The Premises of Geometry

Total Page:16

File Type:pdf, Size:1020Kb

The Premises of Geometry DG4CL_895_13.qxd 12/4/06 1:39 PM Page 169 CONDENSED LESSON 13.1 The Premises of Geometry In this lesson you will ● Learn about Euclid’s deductive system for organizing geometry properties ● Become familiar with the four types of premises for geometry Beginning in about 600 B.C.E., mathematicians began to use logical reasoning to deduce mathematical ideas. The Greek mathematician Euclid (ca. 325–265 B.C.E.) created a deductive system to organize geometry properties. He started with a simple collection of statements called postulates. He considered these postulates to be obvious truths that did not need to be proved. Euclid then systematically demonstrated how each geometry discovery followed logically from his postulates and his previously proved conjectures, or theorems. Up to now, you have used informal proofs to explain why certain conjectures are true. However, you often relied on unproved conjectures in your proofs. A conclusion in a proof is true if and only if your premises are true and all of your arguments are valid. In this chapter you will look at geometry as Euclid did. You will start with premises and systematically prove your earlier conjectures. Once you have proved a conjecture, it becomes a theorem that you can use to prove other conjectures. Read the four types of premises on page 693 of your book. You are already familiar with the first type of premise. You have learned the undefined terms—point, line, and plane—and you have a list of definitions in your notebook. The second type of premise is the properties of arithmetic, equality, and congruence. Read through the properties of arithmetic and equality in your book. You have used these properties many times to solve algebraic equations. The example in your book shows the solution to an algebraic equation, along with the reason for each step. This type of step-by-step solution is actually an algebraic proof. Here is another example. EXAMPLE Prove that if (a ϩ b)(a Ϫ b) ϭ (a ϩ b)(a ϩ b) and a ϩ b 0, then b ϭ 0. ᮣ Solution (a ϩ b)(a Ϫ b) ϭ (a ϩ b)(a ϩ b) Given a Ϫ b ϭ a ϩ b Division property of equality (a ϩ b 0) a ϭ a ϩ 2b Addition property of equality 0 ϭ 2b Subtraction property of equality 0 ϭ b Division property of equality Just as you use equality to express a relationship between numbers, you use congruence to express a relationship between geometric figures. Read the definition of congruence on page 695 of your book. Here are the properties of congruence. (continued) Discovering Geometry Condensed Lessons CHAPTER 13 169 ©2008 Kendall Hunt Publishing DG4CL_895_13.qxd 12/4/06 1:39 PM Page 170 Lesson 13.1 • The Premises of Geometry (continued) Properties of Congruence In the statements below, “figure” refers to a segment, an angle, or a geometric shape. Reflexive Property of Congruence Any figure is congruent to itself. Transitive Property of Congruence If Figure A Х Figure B and Figure B Х Figure C, then Figure A Х Figure C. Symmetric Property of Congruence If Figure A Х Figure B, then Figure B Х Figure A. The third type of premise is the postulates of geometry. Postulates are very basic statements that are useful and easy for everyone to agree on. Read the postulates of geometry on pages 696–697 of your book. Some of the postulates allow you to add auxiliary lines, segments, and points to a diagram. For example, you can use the Line Postulate to construct a diagonal of a polygon, and you can use the Perpendicular Postulate to construct an altitude in a triangle. Notice that the Corresponding Angles Conjecture and its converse are stated as a postulate, but the Alternate Interior Angles Conjecture is not. This means that you will need to prove the Alternate Interior Angles Conjecture before you can use it to prove other conjectures. Similarly, the SSS, SAS, and ASA Congruence Conjectures are stated as postulates, but SAA is not, so you will need to prove it. The fourth type of premise is previously proved geometry conjectures, or theorems. Each time you prove a conjecture, you may rename it as a theorem and add it to your theorem list. You can use the theorems on your list to prove conjectures. 170 CHAPTER 13 Discovering Geometry Condensed Lessons ©2008 Kendall Hunt Publishing DG4CL_895_13.qxd 12/4/06 1:39 PM Page 171 CONDENSED LESSON 13.2 Planning a Geometry Proof In this lesson you will ● Learn the five tasks involved in writing a proof ● Prove several conjectures about angles ● Learn how to create a logical family tree for a theorem A proof in geometry is a sequence of statements, starting with a given set of premises and leading to a valid conclusion. Each statement must follow from previous statements and must be supported by a reason. The reason must come from the set of premises you learned about in Lesson 13.1. Writing a proof involves five tasks. Task 1 is to identify what is given and what is to be proved. This is easiest if the conjecture is a conditional, or “if-then,” statement. The “if” part is what you are given, and the “then” part is what you must show. If a conjecture is not given this way, you can often restate it. For example, the conjecture “Vertical angles are congruent” can be rewritten as “If two angles are vertical angles, then they are congruent.” Task 2 is to make a diagram and to mark it so it illustrates the given information. Task 3 is to restate the “given” and “show” information in terms of the diagram. Task 4 is to make a plan for your proof, organizing your reasoning either mentally or on paper. Task 5 is to use your plan to write the proof. Page 703 of your book summarizes the five tasks involved in writing a proof. A flowchart proof of the Vertical Angles Conjecture is given on page 704 of your book. Notice that the proof uses only postulates, definitions, and properties of equality. Thus, it is a valid proof. You can now call the conjecture the Vertical Angles (VA) Theorem and add it to your theorem list. In Lesson 13.1, the Corresponding Angles (CA) Conjecture was stated as a postulate, but the Alternate Interior Angles (AIA) Conjecture was not. Example A in your book goes through the five-task process for proving the AIA Conjecture. Read the example carefully, and then add the AIA Theorem to your theorem list. Example B proves the Triangle Sum Conjecture. The proof requires using the Parallel Postulate to construct a line parallel to one side of the triangle. After you read and understand the proof, add the Triangle Sum Theorem to your theorem list. Pages 706–707 of your book give a proof of the Third Angle Conjecture. Read the proof, and then add the Third Angle Theorem to your theorem list. A logical family tree for a theorem traces the theorem back to all the postulates on which the theorem relies. On page 707 of your book, you’ll see how to construct the logical family tree for the Third Angle Theorem. Make sure you understand how this theorem is rooted in four postulates: the Parallel Postulate, the CA Postulate, the Linear Pair Postulate, and the Angle Addition Postulate. On page 707 you can see that the Third Angle Theorem follows from the Triangle Sum Theorem without relying on any other postulate or theorem. A theorem that is an immediate consequence of another proven theorem is called a corollary. So, the Third Angle Theorem is a corollary of the Triangle Sum Theorem. (continued) Discovering Geometry Condensed Lessons CHAPTER 13 171 ©2008 Kendall Hunt Publishing DG4CL_895_13.qxd 12/4/06 1:39 PM Page 172 Lesson 13.2 • Planning a Geometry Proof (continued) The next example is Exercise 8 in your book. It illustrates the five-task process of proving the Converse of the Alternate Interior Angles Conjecture. EXAMPLE Prove the Converse of the AIA Conjecture: If two lines are cut by a transversal forming congruent alternate interior angles, then the lines are parallel. Then create a family tree for the Converse of the AIA Theorem. ᮣ Solution Task 1: Identify what is given and what you must show. Given: Two lines cut by a transversal to form congruent alternate interior angles Show: The lines are parallel ᐉ Task 2: Draw and label a diagram. 3 (Note: You may not realize that labeling Є3 is useful until you make your plan.) ᐉ 1 1 Task 3: Restate the given and show information in 2 ᐉ terms of your diagram. 3 2 ᐉ ᐉ ᐉ Given: 1 and 2 cut by transversal 3; Є1 Х Є2 ᐉ ʈ ᐉ Show: 1 2 Task 4: Make a plan. ᐉ ʈ ᐉ Plan: I need to prove that 1 2. The only theorem or postulate I have for proving lines are parallel is the CA Postulate. If I can show that Є1 Х Є3, ᐉ ʈ ᐉ Є Х Є I can use the CA Postulate to conclude that 1 2. I know that 1 2. By the VA Theorem, Є2 Х Є3. So, by the transitive property of congruence, Є1 Х Є3. Task 5: Create a proof. Flowchart Proof Є Є Є Є Є Є ᐉ ʈ 1 2 2 3 1 3 1 2 Given VA Theorem Transitive CA Postulate property Here is a logical family tree for the Converse of the AIA Theorem.
Recommended publications
  • AMATH 731: Applied Functional Analysis Lecture Notes
    AMATH 731: Applied Functional Analysis Lecture Notes Sumeet Khatri November 24, 2014 Table of Contents List of Tables ................................................... v List of Theorems ................................................ ix List of Definitions ................................................ xii Preface ....................................................... xiii 1 Review of Real Analysis .......................................... 1 1.1 Convergence and Cauchy Sequences...............................1 1.2 Convergence of Sequences and Cauchy Sequences.......................1 2 Measure Theory ............................................... 2 2.1 The Concept of Measurability...................................3 2.1.1 Simple Functions...................................... 10 2.2 Elementary Properties of Measures................................ 11 2.2.1 Arithmetic in [0, ] .................................... 12 1 2.3 Integration of Positive Functions.................................. 13 2.4 Integration of Complex Functions................................. 14 2.5 Sets of Measure Zero......................................... 14 2.6 Positive Borel Measures....................................... 14 2.6.1 Vector Spaces and Topological Preliminaries...................... 14 2.6.2 The Riesz Representation Theorem........................... 14 2.6.3 Regularity Properties of Borel Measures........................ 14 2.6.4 Lesbesgue Measure..................................... 14 2.6.5 Continuity Properties of Measurable Functions...................
    [Show full text]
  • List of Theorems from Geometry 2321, 2322
    List of Theorems from Geometry 2321, 2322 Stephanie Hyland [email protected] April 24, 2010 There’s already a list of geometry theorems out there, but the course has changed since, so here’s a new one. They’re in order of ‘appearance in my notes’, which corresponds reasonably well to chronolog- ical order. 24 onwards is Hilary term stuff. The following theorems have actually been asked (in either summer or schol papers): 5, 7, 8, 17, 18, 20, 21, 22, 26, 27, 30 a), 31 (associative only), 35, 36 a), 37, 38, 39, 43, 45, 47, 48. Definitions are also asked, which aren’t included here. 1. On a finite-dimensional real vector space, the statement ‘V is open in M’ is independent of the choice of norm on M. ′ f f i 2. Let Rn ⊃ V −→ Rm be differentiable with f = (f 1, ..., f m). Then Rn −→ Rm, and f ′ = ∂f ∂xj f 3. Let M ⊃ V −→ N,a ∈ V . Then f is differentiable at a ⇒ f is continuous at a. 4. f = (f 1, ...f n) continuous ⇔ f i continuous, and same for differentiable. 5. The chain rule for functions on finite-dimensional real vector spaces. 6. The chain rule for functions of several real variables. f 7. Let Rn ⊃ V −→ R, V open. Then f is C1 ⇔ ∂f exists and is continuous, for i =1, ..., n. ∂xi 2 2 Rn f R 2 ∂ f ∂ f 8. Let ⊃ V −→ , V open. f is C . Then ∂xi∂xj = ∂xj ∂xi 9. (φ ◦ ψ)∗ = φ∗ ◦ ψ∗, where φ, ψ are maps of manifolds, and φ∗ is the push-forward of φ.
    [Show full text]
  • Calculus I – Math
    Math 380: Low-Dimensional Topology Instructor: Aaron Heap Office: South 330C E-mail: [email protected] Web Page: http://www.geneseo.edu/math/heap Textbook: Topology Now!, by Robert Messer & Philip Straffin. Course Info: We will cover topological equivalence, deformations, knots and links, surfaces, three- dimensional manifolds, and the fundamental group. Topics are subject to change depending on the progress of the class, and various topics may be skipped due to time constraints. An accurate reading schedule will be posted on the website, and you should check it often. By the time you take this course, most of you should be fairly comfortable with mathematical proofs. Although this course only has multivariable calculus, elementary linear algebra, and mathematical proofs as prerequisites, students are strongly encouraged to take abstract algebra (Math 330) prior to this course or concurrently. It requires a certain level of mathematical sophistication. There will be a lot of new terminology you must learn, and we will be doing a significant number of proofs. Please note that we will work on developing your independent reading skills in Mathematics and your ability to learn and use definitions and theorems. I certainly won't be able to cover in class all the material you will be required to learn. As a result, you will be expected to do a lot of reading. The reading assignments will be on topics to be discussed in the following lecture to enable you to ask focused questions in the class and to better understand the material. It is imperative that you keep up with the reading assignments.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Math 025-1,2 List of Theorems and Definitions Fall 2010
    Math 025-1,2 List of Theorems and Definitions Fall 2010 Here are the 19 theorems of Math 25: Domination Law (aka Monotonicity Law) If f and g are integrable functions on [a; b] such that R b R b f(x) ≤ g(x) for all x 2 [a; b], then a f(x) dx ≤ a g(x) dx. R b Positivity Law If f is a nonnegative, integrable function on [a; b], then a f(x) dx ≥ 0. Also, if f(x) is R b a nonnegative, continuous function on [a; b] and a f(x) dx = 0, then f(x) = 0 for all x 2 [a; b]. Max-Min Inequality If f(x) is an integrable function on [a; b], then Z b (min value of f(x) on [a; b]) · (b − a) ≤ f(x) dx ≤ (max value of f(x) on [a; b]) · (b − a): a Triangle Inequality (for Integrals) Let f :[a; b] ! R be integrable. Then Z b Z b f(x) dx ≤ jf(x)j dx: a a Mean Value Theorem for Integrals Let f : R ! R be continuous on [a; b]. Then there exists a number c 2 (a; b) such that 1 Z b f(c) = f(x) dx: b − a a Fundamental Theorem of Calculus (one part) Let f :[a; b] ! R be continuous and define F : R x [a; b] ! R by F (x) = a f(t) dt. Then F is differentiable (hence continuous) on [a; b] and F 0(x) = f(x). Fundamental Theorem of Calculus (other part) Let f :[a; b] ! R be continuous and let F be any antiderivative of f on [a; b].
    [Show full text]
  • Calculus I ​ Teacher(S): Mr
    Remote Learning Packet NB: Please keep all work produced this week. Details regarding how to turn in this work will be forthcoming. April 20 - 24, 2020 Course: 11 Calculus I ​ Teacher(s): Mr. Simmons ​ Weekly Plan: ​ Monday, April 20 ⬜ Revise your proof of Fermat’s Theorem. Tuesday, April 21 ⬜ Extreme Value Theorem proof and diagram. Wednesday, April 22 ⬜ Diagrams for Fermat’s Theorem, Rolle’s Theorem, and the MVT Thursday, April 23 ⬜ Prove Rolle’s Theorem. Friday, April 24 ⬜ Prove the MVT. Statement of Academic Honesty I affirm that the work completed from the packet I affirm that, to the best of my knowledge, my is mine and that I completed it independently. child completed this work independently _______________________________________ _______________________________________ Student Signature Parent Signature Monday, April 20 I would like to apologize, because in the list of theorems that I sent you, there was a typo. In the hypotheses for two of the theorems, there were written nonstrict inequalities, but they should have been strict inequalities. I have corrected this in the new version. If you have felt particularly challenged by these proofs, that’s okay! I hope that this is an opportunity for you not to memorize a method and execute it perfectly, but rather to be challenged and to struggle with real mathematical problems. I highly encourage you to come to office hours (virtually) to ask questions about these problems. And feel free to email me as well! This week’s handout is a rewriting of those same theorems, along with one more, the Extreme Value Theorem. I apologize for all the changes, but I - along with the rest of you - am still adjusting to this new setup.
    [Show full text]
  • Formal Proof—Getting Started Freek Wiedijk
    Formal Proof—Getting Started Freek Wiedijk A List of 100 Theorems On the webpage [1] only eight entries are listed for Today highly nontrivial mathematics is routinely the first theorem, but in [2p] seventeen formaliza- being encoded in the computer, ensuring a reliabil- tions of the irrationality of 2 have been collected, ity that is orders of a magnitude larger than if one each with a short description of the proof assistant. had just used human minds. Such an encoding is When we analyze this list of theorems to see called a formalization, and a program that checks what systems occur most, it turns out that there are such a formalization for correctness is called a five proof assistants that have been significantly proof assistant. used for formalization of mathematics. These are: Suppose you have proved a theorem and you want to make certain that there are no mistakes proof assistant number of theorems formalized in the proof. Maybe already a couple of times a mistake has been found and you want to make HOL Light 69 sure that that will not happen again. Maybe you Mizar 45 fear that your intuition is misleading you and want ProofPower 42 to make sure that this is not the case. Or maybe Isabelle 40 you just want to bring your proof into the most Coq 39 pure and complete form possible. We will explain all together 80 in this article how to go about this. Although formalization has become a routine Currently in all systems together 80 theorems from activity, it still is labor intensive.
    [Show full text]
  • A Gentle Tutorial for Programming on the ML-Level of Isabelle (Draft)
    The Isabelle Cookbook A Gentle Tutorial for Programming on the ML-Level of Isabelle (draft) by Christian Urban with contributions from: Stefan Berghofer Jasmin Blanchette Sascha Bohme¨ Lukas Bulwahn Jeremy Dawson Rafal Kolanski Alexander Krauss Tobias Nipkow Andreas Schropp Christian Sternagel July 31, 2013 2 Contents Contentsi 1 Introduction1 1.1 Intended Audience and Prior Knowledge.................1 1.2 Existing Documentation..........................2 1.3 Typographic Conventions.........................2 1.4 How To Understand Isabelle Code.....................3 1.5 Aaaaargh! My Code Does not Work Anymore..............4 1.6 Serious Isabelle ML-Programming.....................4 1.7 Some Naming Conventions in the Isabelle Sources...........5 1.8 Acknowledgements.............................6 2 First Steps9 2.1 Including ML-Code.............................9 2.2 Printing and Debugging.......................... 10 2.3 Combinators................................ 14 2.4 ML-Antiquotations............................. 21 2.5 Storing Data in Isabelle.......................... 24 2.6 Summary.................................. 32 3 Isabelle Essentials 33 3.1 Terms and Types.............................. 33 3.2 Constructing Terms and Types Manually................. 38 3.3 Unification and Matching......................... 46 3.4 Sorts (TBD)................................. 55 3.5 Type-Checking............................... 55 3.6 Certified Terms and Certified Types.................... 57 3.7 Theorems.................................. 58 3.8 Theorem
    [Show full text]
  • This Is a Paper in Whiuch Several Famous Theorems Are Poven by Using Ths Same Method
    This is a paper in whiuch several famous theorems are poven by using ths same method. There formula due to Marston Morse which I think is exceptional. Vector Fields and Famous Theorems Daniel H. Gottlieb 1. Introduction. What do I mean ? Look at the example of Newton’s Law of Gravitation. Here is a mathematical statement of great simplicity which implies logically vast number of phe- nomena of incredible variety. For example, Galileo’s observation that objects of different weights fall to the Earth with the same acceleration, or Kepler’s laws governing the motion of the planets, or the daily movements of the tides are all due to the underlying notion of gravity. And this is established by deriving the the mathematical statements of these three classes of phenomena from Newton’s Law of Gravity. The mathematical relationship of falling objects, planets, and tides is defined by the beautiful fact that they follow from Newton’s Law by the same kind of argument. The derivation for falling objects is much simpler than the derivation of the tides, but the general method of proof is the same. This process of simple laws implying vast numbers of physical theorems repeats itself over and over in Physics, with Maxwell’s Equations and Conservation of Energy and Momentum. To a mathematician, this web of relationships stemming from a few sources is beautiful. But is it unreasonable ? This is the question I ask. Are there mathematical Laws ? That is are there theorems which imply large numbers of known, important, and beautiful results by using the same kind of proofs ? At thirteen I already knew what Mathematics was.
    [Show full text]
  • Long List of Theorems for Final Exam
    Stony Brook University Geometry for Teachers Mathematics Department MAT 515 Oleg Viro December 11, 2010 Long list of theorems for Final Exam The topics listed here are recommended for review. One of them will be included (in a rephrased form) in the exam. It will be required to formulate the relevant definitions and theorems, but no proofs will be required. The word section means below a section from the textbook Lessons in Geometry by Jacques Hadamard, the words Isometries and Similarity refer to files isometries.pdf and similarity.pdf. (1) Theorem about vertical angles, section 12. (2) Existence and uniqueness of perpendicular to a line from a point, section 19. (3) Theorems about isosceles triangles and their properties, section 23. (4) Tests for congruence of triangles, section 24. (5) Triangle inequality and its corollaries, sections 26, 27. (6) Bisector of an angle as the locus of point equidistant from the sides, section 36. (7) Tests for parallel lines, section 38. (8) Drawing through a given point a line parallel to a given line, section 39. (9) Parallel Axiom, angles formed by parallel lines and transversal, sections 40, 41. (10) The sum of interior angles in a triangle, section 44. (11) Properties of a parallelogram, section 46, 46b, 47. (12) Special types of parallelograms and their properties, section 48. (13) Theorems about concurrent lines in a triangle, sections 52 - 54, 56. (14) Theorem about a midline in a triangle, section 55. (15) Existence and uniqueness of a circle passing through three points, section 57. (16) Intersection of a line and a circle, section 58.
    [Show full text]
  • Discrete Mathematics for Computer Scientists
    DISCRETE MATHEMATICS FOR C OMPUTER SCIENTISTS Clifford St ein Columbia University Robert L. Drysdale Dartmouth College Kenne th Bogart Addison-Wesley Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editor in Chief: Michael Hirsch Editorial Assistant: Stephanie Sellinger Director of Marketing: Margaret Whaples Marketing Coordinator: Kathryn Ferranti Managing Editor: Jeffrey Holcomb Production Project Manager: Heather McNally Senior Manufacturing Buyer: Carol Melville Media Manufacturing Buyer: Ginny Michaud Art Director: Linda Knowles Cover Designer: Elena Sidorova Cover Art: Veer Media Project Manager: Katelyn Boller Full-Service Project Management: Bruce Hobart, Laserwords Composition: Laserwords Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text. The programs and applications presented in this book have been included for their instructional value. They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations, nor does it accept any liabilities with respect to the programs or applications. Copyright 2011. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Education, Inc., Permissions Department, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116.
    [Show full text]
  • DISCRETE MATHEMATICS for COMPUTER SCIENTISTS This Page Intentionally Left Blank DISCRETE MATHEMATICS for COMPUTER SCIENTISTS
    DISCRETE MATHEMATICS FOR COMPUTER SCIENTISTS This page intentionally left blank DISCRETE MATHEMATICS FOR COMPUTER SCIENTISTS Clifford Stein Columbia University Robert L. Drysdale Dartmouth College Kenneth Bogart Addison-Wesley Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo Editor in Chief: Michael Hirsch Editorial Assistant: Stephanie Sellinger Director of Marketing: Margaret Whaples Marketing Coordinator: Kathryn Ferranti Managing Editor: Jeffrey Holcomb Production Project Manager: Heather McNally Senior Manufacturing Buyer: Carol Melville Media Manufacturing Buyer: Ginny Michaud Art Director: Linda Knowles Cover Designer: Elena Sidorova Cover Art: Veer Media Project Manager: Katelyn Boller Full-Service Project Management: Bruce Hobart, Laserwords Composition: Laserwords Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page within text. The programs and applications presented in this book have been included for their instructional value. They have been tested with care, but are not guaranteed for any particular purpose. The publisher does not offer any warranties or representations, nor does it accept any liabilities with respect to the programs or applications. Copyright © 2011. Pearson Education, Inc., publishing as Addison-Wesley, 501 Boylston Street, Suite 900, Boston, Massachusetts 02116. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise.
    [Show full text]