Comparative Analysis of Urban Microbiomes Using Machine Learning Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analysis of Urban Microbiomes Using Machine Learning Algorithms Comparative analysis of urban microbiomes using machine learning algorithms DIPLOMARBEIT ZUR ERLANGUNG DES AKADEMISCHEN GRADES MASTER OF SCIENCE IN ENGINEERING DER FACHHOCHSCHULE FH CAMPUS WIEN MASTER-STUDIENGANG BIOINFORMATIK Vorgelegt von: René Lenz Personenkennzeichen: c1810542004 FH-Hauptbetreuer*in: FH-Prof.in Mag.a Dr.in Alexandra Graf Abgabetermin: 19.11.2020 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering Erklärung: Ich erkläre, dass die vorliegende Diplomarbeit von mir selbst verfasst wurde und ich keine anderen als die angeführten Behelfe verwendet bzw. mich auch sonst keiner unerlaubter Hilfe bedient habe. Ich versichere, dass ich dieses Diplomarbeitsthema bisher weder im In- noch im Ausland (einer Beurteilerin/einem Beurteiler zur Begutach- tung) in irgendeiner Form als Prüfungsarbeit vorgelegt habe. Weiters versichere ich, dass die von mir eingereichten Exemplare (ausgedruckt und elektronisch) identisch sind. 19.11.2020 Datum Unterschrift FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering Abstract Die Metagenomforschung ist in der Lage, Einblicke in die mikrobielle Zu- sammensetzung von Proben zu gewinnen. Mit Hilfe von Machine Learning Methoden ist es bis zu einem gewissen Grad möglich, unbekannte Proben ihrer Herkunft zuzuordnen. Verbindet man diese beiden Ansätze ergeben sich auch neue Felder für die Forensik. In dieser Arbeit wird untersucht, ob man Proben die in öffentlichen Verkehrsmitteln verteilt über den Globus ge- sammelt wurden, wieder den einzelnen Städten zugeordnet werden können und ob sich Schlüsselspezies herauskristalisieren. Die Whole Genome Sequencing Daten werden taxonomisch zugeordnet und die Häufigkeit der gefundenen Spezies ermittelt. Die Daten stammen aus 2016 und 2017. 4 Städte von 2016 und 9 Städte von 2017 werden analysiert. Es werden Vorhersagemodelle mit Random Forests, K-nearest Neighbors und Support Vector Machines erstellt. Das genaueste Modell hat jeweils der Random Forest geliefert, > 98% 2016, > 80% 2017. Die Arbeit zeigt, dass die Genauigkeit der Vorhersagemodelle erwartungs- gemäß mit der Anzahl an Städten sinkt. Die Randon Forest Modellen haben Spezies hervorgehoben, die das Potenzial haben, näher betrachtet zu wer- den. Die Analyse von Mystery Samples hat letzten Endes dann nicht so gut funktioniert, wie erwartet. Hier gibt es auf jeden Fall noch viel Potenzial zur Verbesserung. Metagenomic research is capable of creating insights into the microbial composition of samples. With the help of machine learning methods it is, to a certain degree, possible to assign unknown samples to their origin. Com- bining these two approaches also opens up new fields for forensics. In this thesis it is investigated whether samples collected in public transport sys- tems distributed around the globe can be assigned to their individual cities of origin and whether key species can be identified. The Whole Genome Sequencing data are taxonomically assigned and the abundance of the species found is determined. The data are derived from 2016 and 2017. 4 cities from 2016 and 9 cities from 2017 are analysed. Predictive models using random forests, K-nearest Neighbors and Support Vector Machines are developed. The most accurate model was provided by the random forest, > 98% in 2016, > 80% in 2017. The work shows that, as expected, the accuracy of the prediction models decreases with the number of cities. However, the Randon Forest models have identified a number of species that have the potential to be studied more thoroughly.In the end, the analysis of Mystery Samples did not work as well as expected. In any case, there is still much potential for improvement. 1 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering Acknowledgements Als erstes möchte ich meinen Betreuerinnen Alexandra und Theresa danken, für ihre fachliche Unterstützung über den gesamten Zeitraum der Masterarbeit und auch schon während des Studiums. Vielen Dank für das angenehme produktive Arbeitsklima! Der nächste Dank gebührt meinen Eltern Helene und Daniel, sowie ihren Lebenspartnern Gerd und Ulli, die die Hoffnung nie aufgegeben haben, dass aus mir irgendwann noch was wird. Ich möchte mich auch herzlich bei Jennifer bedanken. Du hast dich wirklich hervorragend um mein leibliches und seelisches Wohl gesorgt. Du bist mir immer mit Rat und Tat zur Seite gestanden! Vielen Dank dafür! Vielen Dank Eva und Alex, für die als „Think Tanks“ getarnten „Drink Tanks“. Etliche gute Ansätze wurden hier geboren und vernichtet. „Your code is wrong on so many levels that I barely know where to start.“ - Danke Perffizienz! 2 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering Contents 1 Introduction5 1.1 Machine Learning . .5 1.1.1 Learning Methods . .6 1.1.2 PCA - Principal Component Analysis . .6 1.1.3 Hierarchical Clustering . .7 1.1.4 RF - Random Forest . .8 1.1.5 KNN - k-Nearest neighbors . .8 1.1.6 Support Vector Machines . .8 1.2 Metagenomics . .9 1.3 Background . 10 1.3.1 MetaSub . 12 1.3.2 CAMDA . 14 2 Aim of this Work 16 3 Materials and Methods 17 3.1 Data origin . 17 3.2 Data availability . 19 3.3 Workflow . 19 3.3.1 From WGS data to species abundance . 19 3.3.2 Ecological assignment . 20 3.3.3 Abundance analysis and Machine learning . 21 3.4 Software . 24 3.5 Hardware . 24 4 Results 25 4.1 CSD17 . 25 4.1.1 PCA analysis . 26 4.1.2 Hierarchical Clustering . 28 4.1.3 Random Forest analysis . 29 4.1.4 K-nearest neighbors analysis . 34 4.1.5 Support Vector Machines analysis . 35 4.1.6 Accuracy comparison . 36 4.2 CSD16 . 38 4.2.1 PCA analysis . 40 4.2.2 Hierarchical Clustering . 41 4.2.3 Random Forest analysis . 42 4.2.4 K-nearest neighbors analysis . 47 4.2.5 Support Vector Machines analysis . 48 4.2.6 Accuracy comparison . 49 4.3 Matching species of Ilorin and New York (CSD16 vs. CSD17) . 51 4.4 Mystery samples . 52 5 Discussion 54 6 Glossary 58 3 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering List of Figures 1 General workflow . 21 2 CSD17 Species per data set . 26 3 CSD17 PCA example . 27 4 CSD17 Hierarchical Clustering . 28 5 CSD17 RF example 1 . 29 6 CSD17 RF example 2 . 30 7 CSD17 variable importance plot . 32 8 CSD17 KNN plots . 34 9 CSD17 SVM plots . 35 10 CSD16 Species per data set . 39 11 CSD16 PCA example . 40 12 CSD16 Hierarchical Clustering . 41 13 CSD16 RF example 1 . 42 14 CSD16 RF example 2 . 43 15 CSD16 variable importance plot . 44 16 CSD16 KNN plots . 47 17 CSD16 SVM plots . 48 List of Tables 1 Cities participating at the CSDs . 18 2 Mystery sample translation . 19 3 Data partitioning . 22 4 Used R software . 24 5 CSD17 explained variance . 27 6 CSD17 RF error table . 31 7 CSD17 most important variables . 33 8 CSD17 Parameter optimization . 36 9 CSD17 model accuracy incl. train sets . 37 10 CSD17 model accuracy incl. trest sets . 38 11 CSD16 explained variance . 41 12 CSD16 RF error table . 44 13 CSD16 most important variables . 46 14 CSD16 Parameter optimization . 49 15 CSD16 model accuracy incl. train sets . 50 16 CSD16 model accuracy incl. test sets . 51 17 No. of matching species of CSD17 vs. CSD16 . 51 18 Matching species of CSD17 vs. CSD16 . 52 19 Mystery samples right prediction . 52 20 Evaluation of the mystery samples . 53 4 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering 1 Introduction 1.1 Machine Learning Machine learning has actually been an important part of data analysis from the be- ginning of the computer age. In the 50s and 60s of the last century, when computers appeared on a larger scale, algorithms were developed or known approaches were further developed (Kononenko, 2001). One of the cornerstones was Baysian statistics (Bayes’ Theorem, 18th century). Further discoveries were the method of least squares (Legendre, 1805), Markov chains (Hayes, 2013) and the Turing machine (Turing, 1950). The idea behind machine learning is to make computers work in a similar way to the human brain. Nowadays so called Neural Networks (NN) imitate the way information is processed by neurons by passing the data from an input layer (of neurons) on to hidden layers and to the output layer (Lancashire et al., 2009). There is always training data, from which it is tried to recognize certain rules, processes and patterns. Conclusions are then drawn from these findings, the computer learns similar to humans. Tom M. Mitchell, a pioneer in the field of machine learning described this approach as follows: "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P if its performance at tasks in T, as measured by P, improves with experience E." There are three important methods of learning, namely "supervised learning", "unsu- pervised learning" and "semisupervised learning". In fact, depending on the charac- teristics, there are even further distinctions, but these can be roughly divided into the above categories. Information that can be obtained from the models includes clus- tering, classification, regression, detection of anomalies or recommendation engines1. Cluster analysis is based on unsupervised learning and groups the data according to their similarity. Methods are Hierarchical Clustering (HC), centroid based cluster- ing, distribution-based clustering or density clustering. If the task is to assign data to different clusters this is called classification2. Applied methods are decision trees, Random Forest (RF), Support Vector Machines (SVM), K-nearest neighbors (KNN), logistic regression just to name a few. To relate a dependent variable to one or more independent variables is called regression. Regression analysis can be divided in lin- ear and non linear regression. One must be careful when interpreting the results, as a regression makes relations visible, but does not establish causality (Freedman, 2009). 1https://www.innoarchitech.com/blog/machine-learning-an-in-depth-non-technical-guide, accessed: 08.11.2020 2https://www.stat.berkeley.edu/ s133/Class1a.html, accessed: 08.11.2020 5 FH Campus Wien University of Applied Sciences/Fachbereich Bioengineering Recommendation engines are often used in the marketing industry to analyse user habits and thus offer customised advertising.
Recommended publications
  • Doctoral Thesis 2016 UNDERSTANDING the AROMATIC HYDROCARBON DEGRADATION POTENTIAL of PSEUDOMONAS STUTZERI
    Doctoral Thesis 2016 UNDERSTANDING THE AROMATIC HYDROCARBON DEGRADATION POTENTIAL OF PSEUDOMONAS STUTZERI: A PROTEO-GENOMIC APPROACH Isabel Brunet Galmés Doctoral Thesis 2016 Doctoral Program of “Microbiologia Ambiental i Biotecnologia” UNDERSTANDING THE AROMATIC HYDROCARBON DEGRADATION POTENTIAL OF PSEUDOMONAS STUTZERI: A PROTEO-GENOMIC APPROACH Isabel Brunet Galmés Thesis Supervisor: Dr. Rafael Bosch Thesis Supervisor: Dra. Balbina Nogales Doctor by the Universitat de les Illes Balears A mumpare i a mumare Agraïments Gràcies Rafel i Balbina per dirigir aquesta tesis, que és tant meva com vostre. A en Rafel per l’oportunitat que em vares donar, ja fa 7 anys, d’entrar al laboratori. Així com també per engrescar-me dins el món de la ciència, i ensenyar-me a treballar tant dins com fora del laboratori. I a na Balbina, pels mil consells que m’ha donat aquests anys, per ensenyar-me a ser més meticulosa amb el que faig i per ajudar-me amb tot el que ha pogut. A en Jordi i n’Elena, per acollir-me dins aquest grup de recerca, pels vostres consells i noves idees per continuar aquesta feina. Voldria agrair també a en Toni Bennasar i en Sebastià les crítiques constructives que m’heu anat fent al llarg d’aquests anys, des del projecte final de màster fins ara. Gràcies també a tots els companys de laboratori, a més de companys sou uns grans amics. Sempre estaré agraïda a na Marga, en Toni Busquets i n’Arantxa, pels grans consells que m’heu donat, tant dins com fora del laboratori, i per estar sempre disposats a donar-me una mà.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • Comparative Genomic Analysis of Three Pseudomonas
    microorganisms Article Comparative Genomic Analysis of Three Pseudomonas Species Isolated from the Eastern Oyster (Crassostrea virginica) Tissues, Mantle Fluid, and the Overlying Estuarine Water Column Ashish Pathak 1, Paul Stothard 2 and Ashvini Chauhan 1,* 1 Environmental Biotechnology Laboratory, School of the Environment, 1515 S. Martin Luther King Jr. Blvd., Suite 305B, FSH Science Research Center, Florida A&M University, Tallahassee, FL 32307, USA; [email protected] 2 Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G2P5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-850-412-5119; Fax: +1-850-561-2248 Abstract: The eastern oysters serve as important keystone species in the United States, especially in the Gulf of Mexico estuarine waters, and at the same time, provide unparalleled economic, ecological, environmental, and cultural services. One ecosystem service that has garnered recent attention is the ability of oysters to sequester impurities and nutrients, such as nitrogen (N), from the estuarine water that feeds them, via their exceptional filtration mechanism coupled with microbially-mediated denitrification processes. It is the oyster-associated microbiomes that essentially provide these myriads of ecological functions, yet not much is known on these microbiota at the genomic scale, especially from warm temperate and tropical water habitats. Among the suite of bacterial genera that appear to interplay with the oyster host species, pseudomonads deserve further assessment because Citation: Pathak, A.; Stothard, P.; of their immense metabolic and ecological potential. To obtain a comprehensive understanding on Chauhan, A. Comparative Genomic this aspect, we previously reported on the isolation and preliminary genomic characterization of Analysis of Three Pseudomonas Species three Pseudomonas species isolated from minced oyster tissue (P.
    [Show full text]
  • Comamonas: Relationship to Aquaspirillum Aquaticum, E
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, July 1991, p. 427-444 Vol. 41, No. 3 0020-7713/91/030427- 18$02 .OO/O Copyright 0 1991, International Union of Microbiological Societies Polyphasic Taxonomic Study of the Emended Genus Comamonas: Relationship to Aquaspirillum aquaticum, E. Falsen Group 10, and Other Clinical Isolates A. WILLEMS,l B. POT,l E. FALSEN,2 P. VANDAMME,' M. GILLIS,l* K. KERSTERS,l AND J. DE LEY' Laboratorium voor Microbiologie en Microbiele Genetica, Rijksuniversiteit, B-9000 Ghent, Belgium, and Culture Collection, Department of Clinical Bacteriology, University of Goteborg, S-413 46 Goteborg, Sweden2 We used DNA-rRNA hybridization, DNA base composition, polyacrylamide gel electrophoresis of whole-cell proteins, DNA-DNA hybridization, numerical analysis of phenotypic features, and immunotyping to study the taxonomy of the genus Comamonas. The relationships of this genus to Aquaspirillum aquaticum and a group of clinical isolates (E. Falsen group 10 [EF lo]) were studied. Our DNA and rRNA hybridization results indicate that the genus Comamonas consists of at least the following five genotypic groups: (i) Comamonas acidovoruns, (ii) Comamonas fesfosferoni,(iii) Comamonas ferrigena, (iv) A. aquaticum and a number of EF 10 strains, and (v) other EF 10 strains, several unnamed clinical isolates, and some misnamed strains of Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes subsp. pseudoalcaligenes. The existence of these five groups was confirmed by the results of immunotyping and protein gel electrophoresis. A numerical analysis of morpho- logical, auxanographic, and biochemical data for the same organisms revealed the existence of three large phena. Two of these phena (C. acidovorans and C. tesfosferoni)correspond to two of the genotypic groups.
    [Show full text]
  • Pseudomonas Chloritidismutans Sp. Nov., a Non- Denitrifying, Chlorate-Reducing Bacterium
    International Journal of Systematic and Evolutionary Microbiology (2002), 52, 2183–2190 DOI: 10.1099/ijs.0.02102-0 Pseudomonas chloritidismutans sp. nov., a non- denitrifying, chlorate-reducing bacterium Laboratory of Microbiology, A. F. W. M. Wolterink, A. B. Jonker, S. W. M. Kengen and A. J. M. Stams Wageningen University, H. van Suchtelenweg 4, 6703 CT Wageningen, Author for correspondence: The Netherlands A. F. W. M. Wolterink. Tel: j31 317 484099. Fax: j31 317 483829. e-mail: Arthur.Wolterink!algemeen.micr.wag-ur.nl A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate- reducing bacterium, strain AW-1T, was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100% sequence similarity to Pseudomonas stutzeri DSM 50227 and 986% sequence similarity to the type strain of P. stutzeri (DSM 5190T). The species P. stutzeri possesses a high degree of genotypic and phenotypic heterogeneity. Therefore, eight genomic groups, termed genomovars, have been proposed based upon ∆Tm values, which were used to evaluate the quality of the pairing within heteroduplexes formed by DNA–DNA hybridization. In this study, DNA–DNA hybridization between strain AW-1T and P. stutzeri strains DSM 50227 and DSM 5190T revealed respectively 805 and 565% similarity. DNA–DNA hybridization between P. stutzeri strains DSM 50227 and DSM 5190T revealed 484% similarity. DNA–DNA hybridization indicated that strain AW-1T is not related at the species level to the type strain of P. stutzeri. However, strain AW-1T and P. stutzeri DSM 50227 are related at the species level. The physiological and biochemical properties of strain AW-1T and the two P.
    [Show full text]
  • Étude Des Communautés Microbiennes Rhizosphériques De Ligneux Indigènes De Sols Anthropogéniques, Issus D’Effluents Industriels Cyril Zappelini
    Étude des communautés microbiennes rhizosphériques de ligneux indigènes de sols anthropogéniques, issus d’effluents industriels Cyril Zappelini To cite this version: Cyril Zappelini. Étude des communautés microbiennes rhizosphériques de ligneux indigènes de sols anthropogéniques, issus d’effluents industriels. Sciences agricoles. Université Bourgogne Franche- Comté, 2018. Français. NNT : 2018UBFCD057. tel-01902775 HAL Id: tel-01902775 https://tel.archives-ouvertes.fr/tel-01902775 Submitted on 23 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITÉ DE BOURGOGNE FRANCHE-COMTÉ École doctorale Environnement-Santé Laboratoire Chrono-Environnement (UMR UFC/CNRS 6249) THÈSE Présentée en vue de l’obtention du titre de Docteur de l’Université Bourgogne Franche-Comté Spécialité « Sciences de la Vie et de l’Environnement » ÉTUDE DES COMMUNAUTES MICROBIENNES RHIZOSPHERIQUES DE LIGNEUX INDIGENES DE SOLS ANTHROPOGENIQUES, ISSUS D’EFFLUENTS INDUSTRIELS Présentée et soutenue publiquement par Cyril ZAPPELINI Le 3 juillet 2018, devant le jury composé de : Membres du jury : Vera SLAVEYKOVA (Professeure, Univ. de Genève) Rapporteure Bertrand AIGLE (Professeur, Univ. de Lorraine) Rapporteur & président du jury Céline ROOSE-AMSALEG (IGR, Univ. de Rennes) Examinatrice Karine JEZEQUEL (Maître de conférences, Univ. de Haute Alsace) Examinatrice Nicolas CAPELLI (Maître de conférences HDR, UBFC) Encadrant Christophe GUYEUX (Professeur, UBFC) Co-directeur de thèse Michel CHALOT (Professeur, UBFC) Directeur de thèse « En vérité, le chemin importe peu, la volonté d'arriver suffit à tout.
    [Show full text]
  • Pseudomonas Stutzeri Biology Of
    Biology of Pseudomonas stutzeri Jorge Lalucat, Antoni Bennasar, Rafael Bosch, Elena García-Valdés and Norberto J. Palleroni Microbiol. Mol. Biol. Rev. 2006, 70(2):510. DOI: 10.1128/MMBR.00047-05. Downloaded from Updated information and services can be found at: http://mmbr.asm.org/content/70/2/510 These include: http://mmbr.asm.org/ REFERENCES This article cites 395 articles, 145 of which can be accessed free at: http://mmbr.asm.org/content/70/2/510#ref-list-1 CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» on January 28, 2014 by Red de Bibliotecas del CSIC Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, June 2006, p. 510–547 Vol. 70, No. 2 1092-2172/06/$08.00ϩ0 doi:10.1128/MMBR.00047-05 Copyright © 2006, American Society for Microbiology. All Rights Reserved. Biology of Pseudomonas stutzeri Jorge Lalucat,1,2* Antoni Bennasar,1 Rafael Bosch,1 Elena Garcı´a-Valde´s,1,2 and Norberto J. Palleroni3 Departament de Biologia, Microbiologia, Universitat de les Illes Balears, Campus UIB, 07122 Palma de Mallorca, Spain1; Institut Mediterrani d’Estudis Avanc¸ats (CSIC-UIB), Campus UIB, 07122 Palma de Mallorca, Spain2; and Department of Biochemistry and Microbiology, Rutgers University, Cook Campus, 3 New Brunswick, New Jersey 08901-8520 Downloaded from INTRODUCTION .......................................................................................................................................................511
    [Show full text]
  • Marine Rare Actinomycetes: a Promising Source of Structurally Diverse and Unique Novel Natural Products
    Review Marine Rare Actinomycetes: A Promising Source of Structurally Diverse and Unique Novel Natural Products Ramesh Subramani 1 and Detmer Sipkema 2,* 1 School of Biological and Chemical Sciences, Faculty of Science, Technology & Environment, The University of the South Pacific, Laucala Campus, Private Mail Bag, Suva, Republic of Fiji; [email protected] 2 Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands * Correspondence: [email protected]; Tel.: +31-317-483113 Received: 7 March 2019; Accepted: 23 April 2019; Published: 26 April 2019 Abstract: Rare actinomycetes are prolific in the marine environment; however, knowledge about their diversity, distribution and biochemistry is limited. Marine rare actinomycetes represent a rather untapped source of chemically diverse secondary metabolites and novel bioactive compounds. In this review, we aim to summarize the present knowledge on the isolation, diversity, distribution and natural product discovery of marine rare actinomycetes reported from mid-2013 to 2017. A total of 97 new species, representing 9 novel genera and belonging to 27 families of marine rare actinomycetes have been reported, with the highest numbers of novel isolates from the families Pseudonocardiaceae, Demequinaceae, Micromonosporaceae and Nocardioidaceae. Additionally, this study reviewed 167 new bioactive compounds produced by 58 different rare actinomycete species representing 24 genera. Most of the compounds produced by the marine rare actinomycetes present antibacterial, antifungal, antiparasitic, anticancer or antimalarial activities. The highest numbers of natural products were derived from the genera Nocardiopsis, Micromonospora, Salinispora and Pseudonocardia. Members of the genus Micromonospora were revealed to be the richest source of chemically diverse and unique bioactive natural products.
    [Show full text]
  • Diversity of Culturable Aerobic Denitrifying Bacteria in the Sediment, Water and Biofilms in Liangshui River of Beijing, China
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in Liangshui River of Beijing, China Lv, Pengyi; Luo, Jinxue; Zhuang, Xuliang; Zhang, Dongqing; Huang, Zhanbin; Bai, Zhihui 2017 Lv, P., Luo, J., Zhuang, X., Zhang, D., Huang, Z., & Bai, Z. (2017). Diversity of culturable aerobic denitrifying bacteria in the sediment, water and biofilms in Liangshui River of Beijing, China. Scientific Reports, 7, 10032‑. https://hdl.handle.net/10356/87899 https://doi.org/10.1038/s41598‑017‑09556‑9 © 2017 The Author(s). This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. Te images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Downloaded on 07 Oct 2021 12:22:55 SGT www.nature.com/scientificreports OPEN Diversity of culturable aerobic denitrifying bacteria in the sediment, water and bioflms in Received: 2 February 2017 Accepted: 24 July 2017 Liangshui River of Beijing, China Published: xx xx xxxx Pengyi Lv1,2, Jinxue Luo2, Xuliang Zhuang2,3, Dongqing Zhang4, Zhanbin Huang1 & Zhihui Bai 2,3 Aerobic denitrifcation is a process reducing the nitrate into gaseous nitrogen forms in the presence of oxygen gas, which makes the nitrifcation and denitrifcation performed simultaneously.
    [Show full text]
  • And Pan‑Genomic Analyses of the Genus Comamonas : from Environmental Adaptation to Potential Virulence
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. The core‑ and pan‑genomic analyses of the genus Comamonas : from environmental adaptation to potential virulence Wu, Yichao; Zaiden, Norazean; Cao, Bin 2018 Wu, Y., Zaiden, N., & Cao, B. (2018). The core‑ and pan‑genomic analyses of the genus Comamonas : from environmental adaptation to potential virulence. Frontiers in Microbiology, 9, 3096‑. doi:10.3389/fmicb.2018.03096 https://hdl.handle.net/10356/103309 https://doi.org/10.3389/fmicb.2018.03096 © 2018 Wu, Zaiden and Cao. This is an open‑access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Downloaded on 27 Sep 2021 19:01:28 SGT fmicb-09-03096 December 10, 2018 Time: 13:56 # 1 ORIGINAL RESEARCH published: 12 December 2018 doi: 10.3389/fmicb.2018.03096 The Core- and Pan-Genomic Analyses of the Genus Comamonas: From Environmental Adaptation to Potential Virulence Yichao Wu1, Norazean Zaiden2 and Bin Cao2,3* 1 State Key Laboratory of Agricultural Microbiology, College of Resources and Environment, Huazhong Agricultural University, Wuhan, China, 2 Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore, 3 School of Civil and Environmental Engineering, Nanyang Technological University, Singapore, Singapore Comamonas is often reported to be one of the major members of microbial communities in various natural and engineered environments.
    [Show full text]
  • Kocuria Tytonicola, New Bacteria from the Preen Glands of American Barn Owls (Tyto Furcata)
    Systematic and Applied Microbiology 42 (2019) 198–204 Contents lists available at ScienceDirect Systematic and Applied Microbiology jou rnal homepage: http://www.elsevier.com/locate/syapm Kocuria tytonicola, new bacteria from the preen glands of American barn owls (Tyto furcata) a,∗,1 a b b Markus Santhosh Braun , Erjia Wang , Stefan Zimmermann , Sébastien Boutin , c a,∗,1 Hermann Wagner , Michael Wink a Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, INF 364, 69120 Heidelberg, Germany b Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, INF 324, 69120 Heidelberg, Germany c Institute for Biology II (Zoology), RWTH Aachen University, Worringerweg 3, 52074 Aachen a r t i c l e i n f o a b s t r a c t Article history: Although birds are hosts to a large number of microorganisms, microbes have rarely been found in avian Received 21 February 2018 oil glands. Here, we report on two strains of a new bacterial species from the preen oil of American barn Received in revised form 25 October 2018 owls (Tyto furcata). Phenotypic as well as genotypic methods placed the isolates to the genus Kocuria. Accepted 9 November 2018 Strains are non-fastidious, non-lipophilic Gram-positive cocci and can be unambiguously discriminated T from their closest relative Kocuria rhizophila DSM 11926 . In phylogenetic trees, the owl bacteria formed Keywords: a distinct cluster which was clearly separated from all other known Kocuria species. The same conclusion Uropygial gland was drawn from MALDI-TOF MS analyses. Once again, the new bacterial strains were very similar to one DNA fingerprinting another, but exhibited substantial differences when compared to the most closely related species.
    [Show full text]
  • Extreme Environments and High-Level Bacterial Tellurite Resistance
    microorganisms Review Extreme Environments and High-Level Bacterial Tellurite Resistance Chris Maltman 1,* and Vladimir Yurkov 2 1 Department of Biology, Slippery Rock University, Slippery Rock, PA 16001, USA 2 Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +724-738-4963 Received: 28 October 2019; Accepted: 20 November 2019; Published: 22 November 2019 Abstract: Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments. Keywords: tellurite; tellurite resistance; extreme environments; metalloids; bioremediation; biometallurgy 1. Introduction Microorganisms possess a wide range of extraordinary abilities, from the production of bioactive molecules [1] to resistance to and transformation of highly toxic compounds [2–5]. Of great interest are bacteria which can convert the deleterious oxyanion tellurite to elemental tellurium (Te) through reduction. Currently, research into bacterial interactions with tellurite has been lagging behind investigation of the oxyanions of other metals such as nickel (Ni), molybdenum (Mo), tungsten (W), iron (Fe), and cobalt (Co).
    [Show full text]