OVERHEAD CAMSHAFT TECHNOLOGY Contents Overview

Total Page:16

File Type:pdf, Size:1020Kb

OVERHEAD CAMSHAFT TECHNOLOGY Contents Overview OVERHEAD CAMSHAFT TECHNOLOGY A sectioned part of a cylinder head cut along the plane of the valvetrain shows two overhead camshafts — one above each of the two hollow-section valves. Overhead camshaft,[1][2] commonly abbreviated to OHC,[1][2] is a valvetrain configuration which places the camshaft of an internal combustion engine of the reciprocating type within the cylinder heads ('above' the pistons and combustion chambers) and drives the valves or lifters in a more direct manner compared to overhead valves (OHV) and pushrods. Contents 1 Overview 2 Fundamental types of OHC o 2.1 Single overhead camshaft o 2.2 Double overhead camshaft 3 History Overview Compared to OHV pushrod systems with the same number of valves, the reciprocating components of the OHC system are fewer[1] and have a lower overall mass.[1] Though the system that drives the camshafts may be more complex, most engine manufacturers accept that added complexity as a trade-off for better engine performance and greater design flexibility. The fundamental reason for the OHC valvetrain is that it offers an increase in the engines' ability to exchange induction and exhaust gasses. (This exchange is sometimes known as 'engine breathing'.[1] ) Another performance advantage is gained as a result of the better optimised port configurations made possible with overhead camshaft designs. With no intrusive pushrods, the overhead camshaft cylinder head design can use straighter ports[1] of more advantageous crossection and length. The OHC OVERHEAD CAMSHAFT TECHNOLOGY design allows for higher engine speeds, which in turn will increase power output for a given torque.[1] The OHC valvetrain system may be driven by the crank shaft using the same methods as an OHV system, but in practice (and depending on the application), lighter weight and maintenance-free methods are more commonly used. These methods include using a rubber/kevlar toothed timing belt,[1][3][4] duplex or single row roller chains,[1][3][4] or in less common cases, gears.[1] Early Ducati motorcycle engines used shafts with bevel gears to drive the camshafts in their OHC engines.[4] In conjunction with multiple valves (three, four or five) per cylinder,[1] many OHC engines today employ variable valve timing[1] to improve efficiency and power. OHC also inherently allows for greater engine speeds over comparable cam-in-block designs, as a result of having lower valvetrain mass.[1] Fundamental types of OHC There are two fundamental types of overhead camshaft layout: single overhead camshaft (SOHC),[1][3] and double overhead camshaft (DOHC).[1][2][3] Single overhead camshaft A single overhead camshaft cylinder head from a 1987 Honda CRX Si. Single overhead camshaft (SOHC)[3] is a design in which one camshaft is placed within the cylinder head.[1] In an inline engine, this means there is one camshaft in the head, whilst in an engine with more than one cylinder head, such as a V engine or a horizontally-opposed engine (boxer; flat engine) — there are two camshafts: one per cylinder bank. In the SOHC design, the camshaft operates the valves directly, traditionally via a bucket tappet; or via an intermediary rocker arm.[1][3] SOHC cylinder heads are generally less expensive to manufacture than DOHC cylinder heads. Timing belt replacement can be easier since there are fewer camshaft drive sprockets that need to be aligned during the replacement procedure. OVERHEAD CAMSHAFT TECHNOLOGY A World War I-era Hispano-Suiza V8 aviation engine, which used single overhead camshafts for each cylinder bank. In the early era of the liquid-cooled aircraft engine field, single overhead camshaft format engines were in existence during the First World War, for both the Allies and the Central Powers. The Hispano-Suiza 8 — a V8 engine, designed by Marc Birkigt in the Allied camp, and the series of Mercedes inline-six aviation engines, culminating in the Mercedes D.III for the German Empire, both used rotary shaft-driven single overhead camshaft valvetrain systems, and were among the most prominent aviation powerplants of the First World War era. The late-war Liberty L-12 — a V12 engine configuration American aviation engine also used the general Mercedes D-series single overhead camshaft design, based primarily on the later D.IIIa's drive system from rocker box to valvestem. SOHC designs offer reduced complexity compared to overhead valve designs — when used for multivalve cylinder heads, in which each cylinder has more than two valves. An example of an SOHC design using shim and bucket valve adjustment was the engine installed in the Hillman Imp (four cylinder, eight valve); a small, early 1960s two-door saloon car (sedan) with a rear mounted aluminium-alloy engine based on the Coventry Climax FWMA race engines. Exhaust and inlet manifolds were both on the same side of the engine block (thus not a crossflow cylinder head design). This did, however, offer excellent access to the spark plugs. In the early 1980s, Toyota and Volkswagen Group[5] also used a directly actuated, SOHC parallel valve configuration with two valves for each cylinder. The Toyota system used hydraulic tappets, while the Volkswagen system used bucket tappets with shims for valve clearance adjustment. Of all valvetrain systems, this is the least complex configuration possible. Double overhead camshaft OVERHEAD CAMSHAFT TECHNOLOGY Overhead view of Suzuki GS550 cylinder head showing double camshafts and chain- drive sprockets. A double overhead camshaft[1][2][3] (DOHC) valvetrain layout (also known as 'dual overhead camshaft') is characterised by two camshafts located within the cylinder head,[3] one operating the intake valves and one operating the exhaust valves. This design reduces valvetrain inertia more than a SOHC engine, since the rocker arms are reduced in size or eliminated. A DOHC design permits a wider angle between intake and exhaust valves than SOHC engines. This can allow for a less restricted airflow at higher engine speeds. DOHC with a multivalve design also allows for the optimum placement of the spark plug, which in turn, improves combustion efficiency.[3] Engines which have more than one bank of cylinders (i.e. V6, V8 — where two cylinder banks meet to form a 'V') with two camshafts in total remain SOHC; unless each cylinder bank has two camshafts — these latter are DOHC,[3] and are often known as 'quad cam'. The term 'twin cam' is imprecise, but will normally refer to a DOHC engine. Some manufacturers use a SOHC in a multivalve design. Also, not all DOHC engines are multivalve engines. DOHC cylinder heads existed before multivalve cylinder heads appeared in the 1980s. Today, however, DOHC is sometimes confused with multivalve heads, since almost all modern DOHC engines have between three and five valves per cylinder — but 'multivalve' and 'DOHC' are separate distinctions.[3] History DOHC straight-8 in a 1933 Bugatti Type 59 Grand Prix racer The first DOHC car was the 1912 Peugeot which won the French Grand Prix at Dieppe that year. This car was powered by a straight-4 engine designed by Ernest Henry under the guidance of the technically knowledgeable racing drivers Paul Zuccarelli and Georges OVERHEAD CAMSHAFT TECHNOLOGY Boillot. Boillot, who drove the winning car that year, won the French Grand Prix for Peugeot again in 1913 but was beaten in 1914 by the SOHC Mercedes of Christian Lautenschlager. Among the early pioneers of DOHC were Isotta Fraschini's Giustino Cattaneo, Austro- Daimler's Ferdinand Porsche, Stephen Tomczak (in the Prinz Heinrich), and W. O. Bentley (in 1919); Sunbeam built small numbers of racing models between 1921 and 1923 and introduced one of the world's first production twin cams in 1924 — the Sunbeam 3 litre Super Sports, an example of which came second at Le Mans in 1925.[6] The first DOHC engines were either two- or four-valve per cylinder racing car designs from companies like Fiat (1912), Peugeot Grand Prix (1912, four-valve), Alfa Romeo Grand Prix (1914, four-valve)[7] and 6C (1928), Maserati Tipo 26 (1926), Bugatti Type 51 (1931). When DOHC technology was introduced in mainstream vehicles, it was common for it to be heavily advertised. While used at first in limited production and sports cars such as the 1925 Sunbeam 3 litre, Alfa Romeo is one of the twin cam's greatest proponents. 6C Sport, the first Alfa Romeo road car using a DOHC engine, was introduced in 1928. Ever since this, DOHC has been a trademark of most Alfa Romeo engines (some Alfa V6 engines are SOHC, not DOHC. Most Alfasud boxer engines were also SOHC).[7] Fiat was one of the first car companies to use belt-driven DOHC engines in some of their products in the mid-1960s,Jaguar's XK6 DOHC engine was displayed in the Jaguar XK120 at the London Motor Show in 1948, and used across the entire Jaguar range through the late 1940s, 1950 and 1960s. By the late 1970s, Toyota was the best seller of DOHC engines More than two overhead camshafts are not known to have been tried in a production engine. However, MotoCzysz has designed a motorcycle engine with a triple overhead camshaft configuration, with the intake ports descending through the cylinder head to two central intake ports between two outside exhaust camshafts actuating one of two exhaust valves per cylinder each.[8] Cutaway view of a Napier Lion showing the double overhead camshaft arrangement OVERHEAD CAMSHAFT TECHNOLOGY In inline piston aero engines, DOHCs have been used for many engines. The 1917 Napier Lion, for example, had them. .
Recommended publications
  • Harrop Camshaft Grind Specifications
    Harrop Engineering Australia Pty Ltd www.harrop.com.au ABN: 87 134 196 080 Phone: +61 3 9474 - 0900 96 Bell Street, Preston, Fax: +61 3 9474 – 0999 Melbourne, VIC, 3072, Australia Email: [email protected] Harrop Camshaft Grind Specifications Harrop HO1 Camshaft 226/232 .607”/.602” @ 112 LSA Great NA camshaft Lumpy idle but acceptable driveability, Great power and torque Manual or auto standard gear ratios are ok but 3.7 or 3.9 would be preferred. Automatic may require stall converter. Could be used in boosted application but due to low LSA Would require smaller pulley to be increase boost. Harrop HO2 camshaft 224/232 .610” / .610” @ 114 LSA Great blower camshaft offering acceptably lumpy idle and great drivability, this camshaft will give great power through the mid to high RPM range. As this camshaft is more aggressive then the H05. Normally this would require a stall converter, it can be run on a standard converter but it may push on it slightly. Sound clip: https://www.youtube.com/watch?v=NvOGohRd7-k Harrop H03 Camshaft 232/233 .610” / .602” @ 112 LSA Will give great lumpy cammed affect, Low LSA would take boost out of a forced induction motor. Largest recommend camshaft for a 5.7 N/A , Acceptable in 6.0L and 6.2L square port engines, Must have 3.7 (square port) or 3.9 (LS1) for the best results in a manual car. Auto would require stall converter. 1 / 2 File: Harrop Letter Head “Commercial in Confidence” Issue:12th January 2018 designdevelop deliver Print: Friday, 25 September 2020 ` Harrop HO4 camshaft 234/238 .593” / .595” @ 114 LSA The H04 is designed with Forced induction in mind but can be used as a naturally aspirated camshaft as well.
    [Show full text]
  • Testing the System Page 1 of 4
    Testing the system Page 1 of 4 Testing the system Vehicle diagnostic, testing and information system -VAS 5051B- Test sequence Coolant temperature at least 80 °C. Vehicles with automatic gearbox: selector lever in position P or N – Connect vehicle diagnostic, testing and information system -VAS 5051B- and select vehicle system “01 - Engine electronics” from list. Engine must be idling. WARNING Test equipment must always be secured on the rear seat and operated from that position by a second person. If test and measuring instruments are operated from front passenger's seat and the vehicle is involved in an accident, the person sitting in this seat could be seriously injured when the airbag is triggered. Display on -VAS 5051B-: – From list -1- select diagnostic function “04 - Basic setting”. Display on -VAS 5051B-: 1 - Enter display group – Using the keypad -2-, enter “094” to select “Display group 094” and confirm entry with the Q key. vw-wi://rl/A.en-GB.A04.5636.29.wi::37889621.xml?xsl=3 14.01.2014 Testing the system Page 2 of 4 – Activate basic setting by touching key A . Display on -VAS 5051B-: – Increase the engine speed to above 2000 rpm for approx. 10 seconds. – Check specifications in display zones -3- and -4-. Display zones 1234 Display group 94: variable valve timing, bank 1 (right-side) and bank 2 (left-side) Display xxxx rpm --- --- --- Readout Engine speed Variable valve timing Variable valve timing Variable valve timing bank 1 bank 2 Range CS-ctrl ON Test OFF Test OFF CS-ctrl OFF Test ON Test ON Syst.
    [Show full text]
  • Wisdom & Woe from the Workshop
    Worn camshaft wisdom & woe from the workshop This month we will be looking at camshafts and how to select the correct camshaft for your application. Most TVR applications utilise relatively high performance camshafts, so the longevity of these components is often compromised. This means that most TVR engines will require camshaft replacement at some point in their lifetime... Many TVR engines (e.g. Rover V8 and Cologne or Essex V6) have a single camshaft located in the centre of the engine block, with both intake and exhaust lobes on the same camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via followers, pushrods and rocker arms. Other TVR engines (e.g. Speed Six) have two separate camshafts located in the top of the cylinder head, with the intake lobes on one camshaft and the exhaust lobes on the other camshaft. This type of set-up translates the motion of the cam lobes to the intake and exhaust valves via solid finger followers. Rover V8 When selecting a non-standard camshaft for your application you first need to ensure that you have the ability to modify the fuel quantity and ignition timing, particularly at full load and preferably throughout the entire load/rpm range. If the camshaft is not significantly different from the original specification, then a slight adjustment of the fuel pressure and ignition advance at peak torque may be sufficient. If the camshaft is significantly different from the original then you may require some significant work in terms of fuel and ignition adjustments, to ensure that you get the most out of your chosen camshaft (e.g.
    [Show full text]
  • Modeling and Analysis of Composite Automotive V8
    MODELING AND ANALYSIS OF COMPOSITE AUTOMOTIVE V8 ENGINE B.Sreenivasulu1, K.Anil Kumar2, P.Paramesh3 1,2,3 Assistant Professor In Mechanical Engineering Dept, Sphoorthy Enginering College, Hyderabad, (India) ABSTRACT Heat losses are a major limiting factor for the efficiency of internal combustion engines. Furthermore, heat transfer phenomena cause thermally induced mechanical stresses compromising the reliability of engine components. The ability to predict heat transfer in engines plays an important role in engine development. Today, predictions are increasingly being done with numerical simulations at an ever earlier stage of engine development. These methods must be based on the understanding of the principles of heat transfer. In the present work V type multi cylinder engine assembly is modeled. This model is imported to ANSYS and done the steady state Thermal and Structural analysis for predicting thermal stress, temperature distribution, heat flux by comparing with two different material (FU 2451) from existing material (Aluminium).Heat transfer is one major important aspect of energy transformation in internal combustion (IC) engines. Locating hot spots in a solid wall can be used as an impetus to design a better cooling system. Fast transient heat flux between the combustion chamber and the solid wall must be investigated to understand the effects of the non-steady thermal environment. Keywords: Cylinder, Combustion Chamber, FU 2451. I INTRODUCTION A V8 engine is a V engine with eight barrels mounted on the crankcase in two banks of four chambers, much of the time set at a privilege plot to one another yet frequently at a narrower edge, with each of the eight cylinders driving a typical crankshaft.
    [Show full text]
  • Self-Study Programme 211 the New Beetle
    High-mounted stop light The high-level stop light is integrated in the boot. If an LED fails, the complete unit must be replaced. When installing the stop light, take care to ensure that the rubber seal is properly seated, otherwise water may enter the luggage compartment. 211/047 Removing and installing of the front bumper The front bumper can only be removed as a unit complete with the two wings. These components can then be fitted individually. 211/078 Removing and installing the rear bumper The rear bumper also has to be removed together with the wings. The wings and bumper can be separated after this. 211/023 15 Engines General information The New Beetle, like the Golf ´98, Audi A3 and Design features of the 1.9-ltr. and 2.0-ltr. Skoda Oktavia, is based on the A-platform. The A4 platform engines: engines of these vehicles are almost identical from a technical viewpoint too. • No intermediate shaft The New Beetle is available with a 1.9-ltr. TDI • Chain-driven oil pump engine and a 2.0-ltr. petrol engine with crossflow • New thermostat housing cylinder head. • Small engine block • Aluminium oil sump • Lightweight valve train • New coolant pump housing • Pendulum-type engine support 211/135 211/016 Assembly mounting The assembly mounting comprises engine mount (hydraulic mount) -1-, gearbox mount (bonded rubber bush) -2- and stabiliser link -3-. The assembly layout is designed to increase flexibility about the axis of rotation of the engine. The stabiliser link absorbs the engine movement which is induced by engine torque.
    [Show full text]
  • The Achates Power Opposed-Piston Two-Stroke Engine
    Gratis copy for Gerhard Regner Copyright 2011 SAE International E-mailing, copying and internet posting are prohibited Downloaded Wednesday, August 31, 2011 08:49:32 PM The Achates Power Opposed-Piston Two-Stroke 2011-01-2221 Published Engine: Performance and Emissions Results in a 09/13/2011 Medium-Duty Application Gerhard Regner, Randy E. Herold, Michael H. Wahl, Eric Dion, Fabien Redon, David Johnson, Brian J. Callahan and Shauna McIntyre Achates Power Inc Copyright © 2011 SAE International doi:10.4271/2011-01-2221 technical challenges related to emissions, fuel efficiency, cost ABSTRACT and durability - to name a few - and these challenges have Historically, the opposed-piston two-stroke diesel engine set been more easily met by four-stroke engines, as demonstrated combined records for fuel efficiency and power density that by their widespread use. However, the limited availability of have yet to be met by any other engine type. In the latter half fossil fuels and the corresponding rise in fuel cost has led to a of the twentieth century, the advent of modern emissions re-examination of the fundamental limits of fuel efficiency in regulations stopped the wide-spread development of two- internal combustion (IC) engines, and opposed-piston stroke engine for on-highway use. At Achates Power, modern engines, with their inherent thermodynamic advantage, have analytical tools, materials, and engineering methods have emerged as a promising alternative. This paper discusses the been applied to the development process of an opposed- potential of opposed-piston two-stroke engines in light of piston two-stroke engine, resulting in an engine design that today's market and regulatory requirements, the methodology has demonstrated a 15.5% fuel consumption improvement used by Achates Power in applying state-of-the-art tools and compared to a state-of-the-art 2010 medium-duty diesel methods to the opposed-piston two-stroke engine engine at similar engine-out emissions levels.
    [Show full text]
  • Cylinder Deactivation: a Technology with a Future Or a Niche Application?: Schaeffler Symposium
    172 173 Cylinder Deactivation A technology with a future or a niche application? N O D H I O E A S M I O U E N L O A N G A D F J G I O J E R U I N K O P J E W L S P N Z A D F T O I E O H O I O O A N G A D F J G I O J E R U I N K O P O A N G A D F J G I O J E R O I E U G I A F E D O N G I U A M U H I O G D N O I E R N G M D S A U K Z Q I N K J S L O G D W O I A D U I G I R Z H I O G D N O I E R N G M D S A U K N M H I O G D N O I E R N G E Q R I U Z T R E W Q L K J P B E Q R I U Z T R E W Q L K J K R E W S P L O C Y Q D M F E F B S A T B G P D R D D L R A E F B A F V N K F N K R E W S P D L R N E F B A F V N K F N T R E C L P Q A C E Z R W D E S T R E C L P Q A C E Z R W D K R E W S P L O C Y Q D M F E F B S A T B G P D B D D L R B E Z B A F V R K F N K R E W S P Z L R B E O B A F V N K F N J H L M O K N I J U H B Z G D P J H L M O K N I J U H B Z G B N D S A U K Z Q I N K J S L W O I E P ArndtN N BIhlemannA U A H I O G D N P I E R N G M D S A U K Z Q H I O G D N W I E R N G M D A M O E P B D B H M G R X B D V B D L D B E O I P R N G M D S A U K Z Q I N K J S L W O Q T V I E P NorbertN Z R NitzA U A H I R G D N O I Q R N G M D S A U K Z Q H I O G D N O I Y R N G M D E K J I R U A N D O C G I U A E M S Q F G D L N C A W Z Y K F E Q L O P N G S A Y B G D S W L Z U K O G I K C K P M N E S W L N C U W Z Y K F E Q L O P P M N E S W L N C T W Z Y K M O T M E U A N D U Y G E U V Z N H I O Z D R V L G R A K G E C L Z E M S A C I T P M O S G R U C Z G Z M O Q O D N V U S G R V L G R M K G E C L Z E M D N V U S G R V L G R X K G T N U G I C K O
    [Show full text]
  • Vertical Shaft Engines 8 27 HP Kohler 17.5 HP Briggs & Stratton Briggs & Stratton Engines Courage Vertical 5 Ft-Lbs
    4 Vertical Shaft Engines 8 www.surpluscenter.com 27 HP Kohler 17.5 HP Briggs & Stratton Briggs & Stratton Engines Courage Vertical 5 ft-lbs. Briggs & Vertical Engine Stratton Engine ITEM 28-1843 $439.95 Engine ITEM 28-1868 ITEM 28-1810 $629.95 $109.99 • New, KOHLER Courage series, twin • New BRIGGS & STRATTON PowerBuilt • New, BRIGGS & STRATTON vertical cylinder, vertical shaft gas engine. Ideal for INTEK vertical engine with AVS. Cast iron shaft L-head engine. Muffler guard. Man - lawn mower replacement or building sleeve. No muffler and fuel tank. Fuel filter ual throttle. Primer bulb. Not for sale in equipment. Aluminum block with cast iron included. Dual 3 and 5 amps alternator. California. cylinder liners. Features include 12 volt DC SPECIFICATIONS • Shaft 1˝ dia. x 3.16˝ SPECIFICATIONS 7/16 electric start, crossflow cylinder head with • Model 31C707-3346 tapped -20 • Model 10T502-0178-B1 • Shaft ⅞˝ dia. x 1.812˝ • Power 17.5 HP • Mount 10˝ bolt circle ⅜ overhead valves, pressurized lubrication • Disp. 502 cc. • No fuel tank • Displacement 158 cc w/keyway, tapped -24 with filter, electronic ignition, 12 volt fuel • Start electric • Size 18˝ x 15˝ x 12 ¼˝ • Torque 5 ft-lbs. at 3060 RPM • Mount 3 hole, 8˝ B.C. shutoff, fuel pump, float type carburetor, • Shaft orientation vertical • Shpg. 75 lbs. • HP (calculated) 4 at 3600 RPM • Fuel tank 1 quart and 12 volt DC 25 amp alternator. No fuel • Speed 3600 RPM max. • Size 12.8˝ x 11.5˝ x 9.5˝ tank or muffler. 12.5 HP Briggs & Stratton • Start recoil • Shpg. 33 lbs.
    [Show full text]
  • Understanding Overhead-Valve Engines Once Unheard of These Engines Now Supply the Power for Nearly All of Your Equipment
    Understanding Overhead-Valve Engines Once unheard of these engines now supply the power for nearly all of your equipment. By ROBERT SOKOL Intertec Publishing Corp., Technical Manuals Division You've all heard about overhead valves when shopping Valve-Design Characteristics for power equipment, but what do they mean to you? Do The valves consist of a round head, a stem and a groove you need overhead valves? Do they cost more? What will at the top of the valve. The head of the valve is the larger they do for you? Twenty years ago, overhead valves were end that opens and closes the passageway to and from the unheard of in any type of power equipment. Nowadays, it combustion chamber. The stem guides the valve up and is difficult to find a small engine without them. down and supports the valve spring. The groove at the top In an engine with overhead valves, the intake and of the valve stem holds the valve spring in place with a exhaust valve(s) is located in the cylinder head, as opposed retainer lock. The valves must open and close for the air- to being mounted in the engine block. Many of the larger and-fuel mix to enter, then exit, the combustion chamber. engine manufacturers still offer "standard" engines that Proper timing of the opening and closing of the valves is have the valves in the block. Their "deluxe" engines have required for the engine to run smoothly. The camshaft con- overhead valves and stronger construction. Overhead trols valve sequence and timing.
    [Show full text]
  • Simulation Approaches for the Solution of Cranktrain Vibrations Pavel Novotný, Václav Píštěk, Lubomír Drápal, Aleš Prokop
    Simulation Approaches for the Solution of Cranktrain Vibrations PaveL NOVOTNÝ, VÁCLav PíštěK, LUBOMÍR DRÁPAL, ALEš PROKOP 10.2478/v10138-012-0006-8 SIMULATION APPROACHES FOR THE SOLUTION OF CRANKTRAIN VIBRATIONS PAVEL NOVOTNÝ, VÁCLAV PíštěK, LubOMÍR DRÁPAL, ALEš PROKOP Institute of Automotive Engineering, Brno University of Technology, Technická 2896/2, 616 69 Brno, Czech Republic Tel.: +420 541 142 272, Fax: +420 541 143 354, E-mail: [email protected] SHRNUTÍ Vývoj moderních pohonných jednotek vyžaduje využívání pokročilých výpočtových metod, nutných k požadovanému zkrácení času tohoto vývoje společně s minimalizací nákladů na něj. Moderní výpočtové modely jsou stále složitější a umožnují řešit mnoho různých fyzikálních problémů. V případě dynamiky pohonných jednotek a životnosti jejich komponent lze využít několik různých přístupů. Prvním z nich je přístup zahrnující samostatné řešení každého subsystému pohonné jednotky. Druhý přístup využívá model pohonné jednotky obsahující všechny hlavní subsystémy, jako klikový mechanismus, ventilový rozvod, pohon rozvodů nebo vstřikovací čerpadlo, a řeší všechny tyto subsystémy současně i s jejich vzájemným ovlivněním. Cílem článku je pomocí vybraných výsledků prezentovat silné a slabé stránky obou přístupů. Výpočty a experimenty jsou prováděny na traktorovém vznětovém šestiválcovém motoru. KlíčOVÁ SLOVA: POHONNÁ JEDNOTKA, DYNAMIKA, VIBRACE, KLIKOVÝ mechANISMUS, NVH, MKP ABSTRACT The development of modern powertrains requires the use of advanced CAE tools enabling a reduction in engine development times and costs. Modern computational models are becoming ever more complicated and enable integration of many physical problems. Concentrating on powertrain dynamics and component fatigue, a few basic approaches can be used to arrive at a solution. The first approach incorporates a separate dynamics solution of the powertrain parts.
    [Show full text]
  • Lawn-Boy V-Engine Service Manual
    LAWN-BOY V-ENGINE SERVICE MANUAL Table of Contents – Page 1 of 2 REFERENCE SECTION SAFETY SPECIFICATIONS - ENGINE SPECIFICATIONS SPECIFICATIONS - ENGINE FASTENER TORQUE REQUIREMENTS SPECIFICATIONS - CARBURETOR SPECIFICATIONS (WALBRO LMR-16) SPECIAL TOOL REQUIREMENTS TROUBLESHOOTING MAINTENANCE SECTION 1 WALBRO LMR-16 CARBURETOR LMR-16 CARBURETOR - IDENTIFICATION LMR-16 CARBURETOR - THEORY OF OPERATION LMR-16 CARBURETOR - GOVERNOR THEORY LMR-16 CARBURETOR - REMOVAL LMR-16 CARBURETOR - DISASSEMBLY LMR-16 CARBURETOR - CLEANING AND INSPECTION LMR-16 CARBURETOR - ASSEMBLY LMR-16 CARBURETOR - PRESETTING THE GOVERNOR LMR-16 CARBURETOR - ASSEMBLING AIR BOX TO CARBURETOR LMR-16 CARBURETOR - INSTALLATION LMR-16 CARBURETOR - FINAL CHECK LMR-16 CARBURETOR - CHOKE ADJUSTMENT LMR-16 CARBURETOR - SERVICING THE AIR FILTER LMR-16 CARBURETOR-TROUBLESHOOTING SECTION 2 PRIMER START CARBURETOR PRIMER START CARBURETOR - IDENTIFICATION PRIMER START CARBURETOR - THEORY OF OPERATION PRIMER START CARBURETOR - GOVERNOR THEORY PRIMER START CARBURETOR - REMOVAL PRIMER START CARBURETOR - DISASSEMBLY PRIMER START CARBURETOR - CLEANING AND INSPECTION PRIMER START CARBURETOR - ASSEMBLY PRIMER START CARBURETOR - INSTALLATION PRIMER START CARBURETOR - PRESETTING THE GOVERNOR PRIMER START CARBURETOR - FINAL CHECK PRIMER START CARBURETOR - SERVICING THE AIR FILTER PRIMER START CARBURETOR TROUBLESHOOTING ENGINE STARTS HARD ENGINE RUNS RICH ENGINE RUNS LEAN FUEL LEAKS FROM CARBURETOR LAWN-BOY V-ENGINE SERVICE MANUAL Table of Contents – Page 2 of 2 SECTION 3 FUEL SYSTEM FUEL
    [Show full text]
  • Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY
    Wärtsilä 32 PRODUCT GUIDE © Copyright by WÄRTSILÄ FINLAND OY COPYRIGHT © 2021 by WÄRTSILÄ FINLAND OY All rights reserved. No part of this booklet may be reproduced or copied in any form or by any means (electronic, mechanical, graphic, photocopying, recording, taping or other information retrieval systems) without the prior written permission of the copyright owner. THIS PUBLICATION IS DESIGNED TO PROVIDE AN ACCURATE AND AUTHORITATIVE INFORMATION WITH REGARD TO THE SUBJECT-MATTER COVERED AS WAS AVAILABLE AT THE TIME OF PRINTING. HOWEVER, THE PUBLICATION DEALS WITH COMPLICATED TECHNICAL MATTERS SUITED ONLY FOR SPECIALISTS IN THE AREA, AND THE DESIGN OF THE SUBJECT-PRODUCTS IS SUBJECT TO REGULAR IMPROVEMENTS, MODIFICATIONS AND CHANGES. CONSEQUENTLY, THE PUBLISHER AND COPYRIGHT OWNER OF THIS PUBLICATION CAN NOT ACCEPT ANY RESPONSIBILITY OR LIABILITY FOR ANY EVENTUAL ERRORS OR OMISSIONS IN THIS BOOKLET OR FOR DISCREPANCIES ARISING FROM THE FEATURES OF ANY ACTUAL ITEM IN THE RESPECTIVE PRODUCT BEING DIFFERENT FROM THOSE SHOWN IN THIS PUBLICATION. THE PUBLISHER AND COPYRIGHT OWNER SHALL UNDER NO CIRCUMSTANCES BE HELD LIABLE FOR ANY FINANCIAL CONSEQUENTIAL DAMAGES OR OTHER LOSS, OR ANY OTHER DAMAGE OR INJURY, SUFFERED BY ANY PARTY MAKING USE OF THIS PUBLICATION OR THE INFORMATION CONTAINED HEREIN. Wärtsilä 32 Product Guide Introduction Introduction This Product Guide provides data and system proposals for the early design phase of marine engine installations. For contracted projects specific instructions for planning the installation are always delivered. Any data and information herein is subject to revision without notice. This 1/2021 issue replaces all previous issues of the Wärtsilä 32 Project Guides. Issue Published Updates 1/2021 15.03.2021 Technical data updated.
    [Show full text]