Which 3D Software Is Best for MY Needs?

Total Page:16

File Type:pdf, Size:1020Kb

Which 3D Software Is Best for MY Needs? Which 3D Software is Best for MY Needs? Figure out the goal first! Pick a budget. One big question you should ask is, “what am I trying to accomplish?” The cost of 3D software ranges from free to several thousands of dollars depending on the software. Go into choosing software Different programs have different intentions. If you’re 3D with a budget. Otherwise you can easily go overboard. Blender and modeling to produce something for fabrication or production, the basic version of SketchUp are free, but the trade-off is that a program like Solidworks or Rhino might be best. However, if they are limited in function. Solidworks, on the other hand, the goal is visualization or rendering, you might look to is $4000, but is also very robust. something like Cinema 4D or ZBrush. Blender ZBrush SketchUp Rhino 0 Lightwave Modo 3D Studio x Form-Z 1k Cinema 4D Softimage Solidworks 2k y Maya AutoCAD 3k Alias z 4k Revit Catia Parametric or Conceptual? 5k 6k Do you want to edit your model’s dimensions on the fly? Parametric modeling will allow you to do this. Programs like ZBrush are much less flexible in this way, but then again, they aren’t meant for engineering. Conceptual software allows for more sketch-like input without worrying about engineering constraints. *Because there are TON of options available, this will cover the ones that we find most valuable for industrial design. Other industries would amend this list depending on use. You can render in Rhino and you can 3D print models from C4D. This list is meant for general reference only. Prices shown as of 2016. Copyright 2016 PolyPlane.
Recommended publications
  • Developing an Execution Plan for Scan to BIM Raghavendra Bhat Stantec
    CES469694 Developing an Execution Plan for Scan to BIM Raghavendra Bhat Stantec Joseph Huang Stantec Learning Objectives • Discover requirements for a Scan-to-BIM job • Learn how to define and set standards for level of accuracy and level of development • Learn how to save time in handling and modeling from large-size point clouds • Learn about QC workflows using Revit templates, Navisworks, and Virtual Reality Description The quality of a Scan to BIM (Building Information Modeling) model can vary, depending on the surveyor, instrument used, field conditions, especially on the requirements specified. There are, however, no industry standards templates available to follow. This class will focus on the essentials for developing a Scan to BIM execution plan. Starting form providing & clarifying scope of work to define LOD requirements shall be discussed. There are a lot of potential risks that need to be identified and highlighted when picking up a Scan to BIM job. We will discuss some of these cases with project examples. Basic tools like Revit, ReCap, Navisworks available can help us through this process of visualizing model mistakes and getting a quality product. We will learn several tips that can assist us while facing the quality control of a model replicated from a point cloud. Those tips will also help us locate where the focus should go in each case. The goal of this class is, therefore, not only to learn the available tools, but also to analyze the current gaps in setting up Scan to BIM project execution plan. The agenda we will
    [Show full text]
  • Making a Game Character Move
    Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future.
    [Show full text]
  • Blender Instructions a Summary
    BLENDER INSTRUCTIONS A SUMMARY Attention all Mac users The first step for all Mac users who don’t have a three button mouse and/or a thumb wheel on the mouse is: 1.! Go under Edit menu 2.! Choose Preferences 3.! Click the Input tab 4.! Make sure there is a tick in the check boxes for “Emulate 3 Button Mouse” and “Continuous Grab”. 5.! Click the “Save As Default” button. This will allow you to navigate 3D space and move objects with a trackpad or one-mouse button and the keyboard. Also, if you prefer (but not critical as you do have the View menu to perform the same functions), you can emulate the numpad (the extra numbers on the right of extended keyboard devices). It means the numbers across the top of the standard keyboard will function the same way as the numpad. 1.! Go under Edit menu 2.! Choose Preferences 3. Click the Input tab 4.! Make sure there is a tick in the check box for “Emulate Numpad”. 5.! Click the “Save As Default” button. BLENDER BASIC SHORTCUT KEYS OBJECT MODE SHORTCUT KEYS EDIT MODE SHORTCUT KEYS The Interface The interface of Blender (version 2.8 and higher), is comprised of: 1. The Viewport This is the 3D scene showing you a default 3D object called a cube and a large mesh-like grid called the plane for helping you to visualize the X, Y and Z directions in space. And to save time, in Blender 2.8, the camera (left) and light (right in the distance) has been added to the viewport as default.
    [Show full text]
  • Christian Otten
    CHRISTIAN OTTEN 3D GENERALIST PORTFOLIO 2018 Demo Scene - Apothecary Modelled with Maya | ngplant 2017 Rendered with Corona for C4D Compositing with Nuke demo scene - sector 51 Modelled with Maya | Cinema 4D 2017 Rendered with Corona for C4D Compositing with After Effects (Lens Flares) and Nuke demo scene - wynyard Modelled with Maya | zBrush | ngplant 2017 Rendered with Vray (Raven) and Corona Compositing with Nuke prototype Modelled with Cinema 4D 2018 Rendered with Corona Compositing with Nuke interiors Modelled with Cinema 4D | 3D Studio Max 2014-2018 Rendered with Corona | Vray | C4D Physical Renderer Compositing with Photoshop | Nuke exteriors Modelled with Cinema 4D | Maya | zbrush | ngplant 2011-2018 Rendered with Corona | Vray | C4D Physical Renderer Compositing with Photoshop | Nuke fantasy Modelled with Cinema 4D | zBrush | ngplant | makehuman 2011-2018 Rendered with Corona | C4D Physical Renderer Compositing with Photoshop | darktable | Nuke futuristic Modelled with Cinema 4D | zBrush 2012-2015 Rendered with C4D Physical Renderer Compositing with Photoshop For a more comprehensive portfolio feel free to visit: christianotten.daportfolio.com or ignisferroque.cgsociety.org A few animated experiments are available on: https://vimeo.com/christianotten All models, scenes and materials presented here where made by me, unless stated otherwise. Photo textures from cgtextures.com Thank you for watching! CHRISTIAN OTTEN Curriculum Vitae PERSONAL INFORMATION EDUCATION: Date of Birth: 09.09.1984 2016-2017 3D Animation and VFX course Place
    [Show full text]
  • Brian Paint Breakdown 1.Qxd
    Digital Matte Painting Reel Breakdown Brian LaFrance Run Time: 2 Minutes 949-302-2085 [email protected] Big Hero 6: Baymax and Hiro Flying Sequence Description: Lead Set Extension Artist. helped develop sky pano from source HDR's, which fed lighting dept. 360 degree seaming of ocean/sky horizon, land, atmosphere blending. Painted East Bay city. Made 3d fog volumes in houdini, rendered with scene lighting for reference, which informed the painting of multiple fog lay- ers, which were blended into the scene using zdepth "slices" for holdouts, integrating the fog into the landscape. Software Used: Photoshop, Maya, Nuke, Houdini, Terragen, Hyperion(Disney Prop. Rendering software) Big Hero 6: Bridge Description: Painted sky, ground fog slices and lights, projected in nuke. Software Used: Photoshop, Maya, Nuke, Terragen, Hyperion Big Hero 6: City Description: Painted sky, moving ground fog clouds. Clouds integrated into digital set using zdepth "slices" for holdouts, integrating fog into the landscape. Software Used: Photoshop, Maya, Nuke R.I.P.D.: City Shots Description: Blocked out city compositions with simple geometry, projected texture onto that geometry. Software Used: Photoshop, Rampage (Rhythm and Hues Prop. Projection software) The Seventh Son: Multiple Shots Description: Modeled simple geom, sculpted in zbrush for balcony shot, textured/lit/rendered in mental ray, painted over in photoshop, projected onto modeled or simplified geometry in rampage. Software Used: Photoshop, Maya, Mental Ray, Zbrush, Rampage Elysium: Earth Description: Provided a Terragen "Planet Rig" to Image Engine for them to render views of earth, as well as a large render of whole earth to be used as source for matte painting(s).
    [Show full text]
  • Easy Facial Rigging and Animation Approaches
    Pedro Tavares Barata Bastos EASY FACIAL RIGGING AND ANIMATION APPROACHES A dissertation in Computer Graphics and Human-Computer Interaction Presented to the Faculty of Engineering of the University of Porto in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Digital Media Supervisor: Prof. Verónica Costa Orvalho April 2015 ii This work is financially supported by Fundação para a Ciência e a Tecnologia (FCT) via grant SFRH/BD/69878/2010, by Fundo Social Europeu (FSE), by Ministério da Educação e Ciência (MEC), by Programa Operacional Potencial Humano (POPH), by the European Union (EU) and partially by the UT Austin | Portugal program. Abstract Digital artists working in character production pipelines need optimized facial animation solutions to more easily create appealing character facial expressions for off-line and real- time applications (e.g. films and videogames). But the complexity of facial animation has grown exponentially since it first emerged during the production of Toy Story (Pixar, 1995), due to the increasing demand of audiences for better quality character facial animation. Over the last 15 to 20 years, companies and artists developed various character facial animation techniques in terms of deformation and control, which represent a fragmented state of the art in character facial rigging. Facial rigging is the act of planning and building the mechanical and control structures to animate a character's face. These structures are the articulations built by riggers and used by animators to bring life to a character. Due to the increasing demand of audiences for better quality facial animation in films and videogames, rigging faces became a complex field of expertise within character production pipelines.
    [Show full text]
  • CINEMA 4D Release 8
    3D FOR THE REAL WORLD Tutorials CINEMA 4D Programming Team Reinhard Hintzenstern, Tilo Kühn, Thomas Kunert, Richard Kurz, Christian Losch, Philip Losch, David O’Reilly Additional Programming Wilfried Behne, Sven Behne, Michael Breitzke, Kiril Dinev, David Farmer, Jan Eric Hoffmann, Jamie Halmick, Nina Ivanova, Markus Jakubietz, Eduardo Olivares, Hendrik Steffen, Eric Sommerlade, Jens Uhlig, Thomas Zeier, Writers Oliver Becker, Arndt von Koenigsmarck, David Link, Stephen Marriott, Matthew O’Neill, David O’Reilly, Janine Pauke, Perry Stacy, Jeff Walker Layout Heike Bauer, Harald Egel, Jeff Walker Translation Oliver Becker, Michael Giebel, Arno Löwecke, Björn Marl, Janine Pauke, Luke Stacy, Marco Tillmann Cover Graphic Heike Bauer, Onur Pekdemir Special Thanks Kevin Aguirre, Phil ‘Captain 3D’ McNally, NAAM, Kai Pedersen, Christian Rambow, Holger Schlömann, Bunk Timmer Tutorial Manual Copyright © 2001-2002 by MAXON Computer Ltd. All rights reserved. This manual and the accompanying software are copyright protected. No part of this document may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of MAXON Computer. Although every precaution has been taken in the preparation of the program and this manual, MAXON Computer assumes no responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the program or from the information contained in this manual. This manual, as well as the software described in it, is furnished under license and may be used or copied only in accordance with the terms of such license. The content of this manual is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by MAXON Computer.
    [Show full text]
  • Science Fiction Artist In-Depth Interviews
    DigitalArtLIVE.com DigitalArtLIVE.com SCIENCE FICTION ARTIST IN-DEPTH INTERVIEWS THE FUTURE OCEANS ISSUE ARTUR ROSA SAMUEL DE CRUZ TWENTY-EIGHT MATT NAVA APRIL 2018 VUE ● TERRAGEN ● POSER ● DAZ STUDIO ● REAL-TIME 3D ● 2D DIGITAL PAINTING ● 2D/3D COMBINATIONS We visit Portugal, to talk with a master of the Vue software, Artur Rosa. Artur talks with Digital Art Live about his love of the ocean, his philosophy of beauty, and the techniques he uses to make his pictures. Picture: “The Sentinels” 12 ARTUR ROSA PORTUGAL VUE | PHOTOSHOP | POSER | ZBRUSH WEB DAL: Artur, welcome back to Digital Art Live magazine. We last interviewed you in our special #50 issue of the old 3D Art Direct magazine. That was back in early 2015, when we mainly focussed on your architectural series “White- Orange World” and your forest pictures. In this ‘Future Oceans’ themed issue of Digital Art Live we’d like to focus on some of your many ocean colony pictures and your recent sea view and sea -cave pictures. Which are superb, by the way! Some of the very best Vue work I’ve seen. Your recent work of the last six months is outstanding, even more so that the work you made in the early and mid 2010s. You must be very pleased at the level of achievement that you can now reach by using Vue and Photoshop? AR: Thank you for having me again, and thank you for the compliment and feedback. I’m humbled and honoured that my work may be of interest for your readers. To be honest, I’m never quite sure if my work is getting better or worse.
    [Show full text]
  • Signed Distance Fields
    Further Graphics Ray Marching and Signed Distance Fields Alex Benton, University of Cambridge – [email protected] 1 Supported in part by Google UK, Ltd GPU Ray-tracing Ray tracing 101: “Choose the color of the pixel by firing a ray through and seeing what it hits.” Ray tracing 102: “Let the pixel make up its own mind.” 2 GPU Ray-tracing 1. Use a minimal vertex shader (no transforms) - all work happens in the fragment shader 2. Set up OpenGL with minimal geometry, a single quad 3. Bind coordinates to each vertex, let the GPU interpolate coordinates to every pixel 4. Implement raytracing in GLSL: a. For each pixel, compute the ray from the eye through the pixel, using the interpolated coordinates to identify the pixel b. Run the ray tracing algorithm for every ray 3 GPU Ray-tracing // Window dimensions vec3 getRayDir( uniform vec2 iResolution; vec3 camDir, vec3 camUp, // Camera position vec2 texCoord) { uniform vec3 iRayOrigin; vec3 camSide = normalize( cross(camDir, camUp)); // Camera facing direction vec2 p = 2.0 * texCoord - 1.0; uniform vec3 iRayDir; p.x *= iResolution.x / iResolution.y; // Camera up direction return normalize( uniform vec3 iRayUp; p.x * camSide + p.y * camUp // Distance to viewing plane + iPlaneDist * camDir); uniform float iPlaneDist; } // ‘Texture’ coordinate of each // vertex, interpolated across camUp // fragments (0,0) → (1,1) camDir in vec2 texCoord; camSide 4 GPU Ray-tracing: Sphere Hit traceSphere(vec3 rayorig, vec3 raydir, vec3 pos, float radius) { float OdotD = dot(rayorig - pos, raydir); float OdotO = dot(rayorig
    [Show full text]
  • An Introduction to Building 3D Crime Scene Models Using Sketchup
    ARTICLE Original Article An Introduction to Building 3D Crime Scene Models Using SketchUp Elissa St. Clair1, Andy Maloney2, and Albert Schade III3 1 Naval Criminal Investigative Service, 2 FORident Software, 3 Berks County District Attorney’s Office, Forensic Services Unit ABSTRACT ARTICLE INFORMATION Crime scene investigators generally have two options when they need to create a three-dimensional (3D) Received: 11 May 2012 model of a crime scene: enlist the services of an expert 3D modeller who specializes in graphic modelling or Revised: 20 July 2012 learn one of the full-fledged modelling tools to create the model themselves. Many modelling tools have a Accepted: 22 September 2012 very steep learning curve, so the time required to invest in learning a tool to get even a simple result is often prohibitive. In this article, we introduce SketchUp (version 8) as a relatively easy-to-use tool for modelling Citation: St. Clair E, Maloney A, crime scenes in 3D, give an example of how the software can be applied, and provide resources for further Schade A. An Introduction to Building 3D Crime Scene Models information. Using SketchUp. J Assoc Crime Scene Reconstr. 2012:18(4);29-47. Author Contacts: Keywords: Crime scene sketching, 3D visualization, software modelling, crime scene models, SketchUp, [email protected], [email protected], Trimble, crime scene reconstruction, forensic science [email protected] Introduction modelling or computer aided design (CAD) to Computer graphics have been used to enhance produce a meaningful 3D model. As a result, the visualization of shapes and structures across investigators have been limited in terms of a wide variety of disciplines since the 1970s, which scenes they can model in 3D because of when the capability to produce computerized the time-consuming and expensive nature of 3D models was first developed [1].
    [Show full text]
  • PELC253 Digital Sculpting with Zbrush 2020-21.Docx
    Glasgow School of Art Course Specification Course Title: Digital Sculpting with ZBrush Course Specifications for 2020/21 have not been altered in response to the COVID-19 pandemic. Please refer to the 2020/21 Programme Specification, the relevant Canvas pages and handbook for the most up-to-date information regarding any changes to a course. Course Code: HECOS Code: Academic Session: PELC253 2020-21 1. Course Title: Digital Sculpting with ZBrush 2. Date of Approval: 3. Lead School: 4. Other Schools: PACAAG April 2020 School of Simulation and This course is available to Visualisation students on PGT programmes which include a Stage 2 elective. 5. Credits: 6. SCQF Level: 7. Course Leader: 20 11 Dr. Sandy Louchart 8. Associated Programmes: This course is available to students on PGT programmes which include a Stage 2 elective. 9. When Taught: Semester 2 10. Course Aims: The overarching aims of the cross-school electives are to: • Encourage interdisciplinary, critical reflexivity from within an open set of choices; • Foster deep investigative approaches to new or unfamiliar areas of practice and theory; • Cultivate self-directed leadership and initiative-taking in both applied and abstract modes of • practice/ study not necessarily associated with a student’s particular creative specialism; • Enable flexible, ethical exploration and connection of diverse knowledge and understanding • within a specialist programme of study. The practice-based and skill focussed course provides a thorough and intensive introduction to digital 3D sculpting, allowing students to obtain a high-level of proficiency in this technically challenge discipline. Students will work with a range of techniques and practices through which a digital painting can be produced and distributed.
    [Show full text]
  • Makerbot in the Classroom
    COMPILED BY MAKERBOT EDUCATION Copyright © 2015 by MakerBot® www.makerbot.com All rights reserved. No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of the publisher, except in the case of brief quotations embodied in critical reviews and certain other noncommercial uses permitted by copyright law. The information in this document concerning non-MakerBot products or services was obtained from the suppliers of those products or services or from their published announcements. Specific questions on the capabilities of non-MakerBot products and services should be addressed to the suppliers of those products and services. ISBN: 978-1-4951-6175-9 Printed in the United States of America First Edition 10 9 8 7 6 5 4 3 2 1 Compiled by MakerBot Education MakerBot Publishing • Brooklyn, NY TABLE OF CONTENTS 06 INTRODUCTION TO 3D PRINTING IN THE CLASSROOM 08 LESSON 1: INTRODUCTION TO 3D PRINTING 11 MakerBot Stories: Education 12 MakerBot Stories: Medical 13 MakerBot Stories: Business 14 MakerBot Stories: Post-Processing 15 MakerBot Stories: Design 16 LESSON 2: USING A 3D PRINTER 24 LESSON 3: PREPARING FILES FOR PRINTING 35 THREE WAYS TO MAKE 36 WAYS TO DOWNLOAD 40 WAYS TO SCAN 46 WAYS TO DESIGN 51 PROJECTS AND DESIGN SOFTWARE 52 PROJECT: PRIMITIVE MODELING WITH TINKERCAD 53 Make Your Own Country 55 Explore: Modeling with Tinkercad 59 Investigate: Geography and Climates 60 Create:
    [Show full text]