Aerodynamic Modeling of an Unmanned Aerial Vehicle Using a Computational Fluid Dynamics Prediction Code
Total Page:16
File Type:pdf, Size:1020Kb
AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE A thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University In partial fulfillments of the requirements for the degree Master of Science Isaac D. Rose March 2009 © 2009 Isaac D. Rose. All Rights Reserved. This thesis titled AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE by ISAAC D. ROSE has been approved for the School of Electrical Engineering and Computer Science and the Russ College of Engineering and Technology by _____________________________________________________________ Douglas A. Lawrence Professor of Electrical Engineering and Computer Science _____________________________________________________________ Dennis Irwin Dean, Russ College of Engineering and Technology Abstract ROSE, ISAAC D., M.S., March 2009, Electrical Engineering AERODYNAMIC MODELING OF AN UNMANNED AERIAL VEHICLE USING A COMPUTATIONAL FLUID DYNAMICS PREDICTION CODE (192 pp.) Director of Thesis: Douglas A. Lawrence The process of creating a six degree-of-freedom model for an aerospace vehicle requires detailed knowledge of the aerodynamic characteristics. This thesis presents an implementation of a Computational Fluid Dynamics (CFD) prediction computer code to generate aerodynamic coefficients for the Brumby Mk. I Unmanned Aerial Vehicle (UAV). The aerodynamic coefficients include both the force and moment coefficients. These values are verified by creating a Matlab/Simulink six degree-of-freedom model. Approved: ______________________________________________________________ Douglas A. Lawrence Professor of Electrical Engineering and Computer Science Acknowledgments I would like to thank GOD through whom all things are possible. I would like to thank my wife and son for their understanding and encouragement. The hours spent working on this thesis were hours spent away from them. I would also like to thank Dr. Lawrence for the guidance and direction that he has given me over the years. The research presented in this thesis is a tribute to his resolve in the autonomous control of the Brumby Unmanned Arial Vehicle. Finally, I would like to thank the faculty of the department of Electrical Engineering and Computer Science for their help throughout the years. Table of Contents Abstract.................................................................................................................................3 Acknowledgments................................................................................................................4 Glossary of Variables..........................................................................................................14 Chapter 1: Introduction..................................................................................................19 1.1 Overview.............................................................................................................19 1.2 Motivation ..........................................................................................................20 1.3 Modeling Aerodynamic Forces and Moments....................................................21 1.4 Objectives............................................................................................................22 1.5 Thesis Organization.............................................................................................22 1.5.1 Missile DATCOM Input Parameters...........................................................22 1.5.2 Missile DATCOM Model of the Brumby UAV..........................................23 1.5.3 Equations of Motion....................................................................................23 1.5.4 Brumby UAV Model Simulation................................................................23 Chapter 2: Missile DATCOM Modeling Parameters Overview....................................24 2.1 Flight Conditions..................................................................................................26 2.2 Fuselage...............................................................................................................28 2.3 Primary Lifting Surface ......................................................................................29 2.4 Horizontal Stabilizer...........................................................................................33 2.5 Vertical Stabilizer................................................................................................35 2.6 Control Surfaces..................................................................................................36 2.7 Generating Additional Data................................................................................38 2.8 File Format and Content......................................................................................39 2.9 Missile DATCOM Example...............................................................................41 Chapter 3: Missile DATCOM Model of the Brumby Unmanned Aerial Vehicle .........72 3.1 Flight Conditions.................................................................................................72 3.2 Fuselage................................................................................................................75 3.3 Wing Planform....................................................................................................76 3.4 Vertical Stabilizer................................................................................................77 3.5 Control Surfaces .................................................................................................80 Chapter 4: Equations of Motion and Rigid Body Modeling .........................................86 4.1 Equations of Motion for A Rigid Body ..............................................................86 4.2 Aerodynamic Coefficients..................................................................................91 4.3 Six Degree-of-Freedom Aircraft Model............................................................101 Chapter 5: Simulation...................................................................................................103 5.1 Simulink Nonlinear Aircraft Model..................................................................103 5.2 Trimmed Aircraft Flight....................................................................................107 5.3 Linearized Aircraft Model.................................................................................108 5.4 Nonlinear Simulation Results...........................................................................112 5.4 Control Surface Doublet Simulation Results....................................................123 Chapter 6: Conclusions and Future Work....................................................................138 References........................................................................................................................140 Appendix A.1: for005.dat File.........................................................................................141 Appendix A.2 : Truncated for006.dat File.......................................................................145 Appendix A.3 : for003.dat File........................................................................................154 Appendix A.4 : for021.dat File........................................................................................155 Appendix B.1: Equations of Motion s-function...............................................................184 Appendix B.2: forces_moments.m..................................................................................189 Appendix B.3: datcomderive.m.......................................................................................192 List of Tables Table 2.1: Missile DATCOM Control Cards.....................................................................26 Table 2.2: Missile DATCOM Namelist FLTCON ..........................................................27 Table 2.3: Missile DATCOM Namelist REFQ..................................................................28 Table 2.4: Missile DATCOM Namelist AXIBOD............................................................29 Table 2.5: Missile DATCOM Namelist FINSET..............................................................30 Table 2.6: Missile DATCOM Namelist DEFLCT.............................................................38 Table 2.7: Missile DATCOM File Definitions..................................................................41 Table 3.1: Brumby UAV Flight Conditions (FLTCON) ..................................................73 Table 3.2: Brumby UAV Reference Values (REFQ)........................................................75 Table 3.3: Brumby UAV Body Definition (ASYM).........................................................76 Table 3.4: Brumby UAV Twin Vertical Tail Planform Definition (FINSET2)................79 Table 4.5: Brumby UAV Wing Planform Definition (FINSET1).....................................88 Table 5.1: Brumby UAV Mass Properties.......................................................................104 Table 5.2: S-function Functionality.................................................................................104 Table 5.3: DATCOMTableMex.dll Functionality...........................................................106 Table 5.4: Brumby UAV Control Input Trimmed Values (Case 1)................................107