness. It is the union of the various central paths for minimizing or maximizing the cost function over any region in the associated hyperplane arrangement. We determine the degree, arithmetic genus and defining prime ideal of the central curve, thereby answering a question of Bayer and Lagarias. These invariants, along with the degree of the Gauss image of the curve, are expressed in terms of the matroid of the input matrix. Extending work of Dedieu, Malajovich and Shub, this yields an instance-specific bound on the total curvature of the central path, a quantity relevant for interior point methods. The global geometry of central curves is studied in detail. 1. Introduction We consider the standard linear programming problem in its primal and dual formulation: (1) Maximize cT x subject to Ax = b and x ≥ 0; (2) Minimize bT y subject to AT y − s = c and s ≥ 0: Here A is a fixed matrix of rank d having n columns. The vectors c 2 Rn and b 2 image(A) may vary. In most of our results we assume that b and c are generic. This implies that both the primal optimal solution and the dual optimal solution are unique. We also assume that the problem (1) is bounded and both problems (1) and (2) are strictly feasible. Before describing our contributions, we review some basics from the theory of linear pro- gramming [26,33]. -
IMPROVED PARTICLE SWARM OPTIMIZATION for NON-LINEAR PROGRAMMING PROBLEM with BARRIER METHOD Raju Prajapati1 1University of Engineering & Management, Kolkata, W.B
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Gyandhara International Academic Publication (GIAP): Journals International Journal of Students’ Research in Technology & Management eISSN: 2321-2543, Vol 5, No 4, 2017, pp 72-80 https://doi.org/10.18510/ijsrtm.2017.5410 IMPROVED PARTICLE SWARM OPTIMIZATION FOR NON-LINEAR PROGRAMMING PROBLEM WITH BARRIER METHOD Raju Prajapati1 1University Of Engineering & Management, Kolkata, W.B. India Om Prakash Dubey2, Randhir Kumar3 2,3Bengal College Of Engineering & Technology, Durgapur, W.B. India email: [email protected] Article History: Submitted on 10th September, Revised on 07th November, Published on 30th November 2017 Abstract: The Non-Linear Programming Problems (NLPP) are computationally hard to solve as compared to the Linear Programming Problems (LPP). To solve NLPP, the available methods are Lagrangian Multipliers, Sub gradient method, Karush-Kuhn-Tucker conditions, Penalty and Barrier method etc. In this paper, we are applying Barrier method to convert the NLPP with equality constraint to an NLPP without constraint. We use the improved version of famous Particle Swarm Optimization (PSO) method to obtain the solution of NLPP without constraint. SCILAB programming language is used to evaluate the solution on sample problems. The results of sample problems are compared on Improved PSO and general PSO. Keywords. Non-Linear Programming Problem, Barrier Method, Particle Swarm Optimization, Equality and Inequality Constraints. INTRODUCTION A large number of algorithms are available to solve optimization problems, inspired by evolutionary process in nature. e.g. Genetic Algorithm, Particle Swarm Optimization, Ant Colony Optimization, Bee Colony Optimization, Memetic Algorithm, etc. -
Global Optimisation Through Hyper-Heuristics: Unfolding Population-Based Metaheuristics
applied sciences Article Global Optimisation through Hyper-Heuristics: Unfolding Population-Based Metaheuristics Jorge M. Cruz-Duarte 1,† , José C. Ortiz-Bayliss 1,† , Ivan Amaya 1,*,† and Nelishia Pillay 2,† 1 School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico; [email protected] (J.M.C.-D.); [email protected] (J.C.O.-B.) 2 Department of Computer Science, University of Pretoria, Lynnwood Rd, Hatfield, Pretoria 0083, South Africa; [email protected] * Correspondence: [email protected]; Tel.: +52-(81)-8358-2000 † These authors contributed equally to this work. Abstract: Optimisation has been with us since before the first humans opened their eyes to natural phenomena that inspire technological progress. Nowadays, it is quite hard to find a solver from the overpopulation of metaheuristics that properly deals with a given problem. This is even considered an additional problem. In this work, we propose a heuristic-based solver model for continuous optimisation problems by extending the existing concepts present in the literature. We name such solvers ‘unfolded’ metaheuristics (uMHs) since they comprise a heterogeneous sequence of simple heuristics obtained from delegating the control operator in the standard metaheuristic scheme to a high-level strategy. Therefore, we tackle the Metaheuristic Composition Optimisation Problem by tailoring a particular uMH that deals with a specific application. We prove the feasibility of this model via a two-fold experiment employing several continuous optimisation problems and a collection of Citation: Cruz-Duarte, J.M.; diverse population-based operators with fixed dimensions from ten well-known metaheuristics in Ortiz-Bayliss, J.C.; Amaya, I.; Pillay, the literature. -
A Multi-Objective Hyper-Heuristic Based on Choice Function
A Multi-objective Hyper-heuristic based on Choice Function Mashael Maashi1, Ender Ozcan¨ 2, Graham Kendall3 1 2 3Automated Scheduling, Optimisation and Planning Research Group, University of Nottingham, Department of Computer Science, Jubilee Campus,Wollaton Road, Nottingham, NG8 1BB ,UK. 1email: [email protected] 2email: [email protected] 3The University of Nottingham Malaysia Campus email:[email protected] Abstract Hyper-heuristics are emerging methodologies that perform a search over the space of heuristics in an attempt to solve difficult computational opti- mization problems. We present a learning selection choice function based hyper-heuristic to solve multi-objective optimization problems. This high level approach controls and combines the strengths of three well-known multi-objective evolutionary algorithms (i.e. NSGAII, SPEA2 and MOGA), utilizing them as the low level heuristics. The performance of the pro- posed learning hyper-heuristic is investigated on the Walking Fish Group test suite which is a common benchmark for multi-objective optimization. Additionally, the proposed hyper-heuristic is applied to the vehicle crash- worthiness design problem as a real-world multi-objective problem. The experimental results demonstrate the effectiveness of the hyper-heuristic approach when compared to the performance of each low level heuristic run on its own, as well as being compared to other approaches including an adaptive multi-method search, namely AMALGAM. Keywords: Hyper-heuristic, metaheuristic, evolutionary algorithm, multi-objective optimization. 1. Introduction Most real-world problems are complex. Due to their (often) NP-hard nature, researchers and practitioners frequently resort to problem tailored heuristics to obtain a reasonable solution in a reasonable time. -
Barrier Method
Barrier Method Ryan Tibshirani Convex Optimization 10-725/36-725 1 Last time: Newton's method Consider the problem min f(x) x n for f convex, twice differentiable, with dom(f) = R . Newton's (0) n method: choose initial x R , repeat 2 (k) (k−1) 2 (k−1) −1 (k−1) x = x tk f(x ) f(x ); k = 1; 2; 3;::: − r r Step sizes tk chosen by backtracking line search If f Lipschitz, f strongly convex, 2f Lipschitz, then Newton's r r method has a local convergence rate O(log log(1/)) Downsides: Requires solving systems in Hessian quasi-Newton • Can only handle equality constraints this lecture • 2 Hierarchy of second-order methods Assuming all problems are convex, you can think of the following hierarchy that we've worked through: Quadratic problems are the easiest: closed-form solution • Equality-constrained quadratic problems are still easy: we use • KKT conditions to derive closed-form solution Equality-constrained smooth problems are next: use Newton's • method to reduce this to a sequence of equality-constrained quadratic problems Inequality- and equality-constrained smooth problems are • what we cover now: use interior-point methods to reduce this to a sequence of equality-constrained smooth problems 3 Log barrier function Consider the convex optimization problem min f(x) x subject to hi(x) 0; i = 1; : : : m ≤ Ax = b We will assume that f, h1; : : : hm are convex, twice differentiable, n each with domain R . The function m φ(x) = log( hi(x)) − − i=1 X is called the log barrier for the above problem. -
Electrical Networks, Hyperplane Arrangements and Matroids By
Electrical Networks, Hyperplane Arrangements and Matroids by Robert P. Lutz A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) in The University of Michigan 2019 Doctoral Committee: Professor Jeffrey Lagarias, Chair Professor Alexander Barvinok Associate Professor Chris Peikert Professor Karen Smith Professor David Speyer Robert P. Lutz a.k.a. Bob Lutz [email protected] orcid.org/0000-0002-5407-7041 c Robert P. Lutz 2019 Dedication This dissertation is dedicated to my parents. ii Acknowledgments I thank Trevor Hyde, Thomas Zaslavsky, and anonymous referees for helpful com- ments on individual chapters of this thesis. I thank Alexander Barvinok for his careful reading of an early version of the thesis, and many useful comments. Finally I thank my advisor, Jeffrey Lagarias, for his extensive comments on the thesis, for his keen advice and moral support, and for many helpful conversations throughout my experience as a graduate student. This work was partially supported by NSF grants DMS-1401224 and DMS-1701576. iii Table of Contents Dedication ii Acknowledgments iii List of Figures vii Abstract ix Chapter 1: Introduction 1 Chapter 2: Background 4 2.1 Electrical networks . 4 2.2 Hyperplane arrangements . 10 2.2.1 Supersolvable arrangements . 13 2.2.2 Graphic arrangements . 14 2.3 Matroids . 15 2.3.1 Graphic matroids . 17 2.3.2 Complete principal truncations . 17 Chapter 3: Electrical networks and hyperplane arrangements 19 3.1 Main definition and examples . 19 3.2 Main results . 24 3.3 Combinatorics of Dirichlet arrangements . 26 3.3.1 Intersection poset and connected partitions .