Supporting Information

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information Supporting Information Rozenblatt-Rosen et al. 10.1073/pnas.0812023106 SI Text mix (4304437; Applied Biosystems), an ABI Prism 7700 instru- Antibodies. The following antibodies were generated by Bethyl ment (Applied Biosystems), and the following Assays-on- Laboratories: anti-Cdc73 Ab648 (BL648, A300–170A) and Demand (Applied Biosystems): CDC73 (Hs00225998࿝m1), Ab649 (BL649, A300–171A), anti-CPSF-160 (BL1896), anti- INTS6 (Hs00247179࿝m1), and ACTB (4310879E), which was CPSF-100 (BL1902), anti-CPSF-73 (BL1906), anti-CPSF-30 used as an internal reference standard. For detecting INTS6 (BL1985), anti-CstF-77 (BL1894), anti-CstF-64 (BL1889), and read-through transcripts, real-time PCR quantitation was per- anti-Ints6 (BL1115). Normal rabbit IgG was obtained from formed in triplicate by using SYBR green PCR Master Mix Bethyl Laboratories. Other antibodies were obtained commer- (4309155; Applied Biosystems), and the primer pairs whose cially as follows: anti-symplekin antibodies (BD Bioscience), sequence is detailed below. GAPDH (43088313; Applied Bio- anti-RNA polymerase II antibodies (Covance), anti-histone H3 systems) was used as an internal reference standard. For deter- tri methyl K4 (Abcam), and anti-histone H3 tri methyl K36 mining transcript levels the standard curve method for relative (Upstate and Millipore). Antibodies were diluted in 5% milk/ quantitation was used. TBST according to the manufacturer’s instructions. A ReliaBlot kit (Bethyl Labratories) was used to avoid masking of protein RNA Expression Analysis. Expression levels were measured in 4 bands by the Ig heavy chain. replicates for each of the 2 CDC73 siRNAs, for a total of 8 test samples. These were invariant-set normalized together with 8 Immunopurification and Mass Spectrometry. Peptides from the control samples, so that expression levels across genes were following proteins were identified by mass spectrometry: Cdc73 comparable. Genes whose expression levels were Ͻ150 units (NP࿝078805), Paf1 (NP࿝061961), Leo1 (NP࿝620147), Ctr9 (Affymetrix arbitrary units) across all samples were considered (NP࿝055448), CPSF-160 (NP࿝037423), CPSF-100 (NP࿝059133), absent in test and control samples, and hence were omitted from CPSF-73 (NP࿝057291), symplekin (NP࿝004810), Fip1 further analysis. Student’s t tests for higher and lower mean (NP࿝112179), CstF-77 (NP࿝001317) CstF-64 (NP࿝001316), expression levels in test as compared with control samples were MLL3 (NP࿝067053), Ash2L (NP࿝004665), Rbbp5 (NP࿝005048), performed for each gene. Genes were considered to be up- WDR61 (NP࿝001074025), and CPSF-30 (NP࿝001075028). regulated if: (i) the mean expression level in the test samples was at least 2-fold that of the control samples, and (ii) the t test P Glycerol Gradient Fractionation. Cells were lysed with 1 mL of value for higher expression in the test samples was Ͻ0.0003. Nonidet P-40 lysis buffer (1), and 200 ␮L of lysate were applied Similarly, genes were considered to be down-regulated if: (i) the to a 4.8 mL of 5–40% glycerol gradient in Nonidet P-40 lysis mean expression level in the test samples was at less than half that buffer. The gradient was centrifuged for 18 h at 4 °C in a of the control samples, and (ii) the t test P value for lower Beckman SW50 rotor at 50,000 rpm. Two hundred-microliter expression in the test samples was Ͻ0.0003. fractions were collected starting from the top of the gradient. Protein composition of the gradient fractions was analyzed by ChIPs. Quantitative ChIP assays were performed on at least 4 Western blotting of SDS/PAGE-fractionated aliquots. independent occasions; for each ChIP assay, DNA samples were quantitated in triplicate by using Power SYBR Green (Applied In Vitro Transcription-Coupled Processing Assays. The pG3CMVL3 Biosystems)-based real-time PCR. siRNA-treated HeLa cells and pCMVAdML DNA templates were constructed by inserting were treated with 1% formaldehyde and incubated for 10 min at the CMV promoter into the pG3L3-A (2) and pAdML-M3 room temperature. Glycine was added to a final concentration of plasmids, respectively. Transcription-coupled polyadenylation 0.125 M to stop the reaction. The cells were then suspended in was carried out in reaction mixtures containing bead-depleted or 0.6 mL of lysis buffer (50 mM Tris⅐Cl, pH 8.1, containing 1% Cdc73-immunodepleted nuclear extracts, 10 mM Hepes (pH Triton X-100, 0.1% deoxycholate, 150 mM NaCl, and 5 mM 7.9), 400 ng of pG3CMVL3 linearized with ApaL1, 0.5 mM each EDTA) plus protease inhibitors (leupeptin, phenylmethylsulfo- of ATP, GTP, and CTP, 15 ␮M cold UTP, 10 ␮Ci of [␣-32P] nyl fluoride, and aprotinin) and subjected to sonication (using a UTP, 1.5 mM MgCl2, 8 mM creatine phosphate (di-Tris), 3% Branson Sonifer 450 sonic dismembrator with a microtip at a polyvinyl alcohol, 10% glycerol, 50 mM KCl, 0.1 mM EDTA, 0.1 setting of 3). Fifteen 5-s pulses were required to shear chromatin mM DTT, and 0.25 mM PMSF. Transcription-coupled splicing to 1,000-bp fragments. The effectiveness of shearing was con- was performed as above, except that 400 ng of pCMVAdML firmed by incubating a 10-␮L aliquot of the extract at 65 °C for linearized with Eco0109I was used as a DNA template, and 20 3 h (to reverse cross-links) and subsequently subjecting it to mM creatine phosphate was included in the reaction mixtures. electrophoresis on a 1% agarose gel. One hundred micrograms of the clarified extracts was diluted to 1 mL in lysis buffer RNA Interference. The following siGENOME duplexes (Dharma- containing protease inhibitors and then incubated with specific con) were used: CDC73 (D-015184-02, D-015184-03), CPSF-73 antiserum (a separate aliquot was taken and stored for later PCR (D-006365-01, D-006365-02), siCONTROL Lamin A/C (LMNA, analysis as 10% of the input extract). Incubations occurred D-001050-01), and siCONTROL nontargeting siRNA (LUC, overnight at 4 °C on a rocking platform, after which 45 ␮Lof D-001210-02). For cotransfections, the indicated siRNAs were protein A-agarose slurry (Santa Cruz Biotechnology) was added, transfected along with a plasmid encoding a CDC73-insensitive and incubation was continued an additional 1–2 h. The agarose mutant or pCDNA1 vector control by using Lipofectamine 2000 was pelleted by centrifugation, and the pellets were washed (Invitrogen), according to the manufacturer’s instructions. Cells consecutively with 1 mL of lysis buffer, lysis buffer plus 500 mM were harvested 72 h after transfection. NaCl, lysis buffer plus 0.25 M LiCl, and Tris/EDTA. DNA and protein were eluted from the pellets by incubating the pellets 2 RNA Isolation and Quantitation. cDNA was diluted 1:14 and 5 ␮L times in 0.25 mL of elution buffer (0.1 M NaHCO3 with 1% SDS was used per real-time PCR. Real-time PCR quantification was and 20 mg/mL herring sperm DNA), and protein-DNA cross- performed in triplicate, using the TaqMan universal PCR master links were reversed by incubation at 65 °C for 4 h. DNA and Rozenblatt-Rosen et al. www.pnas.org/cgi/content/short/0812023106 1of14 protein were ethanol-precipitated overnight at Ϫ20 °C. The CACAC-3Ј; and Ext2, Fwd 5Ј-AATGCAGTGCCAAAGTTA- precipitated samples were pelleted and dissolved in proteinase K CAAAG-3Ј, Rev 5Ј-GAATCTCTGCTTATTTCACCAACA-3Ј. buffer (10 mM Tris⅐Cl, pH 7.5 with 1% SDS) and incubated with ChIP primer pairs were: INTS6,5ЈUTR, Fwd 5Ј-AGAACGGC- 1 ␮g of proteinase K (Roche Molecular Biochemicals) for1hat GAGGCGGTGTATC-3Ј, Rev 5Ј-TTCTCAGCCCCTCTCCTCGC- 55 °C. The samples were extracted once with phenol/chloroform TACTG-3Ј; INTS6 CDS1, Fwd 5Ј-TCCATGGAACCACT- Ϫ and ethanol-precipitated overnight at 20 °C. Samples were CAAATCCAA-3Ј, Rev 5Ј-ACCTACCCAACTGCCACTCATT-3Ј; pelleted, washed with 70% ethanol, and dissolved in 100 ␮ Lof INTS6 CDS2, Fwd 5Ј-GGCAGATAGGGACCAGATCACT-3Ј, Rev Tris/EDTA. Three-microliter aliquots were used for each real- 5Ј-TTGGGCCTTCATCATTTCTCAGAT-3Ј; INTS6 3ЈUTR, Fwd time PCR to quantitate coimmunoprecipitated DNA fragments Ј Ј Ј INTS6 read-through primer pairs were: CDS, Fwd 5Ј-CAGAAAC- 5 -ATAACAACAGAGCTGCAGGAAAG-3 , Rev 5 -CCCCAT- Ј Ј Ј CACTAATGATTCGATAATAC-3Ј, Rev 5Ј-CAGTAAACTG- CACAACAGTAAACAATC-3 ; and HBG1 5 UTR, Fwd 5 - ACAC- GCTGGAGAAGATG-3Ј; Ext1, Fwd 5Ј-GGGTTATGGAAAGAT- TAATCTATTACTGCGCTG -3Ј,Rev5Ј- CCAGGATTTTT- TCAGAAGTG-3Ј, Rev 5Ј-TGTTCAGAGAATACCCAGT- GACGGA -3Ј. 1. Rozenblatt-Rosen O, et al. (2005) The parafibromin tumor suppressor protein is part of a human Paf1 complex. Mol Cell Biol 25:612–620. 2. Takagaki Y, Ryner LC, Manley JL (1988) Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 52:731–742. Rozenblatt-Rosen et al. www.pnas.org/cgi/content/short/0812023106 2of14 Fig. S1. Identification of low molecular weight Cdc73-interacting proteins and anti-Cdc73 Ab649 characterization. (a) Anti-Cdc73 Ab648 immunoprecipitates were separated on a 10% SDS/PAGE gel to identify smaller (low molecular weight) interacting proteins. (b) Characterization of anti-Cdc73 Ab649 in HeLa nuclear extracts. HeLa nuclear extracts were immunoprecipitated with anti-Cdc73 Ab648 or anti-Cdc73 Ab649 antibodies. Immunoprecipitates were resolved and then immunoblotted with anti-Cdc73 Ab649. Negative controls include normal rabbit IgG and the appropriate blocking peptides. HeLa nuclear extract is shown as input. (c) Cell lysate from HeLa cells was fractioned on a 5–40% glycerol gradient. Aliquots of the depicted fractions were used for immunoblotting with the indicated antibodies. Rozenblatt-Rosen et al. www.pnas.org/cgi/content/short/0812023106 3of14 Fig. S2. Cdc73 specifically regulates Ints6 protein expression level. (a) U2OS cells were transfected with the indicated siRNAs and cell lysates were subjected to immunoblot analysis with the indicated antibodies. (b) HeLa cells were transfected with CDC73-1 or CPSF-73–1 siRNAs alone or with an expression construct encoding CDC73, which is no longer sensitive to CDC73-1 siRNA, or a vector control.
Recommended publications
  • Prdm16 Is Required for the Maintenance of Neural Stem Cells in the Postnatal Forebrain and Their Differentiation Into Ependymal Cells
    Downloaded from genesdev.cshlp.org on September 29, 2021 - Published by Cold Spring Harbor Laboratory Press Prdm16 is required for the maintenance of neural stem cells in the postnatal forebrain and their differentiation into ependymal cells Issei S. Shimada,1,2 Melih Acar,1,2,3 Rebecca J. Burgess,1,2 Zhiyu Zhao,1,2 and Sean J. Morrison1,2,4 1Children’s Research Institute, 2Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; 3Bahcesehir University, School of Medicine, Istanbul 34734, Turkey; 4Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA We and others showed previously that PR domain-containing 16 (Prdm16) is a transcriptional regulator required for stem cell function in multiple fetal and neonatal tissues, including the nervous system. However, Prdm16 germline knockout mice died neonatally, preventing us from testing whether Prdm16 is also required for adult stem cell function. Here we demonstrate that Prdm16 is required for neural stem cell maintenance and neurogenesis in the adult lateral ventricle subventricular zone and dentate gyrus. We also discovered that Prdm16 is required for the formation of ciliated ependymal cells in the lateral ventricle. Conditional Prdm16 deletion during fetal development using Nestin-Cre prevented the formation of ependymal cells, disrupting cerebrospinal fluid flow and causing hy- drocephalus. Postnatal Prdm16 deletion using Nestin-CreERT2 did not cause hydrocephalus or prevent the forma- tion of ciliated ependymal cells but caused defects in their differentiation. Prdm16 was required in neural stem/ progenitor cells for the expression of Foxj1, a transcription factor that promotes ependymal cell differentiation.
    [Show full text]
  • Bayesian Hierarchical Modeling of High-Throughput Genomic Data with Applications to Cancer Bioinformatics and Stem Cell Differentiation
    BAYESIAN HIERARCHICAL MODELING OF HIGH-THROUGHPUT GENOMIC DATA WITH APPLICATIONS TO CANCER BIOINFORMATICS AND STEM CELL DIFFERENTIATION by Keegan D. Korthauer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Statistics) at the UNIVERSITY OF WISCONSIN–MADISON 2015 Date of final oral examination: 05/04/15 The dissertation is approved by the following members of the Final Oral Committee: Christina Kendziorski, Professor, Biostatistics and Medical Informatics Michael A. Newton, Professor, Statistics Sunduz Kele¸s,Professor, Biostatistics and Medical Informatics Sijian Wang, Associate Professor, Biostatistics and Medical Informatics Michael N. Gould, Professor, Oncology © Copyright by Keegan D. Korthauer 2015 All Rights Reserved i in memory of my grandparents Ma and Pa FL Grandma and John ii ACKNOWLEDGMENTS First and foremost, I am deeply grateful to my thesis advisor Christina Kendziorski for her invaluable advice, enthusiastic support, and unending patience throughout my time at UW-Madison. She has provided sound wisdom on everything from methodological principles to the intricacies of academic research. I especially appreciate that she has always encouraged me to eke out my own path and I attribute a great deal of credit to her for the successes I have achieved thus far. I also owe special thanks to my committee member Professor Michael Newton, who guided me through one of my first collaborative research experiences and has continued to provide key advice on my thesis research. I am also indebted to the other members of my thesis committee, Professor Sunduz Kele¸s,Professor Sijian Wang, and Professor Michael Gould, whose valuable comments, questions, and suggestions have greatly improved this dissertation.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Entrez Symbols Name Termid Termdesc 117553 Uba3,Ube1c
    Entrez Symbols Name TermID TermDesc 117553 Uba3,Ube1c ubiquitin-like modifier activating enzyme 3 GO:0016881 acid-amino acid ligase activity 299002 G2e3,RGD1310263 G2/M-phase specific E3 ubiquitin ligase GO:0016881 acid-amino acid ligase activity 303614 RGD1310067,Smurf2 SMAD specific E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 308669 Herc2 hect domain and RLD 2 GO:0016881 acid-amino acid ligase activity 309331 Uhrf2 ubiquitin-like with PHD and ring finger domains 2 GO:0016881 acid-amino acid ligase activity 316395 Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 GO:0016881 acid-amino acid ligase activity 361866 Hace1 HECT domain and ankyrin repeat containing, E3 ubiquitin protein ligase 1 GO:0016881 acid-amino acid ligase activity 117029 Ccr5,Ckr5,Cmkbr5 chemokine (C-C motif) receptor 5 GO:0003779 actin binding 117538 Waspip,Wip,Wipf1 WAS/WASL interacting protein family, member 1 GO:0003779 actin binding 117557 TM30nm,Tpm3,Tpm5 tropomyosin 3, gamma GO:0003779 actin binding 24779 MGC93554,Slc4a1 solute carrier family 4 (anion exchanger), member 1 GO:0003779 actin binding 24851 Alpha-tm,Tma2,Tmsa,Tpm1 tropomyosin 1, alpha GO:0003779 actin binding 25132 Myo5b,Myr6 myosin Vb GO:0003779 actin binding 25152 Map1a,Mtap1a microtubule-associated protein 1A GO:0003779 actin binding 25230 Add3 adducin 3 (gamma) GO:0003779 actin binding 25386 AQP-2,Aqp2,MGC156502,aquaporin-2aquaporin 2 (collecting duct) GO:0003779 actin binding 25484 MYR5,Myo1e,Myr3 myosin IE GO:0003779 actin binding 25576 14-3-3e1,MGC93547,Ywhah
    [Show full text]
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc Oncogenesis
    The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis By Yuting Sun This thesis is submitted in fulfilment of the requirements for the degree of Doctor of Philosophy at the University of New South Wales Children’s Cancer Institute Australia for Medical Research School of Women’s and Children’s Health, Faculty of Medicine University of New South Wales Australia August 2014 PLEASE TYPE THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Sun First name: Yuting Other name/s: Abbreviation for degree as given in the University calendar: PhD School : School of·Women's and Children's Health Faculty: Faculty of Medicine Title: The Roles of Histone Deacetylase 5 and the Histone Methyltransferase Adaptor WDR5 in Myc oncogenesis. Abstract 350 words maximum: (PLEASE TYPE) N-Myc Induces neuroblastoma by regulating the expression of target genes and proteins, and N-Myc protein is degraded by Fbxw7 and NEDD4 and stabilized by Aurora A. The class lla histone deacetylase HDAC5 suppresses gene transcription, and blocks myoblast and leukaemia cell differentiation. While histone H3 lysine 4 (H3K4) trimethylation at target gene promoters is a pre-requisite for Myc· induced transcriptional activation, WDRS, as a histone H3K4 methyltransferase presenter, is required for H3K4 methylation and transcriptional activation mediated by a histone H3K4 methyltransferase complex. Here, I investigated the roles of HDAC5 and WDR5 in N-Myc overexpressing neuroblastoma. I have found that N-Myc upregulates HDAC5 protein expression, and that HDAC5 represses NEDD4 gene expression, increases Aurora A gene expression and consequently upregulates N-Myc protein expression in neuroblastoma cells.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Centre for Arab Genomic Studies a Division of Sheikh Hamdan Award for Medical Sciences
    Centre for Arab Genomic Studies A Division of Sheikh Hamdan Award for Medical Sciences The atalogue for ransmission enetics in rabs C T G A CTGA Database KIAA0196 Gene Alternative Names (Dandy-Walker malformation and cerebellar vermis KIAA0196 hypoplasia), congenital heart deformities (septal defects and aortic stenosis) and craniofacial Record Category dysmorphia (prominent occiput and forehead, low- Gene locus set ears, down-slanting palpebral fissures, depressed nasal bridge and micrognathia). WHO-ICD N/A to gene loci Molecular Genetics The KIAA0196 gene, located on the long arm of Incidence per 100,000 Live Births chromosome 8, spans a length of 67 kb. Its coding N/A to gene loci sequence consists of 31 exons and it encodes a 134 kDa protein product made up of 1159 amino acids. OMIM Number While the gene is ubiquitously expressed in the 610657 human body, it is found to be overexpressed in skeletal muscles. Heterozygous missense mutations Mode of Inheritance in the KIAA0196 gene are associated with Spastic N/A to gene loci Paraplegia 8, the most common being Val626Phe caused by a 1956G-T transversion; while a Gene Map Locus homozygous splice site mutation in the gene has 8q24.13 been linked to Ritscher-Schinzel Syndrome 1. Description Epidemiology in the Arab World The KIAA0196 gene encodes the strumpellin Saudi Arabia protein. The protein, found in the cytosol and Anazi et al. (2016) carried out a study to determine endoplasmic reticulum, forms a part of the WASH the diagnostic yield of genetic analysis tools core complex along with F-actin-capping protein compared to standard clinical evaluations.
    [Show full text]
  • (Ser739) Antibody-SL10016R
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-phospho-ZCWCC1 (Ser739) antibody SL10016R Product Name: phospho-ZCWCC1 (Ser739) Chinese Name: 磷酸化ZCWCC1抗体 AC004542.C22.1.; p-MORC2(Ser739); phospho-ZCWCC1(Ser739); CW type with coiled coil domain 1; KIAA0852; ZCW3; ZCWCC1; Zinc finger; Zinc finger CW type Alias: coiled coil domain protein 1; Zinc finger CW type with coiled coil domain 1; Zing finger CW type 3 zinc finger CW-type coiled-coil domain protein 1; MORC family CW-type zine finger 2; MORC2. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat, WB=1:500-2000ELISA=1:500-1000IHC-P=1:400-800IHC-F=1:400-800ICC=1:100- 500IF=1:100-500(Paraffin sections need antigen repair) Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 114kDa Cellular localization: The nucleuscytoplasmic Form: Lyophilizedwww.sunlongbiotech.com or Liquid Concentration: 1mg/ml KLH conjugated synthesised phosphopeptide derived from human MORC2 around the immunogen: phosphorylation site of Ser739:KR(p-S)VA Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibody is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C.
    [Show full text]
  • Microrna Let-7E in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype
    International Journal of Molecular Sciences Article MicroRNA Let-7e in the Mouse Prefrontal Cortex Differentiates Restraint-Stress-Resilient Genotypes from Susceptible Genotype Joanna Solich 1,* , Magdalena Kolasa 1, Agata Faron-Górecka 1 , Jacek Hajto 2, Marcin Piechota 2 and Marta Dziedzicka-Wasylewska 1 1 Laboratory of Biochemical Pharmacology, Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Sm˛etnaStreet 12, 31-343 Kraków, Poland; [email protected] (M.K.); [email protected] (A.F.-G.); [email protected] (M.D.-W.) 2 Laboratory of Pharmacogenomics, Department of Molecular Neuropharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Sm˛etnaStreet 12, 31-343 Kraków, Poland; [email protected] (J.H.); [email protected] (M.P.) * Correspondence: [email protected] Abstract: Three strains of mice with various susceptibilities to restraint stress (RS), i.e., mice with a knocked out norepinephrine transporter gene (NET-KO), SWR/J and C57BL/6J (WT) mice were shown to serve as a good model to study the molecular mechanisms underlying different stress- coping strategies. We identified 14 miRNAs that were altered by RS in the PFC of these mice in a genotype-dependent manner, where the most interesting was let-7e. Further in silico analysis of its potential targets allowed us to identify five mRNAs (Bcl2l11, Foxo1, Pik3r1, Gab1 and Map2k4), and Citation: Solich, J.; Kolasa, M.; their level alterations were experimentally confirmed. A next-generation sequencing (NGS) approach, Faron-Górecka, A.; Hajto, J.; Piechota, which was employed to find transcripts differentially expressed in the PFC of NET-KO and WT mice, M.; Dziedzicka-Wasylewska, M.
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • Pan-Cancer Analysis of Homozygous Deletions in Primary Tumours Uncovers Rare Tumour Suppressors
    Corrected: Author correction; Corrected: Author correction ARTICLE DOI: 10.1038/s41467-017-01355-0 OPEN Pan-cancer analysis of homozygous deletions in primary tumours uncovers rare tumour suppressors Jiqiu Cheng1,2, Jonas Demeulemeester 3,4, David C. Wedge5,6, Hans Kristian M. Vollan2,3, Jason J. Pitt7,8, Hege G. Russnes2,9, Bina P. Pandey1, Gro Nilsen10, Silje Nord2, Graham R. Bignell5, Kevin P. White7,11,12,13, Anne-Lise Børresen-Dale2, Peter J. Campbell5, Vessela N. Kristensen2, Michael R. Stratton5, Ole Christian Lingjærde 10, Yves Moreau1 & Peter Van Loo 3,4 1234567890 Homozygous deletions are rare in cancers and often target tumour suppressor genes. Here, we build a compendium of 2218 primary tumours across 12 human cancer types and sys- tematically screen for homozygous deletions, aiming to identify rare tumour suppressors. Our analysis defines 96 genomic regions recurrently targeted by homozygous deletions. These recurrent homozygous deletions occur either over tumour suppressors or over fragile sites, regions of increased genomic instability. We construct a statistical model that separates fragile sites from regions showing signatures of positive selection for homozygous deletions and identify candidate tumour suppressors within those regions. We find 16 established tumour suppressors and propose 27 candidate tumour suppressors. Several of these genes (including MGMT, RAD17, and USP44) show prior evidence of a tumour suppressive function. Other candidate tumour suppressors, such as MAFTRR, KIAA1551, and IGF2BP2, are novel. Our study demonstrates how rare tumour suppressors can be identified through copy number meta-analysis. 1 Department of Electrical Engineering (ESAT) and iMinds Future Health Department, University of Leuven, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium.
    [Show full text]