Aspects of Twistor Geometry and Supersymmetric Field Theories Within Superstring Theory

Total Page:16

File Type:pdf, Size:1020Kb

Aspects of Twistor Geometry and Supersymmetric Field Theories Within Superstring Theory Aspects of Twistor Geometry and Supersymmetric Field Theories within Superstring Theory Von der FakultÄatfÄurMathematik und Physik der UniversitÄatHannover zur Erlangung des Grades Doktor der Naturwissenschaften Dr. rer. nat. genehmigte Dissertation von Christian SÄamann geboren am 23. April 1977 in Fulda For there is nothing hidden, except that it should be made known; neither was anything made secret, but that it should come to light. Mark 4,22 \Wir mÄussenwissen, wir werden wissen." David Hilbert To those who taught me Betreuer: Prof. Dr. Olaf Lechtenfeld und Dr. Alexander D. Popov Referent: Prof. Dr. Olaf Lechtenfeld Korreferent: Prof. Dr. Holger Frahm Tag der Promotion: 30.01.2006 Schlagworte: Nichtantikommutative Feldtheorie, Twistorgeometrie, Stringtheorie Keywords: Non-Anticommutative Field Theory, Twistor Geometry, String Theory Zusammenfassung Die Resultate, die in dieser Arbeit vorgestellt werden, lassen sich im Wesentlichen zwei Forschungsrichtungen in der Stringtheorie zuordnen: Nichtantikommutative Feldtheorie sowie Twistorstringtheorie. Nichtantikommutative Deformationen von SuperrÄaumenentstehen auf natÄurliche Wei- se bei Typ II Superstringtheorie in einem nichttrivialen Graviphoton-Hintergrund, und solchen Deformationen wurde in den letzten zwei Jahren viel Beachtung geschenkt. Zu- nÄachst konzentrieren wir uns auf die De¯nition der nichtantikommutativen Deformation von N = 4 super Yang-Mills-Theorie. Da es fÄurdie Wirkung dieser Theorie keine Super- raumformulierung gibt, weichen wir statt dessen auf die Äaquivalenten constraint equations aus. WÄahrendder Herleitung der deformierten Feldgleichungen schlagen wir ein nichtan- tikommutatives Analogon zu der Seiberg-Witten-Abbildung vor. Eine nachteilige Eigenschaft nichantikommutativer Deformationen ist, dass sie Super- symmetrie teilweise brechen (in den einfachsten FÄallenhalbieren sie die Zahl der erhal- tenen Superladungen). Wir stellen in dieser Arbeit eine sog. Drinfeld-Twist-Technik vor, mit deren Hilfe man supersymmetrische Feldtheorien derart reformulieren kann, dass die gebrochenen Supersymmetrien wieder manifest werden, wenn auch in einem getwisteten Sinn. Diese Reformulierung ermÄoglicht es, bestimmte chirale Ringe zu de¯nieren und ergibt supersymmetrische Ward-Takahashi-IdentitÄaten,welche von gewÄohnlichen super- symmetrischen Feldtheorien bekannt sind. Wenn man Seibergs naturalness argument, welches die Symmetrien von Niederenergie-Wirkungen betri®t, auch im nichtantikom- mutativen Fall zustimmt, so erhÄaltman Nichtrenormierungstheoreme selbst fÄurnichtan- tikommutative Feldtheorien. Im zweiten und umfassenderen Teil dieser Arbeit untersuchen wir detailliert geome- trische Aspekte von SupertwistorrÄaumen,die gleichzeitig Calabi-Yau-Supermannigfal- tigkeiten sind und dadurch als target space fÄurtopologische Stringtheorien geeignet sind. ZunÄachst stellen wir die Geometrie des bekanntesten Beispiels fÄureinen solchen Super- twistorraum, CP 3j4, vor und fÄuhrendie Penrose-Ward-Transformation, die bestimmte holomorphe VektorbÄundelÄuber dem Supertwistorraum mit LÄosungenzu den N = 4 supersymmetrischen selbstdualen Yang-Mills-Gleichungen verbindet, explizit aus. An- schlie¼end diskutieren wir mehrere dimensionale Reduktionen des Supertwistorraumes CP 3j4 und die implizierten VerÄanderungenan der Penrose-Ward-Transformation. Fermionische dimensionale Reduktionen bringen uns dazu, exotische Supermannig- faltigkeiten, d.h. Supermannigfaltigkeiten mit zusÄatzlichen (bosonischen) nilpotenten Di- mensionen, zu studieren. Einige dieser RÄaumekÄonnenals target space fÄurtopologische Strings dienen und zumindest bezÄuglich des Satzes von Yau fÄugendiese sich gut in das Bild der Calabi-Yau-Supermannigfaltigkeiten ein. Bosonische dimensionale Reduktionen ergeben die Bogomolny-Gleichungen sowie Ma- trixmodelle, die in Zusammenhang mit den ADHM- und Nahm-Gleichungen stehen. (TatsÄachlich betrachten wir die Supererweiterungen dieser Gleichungen.) Indem wir bes- timmte Terme zu der Wirkung dieser Matrixmodelle hinzufÄugen,kÄonnenwir eine kom- plette AquivalenzÄ zu den ADHM- und Nahm-Gleichungen erreichen. Schlie¼lich kann die natÄurliche Interpretation dieser zwei Arten von BPS-Gleichungen als spezielle D- Branekon¯gurationen in Typ IIB Superstringtheorie vollstÄandigauf die Seite der topo- logischen Stringtheorie Äubertragen werden. Dies fÄuhrtzu einer Korrespondenz zwischen topologischen und physikalischen D-Branesystemen und erÄo®netdie interessante Perspek- tive, Resultate von beiden Seiten auf die jeweils andere Äubertragen zu kÄonnen. Abstract There are two major topics within string theory to which the results presented in this thesis are related: non-anticommutative ¯eld theory on the one hand and twistor string theory on the other hand. Non-anticommutative deformations of superspaces arise naturally in type II super- string theory in a non-trivial graviphoton background and they have received much at- tention over the last two years. First, we focus on the de¯nition of a non-anticommutative deformation of N = 4 super Yang-Mills theory. Since there is no superspace formulation of the action of this theory, we have to resort to a set of constraint equations de¯ned on R4j16 the superspace ~ , which are equivalent to the N = 4 super Yang-Mills equations. In deriving the deformed ¯eld equations, we propose a non-anticommutative analogue of the Seiberg-Witten map. A mischievous property of non-anticommutative deformations is that they partially break supersymmetry (in the simplest case, they halve the number of preserved super- charges). In this thesis, we present a so-called Drinfeld twisting technique, which allows for a reformulation of supersymmetric ¯eld theories on non-anticommutative superspaces in such a way that the broken supersymmetries become manifest even though in some sense twisted. This reformulation enables us to de¯ne certain chiral rings and it yields su- persymmetric Ward-Takahashi-identities, well-known from ordinary supersymmetric ¯eld theories. If one agrees with Seiberg's naturalness arguments concerning symmetries of low-energy e®ective actions also in the non-anticommutative situation, one even arrives at non-renormalization theorems for non-anticommutative ¯eld theories. In the second and major part of this thesis, we study in detail geometric aspects of supertwistor spaces which are simultaneously Calabi-Yau supermanifolds and which are thus suited as target spaces for topological string theories. We ¯rst present the geometry of the most prominent example of such a supertwistor space, CP 3j4, and make explicit the Penrose-Ward transform which relates certain holomorphic vector bundles over the supertwistor space to solutions to the N = 4 supersymmetric self-dual Yang-Mills equations. Subsequently, we discuss several dimensional reductions of the supertwistor space CP 3j4 and the implied modi¯cations to the Penrose-Ward transform. Fermionic dimensional reductions lead us to study exotic supermanifolds, which are supermanifolds with additional even (bosonic) nilpotent dimensions. Certain such spaces can be used as target spaces for topological strings, and at least with respect to Yau's theorem, they ¯t nicely into the picture of Calabi-Yau supermanifolds. Bosonic dimensional reductions yield the Bogomolny equations describing static mo- nopole con¯gurations as well as matrix models related to the ADHM- and the Nahm equations. (In fact, we describe the superextensions of these equations.) By adding cer- tain terms to the action of these matrix models, we can render them completely equivalent to the ADHM and the Nahm equations. Eventually, the natural interpretation of these two kinds of BPS equations by certain systems of D-branes within type IIB superstring theory can completely be carried over to the topological string side via a Penrose-Ward transform. This leads to a correspondence between topological and physical D-brane sys- tems and opens interesting perspectives for carrying over results from either sides to the respective other one. Contents Chapter I. Introduction 15 I.1 High-energy physics and string theory . 15 I.2 Epistemological remarks .......................... 19 I.3 Outline ................................... 21 I.4 Publications ................................ 23 Chapter II. Complex Geometry 25 II.1 Complex manifolds ............................. 25 II.1.1 Manifolds ............................ 25 II.1.2 Complex structures ...................... 27 II.1.3 Hermitian structures ..................... 28 II.2 Vector bundles and sheaves ........................ 31 II.2.1 Vector bundles ......................... 31 II.2.2 Sheaves and line bundles ................... 35 II.2.3 Dolbeault and Cech· cohomology . 36 II.2.4 Integrable distributions and Cauchy-Riemann structures . 39 II.3 Calabi-Yau manifolds ........................... 41 II.3.1 De¯nition and Yau's theorem . 41 II.3.2 Calabi-Yau 3-folds ....................... 43 II.3.3 The conifold .......................... 44 II.4 Deformation theory ............................ 46 II.4.1 Deformation of compact complex manifolds . 47 II.4.2 Relative deformation theory . 48 Chapter III. Supergeometry 49 III.1 Supersymmetry ............................... 49 III.1.1 The supersymmetry algebra . 50 III.1.2 Representations of the supersymmetry algebra . 51 III.2 Supermanifolds ............................... 52 III.2.1 Supergeneralities ........................ 53 III.2.2 Gra¼mann variables ...................... 54 III.2.3 Superspaces .......................... 56 III.2.4
Recommended publications
  • D-Instantons and Twistors
    Home Search Collections Journals About Contact us My IOPscience D-instantons and twistors This article has been downloaded from IOPscience. Please scroll down to see the full text article. JHEP03(2009)044 (http://iopscience.iop.org/1126-6708/2009/03/044) The Table of Contents and more related content is available Download details: IP Address: 132.166.22.147 The article was downloaded on 26/02/2010 at 16:55 Please note that terms and conditions apply. Published by IOP Publishing for SISSA Received: January 5, 2009 Accepted: February 11, 2009 Published: March 6, 2009 D-instantons and twistors JHEP03(2009)044 Sergei Alexandrov,a Boris Pioline,b Frank Saueressigc and Stefan Vandorend aLaboratoire de Physique Th´eorique & Astroparticules, CNRS UMR 5207, Universit´eMontpellier II, 34095 Montpellier Cedex 05, France bLaboratoire de Physique Th´eorique et Hautes Energies, CNRS UMR 7589, Universit´ePierre et Marie Curie, 4 place Jussieu, 75252 Paris cedex 05, France cInstitut de Physique Th´eorique, CEA, IPhT, CNRS URA 2306, F-91191 Gif-sur-Yvette, France dInstitute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, 3508 TD Utrecht, The Netherlands E-mail: [email protected], [email protected], [email protected], [email protected] Abstract: Finding the exact, quantum corrected metric on the hypermultiplet moduli space in Type II string compactifications on Calabi-Yau threefolds is an outstanding open problem. We address this issue by relating the quaternionic-K¨ahler metric on the hy- permultiplet moduli space to the complex contact geometry on its twistor space. In this framework, Euclidean D-brane instantons are captured by contact transformations between different patches.
    [Show full text]
  • Atiyah, M.F. 1. Geometry of Yang-Mills Fields, Lezioni Fermiani, Pisa 1979 2
    BIBLIOGRAPHY Atiyah, M.F. 1. Geometry of Yang-Mills fields, Lezioni Fermiani, Pisa 1979 2. Green's functions for seH-dual four manifolds, Adv. in Math. 7 A (1981) 130-158 Atiyah, M. F., Drin'feld, V.G., Hitchin, N. J. 3. Construction of instantons, Phys. Lett. 65A (1978) 185-187 Atiyah, MF., Hitchin, N.J., Singer, I.M. 4. SeH-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. Lon­ don 362 (1978), 425-461 Atiyah, M. F., Jones, J. S. 5. Topological aspects of Yang-Mills theory, Comm. Math. Phys. 61 (1978), 97-118 Atiyah, M.F., Ward, R.S. 6. Instantons and algebraic geometry, Comm. Math. Phys. 55 (1977), 117-124 Barth, W. 7. Moduli of vector bundles on the projective plane, Invent. Math 42 (1977), 63-91 Barth, W., Hulek, K. 8. Monads 8.lJ.d moduli of vector bundles, manuscripta math. 25 (1978),323- 347 Beilinson, A. A. 9. Coherent sheaves on pn and problems in linear algebra, Funct. Anal. Appl. 12 (1978), 214-216 Beilinson, A. A., Gel'fand, S. I, Manin, Yu. I. 10. An instanton is determined by its complex singularlties, Funct. Anal. Appl. 14 (1980), 118-119 Belavin, A. A., Polyakov, A. M., Schwartz, A. S., Tyupkin, Yu. 11. Pseudo-particle solutions of the Yang-Mills equations, Phys. Lett. 59B (1975), 85-87 288 Bibliography Belavin, A. A., Zakharov, V. E. 12. Multidimensional method of the inverse scattering problem and duality equations for the Yang-Mills field, JETP Letters 25 (1977), 567-570 Berezin, F. A. 13. The mathematical basis of supersymmetrie field theories, Sov.
    [Show full text]
  • Jhep05(2018)208
    Published for SISSA by Springer Received: March 12, 2018 Accepted: May 21, 2018 Published: May 31, 2018 Hidden conformal symmetry in tree-level graviton JHEP05(2018)208 scattering Florian Loebbert,a Matin Mojazab and Jan Plefkaa aInstitut f¨urPhysik and IRIS Adlershof, Humboldt-Universit¨atzu Berlin, Zum Großen Windkanal 6, 12489 Berlin, Germany bMax-Planck-Institut f¨urGravitationsphysik, Albert-Einstein-Institut, Am M¨uhlenberg 1, 14476 Potsdam, Germany E-mail: [email protected], [email protected], [email protected] Abstract: We argue that the scattering of gravitons in ordinary Einstein gravity possesses a hidden conformal symmetry at tree level in any number of dimensions. The presence of this conformal symmetry is indicated by the dilaton soft theorem in string theory, and it is reminiscent of the conformal invariance of gluon tree-level amplitudes in four dimensions. To motivate the underlying prescription, we demonstrate that formulating the conformal symmetry of gluon amplitudes in terms of momenta and polarization vectors requires man- ifest reversal and cyclic symmetry. Similarly, our formulation of the conformal symmetry of graviton amplitudes relies on a manifestly permutation symmetric form of the ampli- tude function. Keywords: Conformal and W Symmetry, Scattering Amplitudes ArXiv ePrint: 1802.05999 Open Access, c The Authors. https://doi.org/10.1007/JHEP05(2018)208 Article funded by SCOAP3. Contents 1 Introduction1 2 Poincar´eand conformal symmetry in momentum space3 3 Conformal symmetry of Yang-Mills
    [Show full text]
  • Twistor-Strings, Grassmannians and Leading Singularities
    Twistor-Strings, Grassmannians and Leading Singularities Mathew Bullimore1, Lionel Mason2 and David Skinner3 1Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford, OX1 3NP, United Kingdom 2Mathematical Institute, 24-29 St. Giles', Oxford, OX1 3LB, United Kingdom 3Perimeter Institute for Theoretical Physics, 31 Caroline St., Waterloo, ON, N2L 2Y5, Canada Abstract We derive a systematic procedure for obtaining explicit, `-loop leading singularities of planar = 4 super Yang-Mills scattering amplitudes in twistor space directly from their momentum spaceN channel diagram. The expressions are given as integrals over the moduli of connected, nodal curves in twistor space whose degree and genus matches expectations from twistor-string theory. We propose that a twistor-string theory for pure = 4 super Yang-Mills | if it exists | is determined by the condition that these leading singularityN formulæ arise as residues when an unphysical contour for the path integral is used, by analogy with the momentum space leading singularity conjecture. We go on to show that the genus g twistor-string moduli space for g-loop Nk−2MHV amplitudes may be mapped into the Grassmannian G(k; n). For a leading singularity, the image of this map is a 2(n 2)-dimensional subcycle of G(k; n) and, when `primitive', it is of exactly the type found from− the Grassmannian residue formula of Arkani-Hamed, Cachazo, Cheung & Kaplan. Based on this correspondence and the Grassmannian conjecture, we deduce arXiv:0912.0539v3 [hep-th] 30 Dec 2009 restrictions on the possible leading singularities of multi-loop NpMHV amplitudes. In particular, we argue that no new leading singularities can arise beyond 3p loops.
    [Show full text]
  • Twistor Theory and Differential Equations
    IOP PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND THEORETICAL J. Phys. A: Math. Theor. 42 (2009) 404004 (19pp) doi:10.1088/1751-8113/42/40/404004 Twistor theory and differential equations Maciej Dunajski Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK E-mail: [email protected] Received 31 January 2009, in final form 17 March 2009 Published 16 September 2009 Online at stacks.iop.org/JPhysA/42/404004 Abstract This is an elementary and self-contained review of twistor theory as a geometric tool for solving nonlinear differential equations. Solutions to soliton equations such as KdV,Tzitzeica, integrable chiral model, BPS monopole or Sine–Gordon arise from holomorphic vector bundles over T CP1. A different framework is provided for the dispersionless analogues of soliton equations, such as dispersionless KP or SU(∞) Toda system in 2+1 dimensions. Their solutions correspond to deformations of (parts of) T CP1, and ultimately to Einstein– Weyl curved geometries generalizing the flat Minkowski space. A number of exercises are included and the necessary facts about vector bundles over the Riemann sphere are summarized in the appendix. PACS number: 02.30.Ik (Some figures in this article are in colour only in the electronic version) 1. Introduction Twistor theory was created by Penrose [19] in 1967. The original motivation was to unify general relativity and quantum mechanics in a non-local theory based on complex numbers. The application of twistor theory to differential equations and integrability has been an unexpected spin off from the twistor programme.
    [Show full text]
  • Causal Dynamical Triangulations and the Quest for Quantum Gravity?
    Appendices: Mathematical Methods for Basic and Foundational Quantum Gravity Unstarred Appendices support Part I’s basic account. Starred Appendices support Parts II and III on interferences between Problem of Time facets. Double starred ones support the Epilogues on global aspects and deeper levels of mathematical structure being contemplated as Background Independent. If an Appendix is starred, the default is that all of its sections are starred likewise; a few are marked with double stars. Appendix A Basic Algebra and Discrete Mathematics A.1 Sets and Relations For the purposes of this book, take a set X to just be a collection of distinguishable objects termed elements. Write x ∈ X if x is an element of X and Y ⊂ X for Y a subset of X, ∩ for intersection, ∪ for union and Yc = X\Y for the complement of Y in X. Subsets Y1 and Y2 are mutually exclusive alias disjoint if Y1 ∩ Y2 =∅: the empty set. In this case, write Y1 ∪ Y2 as Y1 Y2: disjoint union.Apartition of a set X is a splitting of its elements into subsets pP that are mutually exclusive = and collectively exhaustive: P pP X. Finally, the direct alias Cartesian product of sets X and Z, denoted X × Z, is the set of all ordered pairs (x, z) for x ∈ X, z ∈ Z. For sets X and Z,afunction alias map ϕ : X → Z is an assignation to each x ∈ X of a unique image ϕ(x) = z ∈ Z. Such a ϕ is injective alias 1to1if ϕ(x1) = ϕ(x2) ⇒ x1 = x2, surjective alias onto if given z ∈ Z there is an x ∈ X such that ϕ(x) = z, and bijective if it is both injective and surjective.
    [Show full text]
  • Twistor Theory at Fifty: from Rspa.Royalsocietypublishing.Org Contour Integrals to Twistor Strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J
    Downloaded from http://rspa.royalsocietypublishing.org/ on November 10, 2017 Twistor theory at fifty: from rspa.royalsocietypublishing.org contour integrals to twistor strings Michael Atiyah1,2, Maciej Dunajski3 and Lionel Review J. Mason4 Cite this article: Atiyah M, Dunajski M, Mason LJ. 2017 Twistor theory at fifty: from 1School of Mathematics, University of Edinburgh, King’s Buildings, contour integrals to twistor strings. Proc. R. Edinburgh EH9 3JZ, UK Soc. A 473: 20170530. 2Trinity College Cambridge, University of Cambridge, Cambridge http://dx.doi.org/10.1098/rspa.2017.0530 CB21TQ,UK 3Department of Applied Mathematics and Theoretical Physics, Received: 1 August 2017 University of Cambridge, Cambridge CB3 0WA, UK Accepted: 8 September 2017 4The Mathematical Institute, Andrew Wiles Building, University of Oxford, Oxford OX2 6GG, UK Subject Areas: MD, 0000-0002-6477-8319 mathematical physics, high-energy physics, geometry We review aspects of twistor theory, its aims and achievements spanning the last five decades. In Keywords: the twistor approach, space–time is secondary twistor theory, instantons, self-duality, with events being derived objects that correspond to integrable systems, twistor strings compact holomorphic curves in a complex threefold— the twistor space. After giving an elementary construction of this space, we demonstrate how Author for correspondence: solutions to linear and nonlinear equations of Maciej Dunajski mathematical physics—anti-self-duality equations e-mail: [email protected] on Yang–Mills or conformal curvature—can be encoded into twistor cohomology. These twistor correspondences yield explicit examples of Yang– Mills and gravitational instantons, which we review. They also underlie the twistor approach to integrability: the solitonic systems arise as symmetry reductions of anti-self-dual (ASD) Yang–Mills equations, and Einstein–Weyl dispersionless systems are reductions of ASD conformal equations.
    [Show full text]
  • SUPERSYMMETRY 1. Introduction the Purpose
    SUPERSYMMETRY JOSH KANTOR 1. Introduction The purpose of these notes is to give a short and (overly?)simple description of supersymmetry for Mathematicians. Our description is far from complete and should be thought of as a first pass at the ideas that arise from supersymmetry. Fundamental to supersymmetry is the mathematics of Clifford algebras and spin groups. We will describe the mathematical results we are using but we refer the reader to the references for proofs. In particular [4], [1], and [5] all cover spinors nicely. 2. Spin and Clifford Algebras We will first review the definition of spin, spinors, and Clifford algebras. Let V be a vector space over R or C with some nondegenerate quadratic form. The clifford algebra of V , l(V ), is the algebra generated by V and 1, subject to the relations v v = v, vC 1, or equivalently v w + w v = 2 v, w . Note that elements of· l(V ) !can"b·e written as polynomials· in V · and this! giv"es a splitting l(V ) = l(VC )0 l(V )1. Here l(V )0 is the set of elements of l(V ) which can bCe writtenC as a linear⊕ C combinationC of products of even numbers ofCvectors from V , and l(V )1 is the set of elements which can be written as a linear combination of productsC of odd numbers of vectors from V . Note that more succinctly l(V ) is just the quotient of the tensor algebra of V by the ideal generated by v vC v, v 1.
    [Show full text]
  • Arxiv:Hep-Th/0611273V2 18 Jan 2007
    CORE Metadata, citation and similar papers at core.ac.uk Provided by CERN Document Server hep-th/0611273; DAMTP-2006-116; SPHT-T06/156; UB-ECM-PF-06-40 Ultraviolet properties of Maximal Supergravity Michael B. Green Department of Applied Mathematics and Theoretical Physics Wilberforce Road, Cambridge CB3 0WA, UK Jorge G. Russo Instituci´oCatalana de Recerca i Estudis Avan¸cats (ICREA), University of Barcelona, Av.Diagonal 647, Barcelona 08028 SPAIN Pierre Vanhove Service de Physique Th´eorique, CEA/Saclay, F-91191Gif-sur-Yvette, France (Dated: January 19, 2007) We argue that recent results in string perturbation theory indicate that the four-graviton am- plitude of four-dimensional N = 8 supergravity might be ultraviolet finite up to eight loops. We similarly argue that the h-loop M-graviton amplitude might be finite for h< 7+ M/2. PACS numbers: 11.25.-w,04.65.+e,11.25.Db Maximally extended supergravity has for a long time gravity and this ignorance was parameterized by an un- held a privileged position among supersymmetric field limited number of unknown coefficients of counterterms. theories. Its four-dimensional incarnation as N = 8 su- Nevertheless, requiring the structure of the amplitude to pergravity [1] initially raised the hope of a perturbatively be consistent with string theory led to interesting con- finite quantum theory of gravity while its origin in N =1 straints. Among these were strong nonrenormalization eleven-dimensional supergravity [2] provided the impetus conditions in the ten-dimensional type IIA string theory for the subsequent development of M-theory, or the non- limit – where the eleven-dimensional theory is compact- perturbative completion of string theory.
    [Show full text]
  • Twistor Theory 1St Edition Free Download
    FREE TWISTOR THEORY 1ST EDITION PDF Stephen Huggett | 9781351406550 | | | | | String Theory and Twistor Theory - dummies This book is an introduction to twistor theory and modern geometrical approaches to space-time structure at the graduate or advanced undergraduate level. The choice of material presented has evolved from graduate lectures given in London and Oxford and the authors have aimed to retain the informal tone of those lectures. The book will provide graduate students with an introduction to the literature of twistor theory, presupposing some knowledge of special relativity and differential geometry. It would also be of use for a short course on space-time structure independently of twistor theory. The physicist could be introduced gently to some of the mathematics Twistor Theory 1st edition has proved useful in these areas, and the mathematician could be shown where sheaf cohomology and complex manifold theory can be used in physics. Previous page. Roger Penrose. Robert J. Jakob Schwichtenberg. Physics from Finance: A gentle introduction to gauge theories, fundamental interactions and fiber bundles. Next page. Burstall, Contemporary Physics. I believe that spinors and twistors are very important and that they reveal clearly profound structure that is not easily noticed using other formalisms. There can be no doubt that Sir Roger Penrose has been the leading exponent of this line of thinking for a long, long time. His book, Spinors and Spacetime is indispensable and a great classic, but it isn't Twistor Theory 1st edition the easiest book to read. In particular, I've spent a lot of time sorting through Twistor Theory 1st edition first chapter, trying to see clearly just what a Twistor Theory 1st edition "really is.
    [Show full text]
  • JHEP10(2020)127 Springer July 4, 2020 : October 20, 2020 : September 22, 2020 : Boundary Action
    Published for SISSA by Springer Received: July 4, 2020 Accepted: September 22, 2020 Published: October 20, 2020 Higher-spin symmetry vs. boundary locality, and a JHEP10(2020)127 rehabilitation of dS/CFT Adrian David and Yasha Neiman Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Okinawa 904-0495, Japan E-mail: [email protected], [email protected] Abstract: We consider the holographic duality between 4d type-A higher-spin gravity and a 3d free vector model. It is known that the Feynman diagrams for boundary correlators can be encapsulated in an HS-algebraic twistorial expression. This expression can be evaluated not just on separate boundary insertions, but on entire finite source distributions. We do so for the first time, and find that the result ZHS disagrees with the usual CFT partition function. While such disagreement was expected due to contact corrections, it persists even in their absence. We ascribe it to a confusion between on-shell and off-shell boundary calculations. In Lorentzian boundary signature, this manifests via wrong relative signs for Feynman diagrams with different permutations of the source points. In Euclidean, the signs are instead ambiguous, spoiling would-be linear superpositions. Framing the situation as a conflict between boundary locality and HS symmetry, we sacrifice locality and choose to take ZHS seriously. We are rewarded by the dissolution of a long-standing pathology in higher-spin dS/CFT. Though we lose the connection to the local CFT, the precise form of ZHS can be recovered from first principles, by demanding a spin-local boundary action.
    [Show full text]
  • Equivariant De Rham Cohomology and Gauged Field Theories
    Equivariant de Rham cohomology and gauged field theories August 15, 2013 Contents 1 Introduction 2 1.1 Differential forms and de Rham cohomology . .2 1.2 A commercial for supermanifolds . .3 1.3 Topological field theories . .5 2 Super vector spaces, super algebras and super Lie algebras 11 2.1 Super algebras . 12 2.2 Super Lie algebra . 14 3 A categorical Digression 15 3.1 Monoidal categories . 15 3.2 Symmetric monoidal categories . 17 4 Supermanifolds 19 4.1 Definition and examples of supermanifolds . 19 4.2 Super Lie groups and their Lie algebras . 23 4.3 Determining maps from a supermanifold to Rpjq ................ 26 5 Mapping supermanifolds and the functor of points formalism 31 5.1 Internal hom objects . 32 5.2 The functor of points formalism . 34 5.3 The supermanifold of endomorphisms of R0j1 .................. 36 5.4 Vector bundles on supermanifolds . 37 5.5 The supermanifold of maps R0j1 ! X ...................... 41 5.6 The algebra of functions on a generalized supermanifold . 43 1 1 INTRODUCTION 2 6 Gauged field theories and equivariant de Rham cohomology 47 6.1 Equivariant cohomology . 47 6.2 Differential forms on G-manifolds. 49 6.3 The Weil algebra . 53 6.4 A geometric interpretation of the Weil algebra . 57 1 Introduction 1.1 Differential forms and de Rham cohomology Let X be a smooth manifold of dimension n. We recall that Ωk(X) := C1(X; ΛkT ∗X) is the vector space of differential k-forms on X. What is the available structure on differential forms? 1. There is the wedge product Ωk(M) ⊗ Ω`(M) −!^ Ωk+`(X) induced by a vector bundle homomorphism ΛkT ∗X ⊗ Λ`T ∗X −! Λk+`T ∗X ∗ Ln k This gives Ω (X) := k=0 Ω (X) the structure of a Z-graded algebra.
    [Show full text]