Infectious Diseases of Costa Rica

Total Page:16

File Type:pdf, Size:1020Kb

Infectious Diseases of Costa Rica INFECTIOUS DISEASES OF COSTA RICA Stephen Berger, MD 2018 Edition Infectious Diseases of Costa Rica Copyright Infectious Diseases of Costa Rica - 2018 edition Stephen Berger, MD Copyright © 2018 by GIDEON Informatics, Inc. All rights reserved. Published by GIDEON Informatics, Inc, Los Angeles, California, USA. www.gideononline.com Cover design by GIDEON Informatics, Inc No part of this book may be reproduced or transmitted in any form or by any means without written permission from the publisher. Contact GIDEON Informatics at [email protected]. ISBN: 978-1-4988-1750-9 Visit www.gideononline.com/ebooks/ for the up to date list of GIDEON ebooks. DISCLAIMER Publisher assumes no liability to patients with respect to the actions of physicians, health care facilities and other users, and is not responsible for any injury, death or damage resulting from the use, misuse or interpretation of information obtained through this book. Therapeutic options listed are limited to published studies and reviews. Therapy should not be undertaken without a thorough assessment of the indications, contraindications and side effects of any prospective drug or intervention. Furthermore, the data for the book are largely derived from incidence and prevalence statistics whose accuracy will vary widely for individual diseases and countries. Changes in endemicity, incidence, and drugs of choice may occur. The list of drugs, infectious diseases and even country names will vary with time. Scope of Content Disease designations may reflect a specific pathogen (ie, Adenovirus infection), generic pathology (Pneumonia - bacterial) or etiologic grouping (Coltiviruses - Old world). Such classification reflects the clinical approach to disease allocation in the Infectious Diseases Module of the GIDEON web application. Similarly, a number of diseases which are generally diagnosed and treated outside of the field of Infectious Diseases are not included, despite the fact that a clear infectious etiology exists. Examples include Peptic ulcer, Creutzfeldt-Jakob disease, Human papillomavirus infections, etc. In contrast, a number of other entities of unknown etiology which do present to Infectious Diseases specialists have been included: Kawasaki's disease, Chronic fatigue syndrome, Kikuchi and Kimura diseases. Several minor infections having minimal relevance to the field of Infectious Diseases are not covered: Paronychia, Otitis externa, etc. © 2018 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 2 of 328 Infectious Diseases of Costa Rica Introduction: The GIDEON e-book series Infectious Diseases of Costa Rica is one in a series of GIDEON ebooks which summarize the status of Infectious diseases, Drugs, Vaccines and Pathogens in every country of the world. Chapters are arranged alphabetically, by disease name. Each section is divided into three sub-sections: 1. Descriptive epidemiology 2. Status of the disease in Costa Rica 3. References The initial items in the first section, Descriptive epidemiology, are defined as follows: Agent Classification (e.g., virus, parasite) and taxonomic designation. Reservoir Any animal, arthropod, plant, soil or substance in which an infectious agent normally lives and multiplies, on which it depends primarily for survival, and where it reproduces itself in such a manner that it can be transmitted to a susceptible host. Vector An arthropod or other living carrier which transports an infectious agent from an infected organism or reservoir to a susceptible individual or immediate surroundings. Vehicle The mode of transmission for an infectious agent. This generally implies a passive and inanimate (i.e., non-vector) mode. A chapter outlining the routine vaccination schedule of Costa Rica follows the diseases chapters. Content There are 357 generic infectious diseases in the world today. 224 of these are endemic, or potentially endemic, to Costa Rica. A number of other diseases are not relevant to Costa Rica and have not been included in this book. In addition to endemic diseases, we have included all published data regarding imported diseases and infection among expatriates from Costa Rica. Sources Data are based on the GIDEON web application (www.gideononline.com) which relies on standard text books, peer- review journals, Health Ministry reports and ProMED, supplemented by an ongoing search of the medical literature. The availability and quality of literature regarding specific infectious diseases vary from country to country. As such, you may find that many of the sections in this book are limited to a general discussion of the disease itself - with no data regarding Costa Rica. This is a book about the geography and epidemiology of Infection. Comprehensive and up-to-date information regarding the causes, diagnosis and treatment of each disease is available in the GIDEON web application. Many of the diseases are generic. For example, such designations as Pneumonia bacterial and Urinary tract infection include a number of individual diseases. These appear under the subheading, Synonyms, listed under each disease. Exploring Outbreaks and Surveys Outbreak and survey charts are designed to allow users to quickly scan and compare publications according to year, setting, number of cases / deaths, affected population and other parameters. Linked references are displayed where available. Parallel charts in the GIDEON web app allow for sorting within columns. In the following example, data are displayed alphabetically by outbreak setting or region. © 2018 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 3 of 328 Infectious Diseases of Costa Rica We welcome feedback, and will be pleased to add any relevant, sourced material. Email us at [email protected] For more information about GIDEON see the section About GIDEON and visit www.gideononline.com Last updated: February 14, 2018 © 2018 GIDEON Informatics, Inc. www.gideononline.com All Rights Reserved. Page 4 of 328 Infectious Diseases of Costa Rica Table of Contents Introduction: The GIDEON e-book series ......................... 3 Cytomegalovirus infection.............................................68 Acanthocephalan infections ............................................ 8 Dengue+ ....................................................................69 Actinomycosis .............................................................. 9 Dermatophytosis+ .......................................................73 Adenovirus infection ................................................... 10 Dientamoeba fragilis infection .......................................75 + Aeromonas and marine Vibrio infx. .............................. 11 Diphtheria+ ................................................................76 Amoeba - free living+.................................................. 12 Diphyllobothriasis ........................................................78 Amoebiasis+ .............................................................. 14 Dipylidiasis .................................................................79 Amoebic abscess+ ...................................................... 15 Dirofilariasis+..............................................................80 Angiostrongyliasis - abdominal+ ................................... 16 Eastern equine encephalitis* .........................................81 Animal bite-associated infection ................................... 17 Echinococcosis - American polycystic+............................82 Anisakiasis ................................................................ 18 Echinococcosis - unilocular+..........................................83 + Anthrax ................................................................... 19 Ehrlichiosis - human monocytic+....................................84 Ascariasis+ ................................................................ 22 Endocarditis - infectious ...............................................86 Aspergillosis .............................................................. 23 Enterobiasis+ ..............................................................87 Bacillary angiomatosis................................................. 24 Enterovirus infection+ ..................................................88 + Bacillus cereus food poisoning .................................... 25 Entomophthoramycosis ................................................90 Bacterial vaginosis...................................................... 26 Epidural abscess .........................................................91 Balantidiasis .............................................................. 27 Erysipelas or cellulitis...................................................92 Bartonellosis - cat borne.............................................. 28 Erysipeloid .................................................................93 Bartonellosis - other systemic+..................................... 29 Erythrasma ................................................................94 Baylisascariasis*......................................................... 30 Escherichia coli diarrhea+ .............................................95 Blastocystis hominis infection....................................... 31 Fascioliasis+ ...............................................................96 Borna virus encephalitis .............................................. 32 Filariasis - Bancroftian+ ................................................97 + Botulism .................................................................
Recommended publications
  • Vectorborne Transmission of Leishmania Infantum from Hounds, United States
    Vectorborne Transmission of Leishmania infantum from Hounds, United States Robert G. Schaut, Maricela Robles-Murguia, and Missouri (total range 21 states) (12). During 2010–2013, Rachel Juelsgaard, Kevin J. Esch, we assessed whether L. infantum circulating among hunting Lyric C. Bartholomay, Marcelo Ramalho-Ortigao, dogs in the United States can fully develop within sandflies Christine A. Petersen and be transmitted to a susceptible vertebrate host. Leishmaniasis is a zoonotic disease caused by predomi- The Study nantly vectorborne Leishmania spp. In the United States, A total of 300 laboratory-reared female Lu. longipalpis canine visceral leishmaniasis is common among hounds, sandflies were allowed to feed on 2 hounds naturally in- and L. infantum vertical transmission among hounds has been confirmed. We found thatL. infantum from hounds re- fected with L. infantum, strain MCAN/US/2001/FOXY- mains infective in sandflies, underscoring the risk for human MO1 or a closely related strain. During 2007–2011, the exposure by vectorborne transmission. hounds had been tested for infection with Leishmania spp. by ELISA, PCR, and Dual Path Platform Test (Chembio Diagnostic Systems, Inc. Medford, NY, USA (Table 1). L. eishmaniasis is endemic to 98 countries (1). Canids are infantum development in these sandflies was assessed by Lthe reservoir for zoonotic human visceral leishmani- dissecting flies starting at 72 hours after feeding and every asis (VL) (2), and canine VL was detected in the United other day thereafter. Migration and attachment of parasites States in 1980 (3). Subsequent investigation demonstrated to the stomodeal valve of the sandfly and formation of a that many US hounds were infected with Leishmania infan- gel-like plug were evident at 10 days after feeding (Figure tum (4).
    [Show full text]
  • Leishmania Tropica–Induced Cutaneous and Presumptive Concomitant Viscerotropic Leishmaniasis with Prolonged Incubation
    OBSERVATION Leishmania tropica–Induced Cutaneous and Presumptive Concomitant Viscerotropic Leishmaniasis With Prolonged Incubation Francesca Weiss, BS; Nicholas Vogenthaler, MD, MPH; Carlos Franco-Paredes, MD; Sareeta R. S. Parker, MD Background: Leishmaniasis includes a spectrum of dis- studies were highly suggestive of concomitant visceral eases caused by protozoan parasites belonging to the ge- involvement. The patient was treated with a 28-day course nus Leishmania. The disease is traditionally classified into of intravenous pentavalent antimonial compound so- visceral, cutaneous, or mucocutaneous leishmaniasis, de- dium stibogluconate with complete resolution of her sys- pending on clinical characteristics as well as the species temic signs and symptoms and improvement of her pre- involved. Leishmania tropica is one of the causative agents tibial ulcerations. of cutaneous leishmaniasis, with a typical incubation pe- riod of weeks to months. Conclusions: This is an exceptional case in that our pa- tient presented with disease after an incubation period Observation: We describe a 17-year-old Afghani girl of years rather than the more typical weeks to months. who had lived in the United States for 4 years and who In addition, this patient had confirmed cutaneous in- presented with a 6-month history of pretibial ulcer- volvement, as well as strong evidence of viscerotropic dis- ations, 9.1-kg weight loss, abdominal pain, spleno- ease caused by L tropica, a species that characteristically megaly, and extreme fatigue. Histopathologic examina- displays dermotropism, not viscerotropism. tion and culture with isoenzyme electrophoresis speciation of her skin lesions confirmed the presence of L tropica. In addition, results of serum laboratory and serological Arch Dermatol.
    [Show full text]
  • Effectiveness of Neem Oil Upon Pediculosis
    EFFECTIVENESS OF NEEM OIL UPON PEDICULOSIS By LINCY ISSAC A DISSERTATION SUBMITTED TO THE TAMILNADU DR.M.G.R.MEDICAL UNIVERSITY, CHENNAI, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NURSING MARCH 2011 EFFECTIVENESS OF NEEM OIL UPON PEDICULOSIS Approved by the dissertation committee on :__________________________ Research Guide : __________________________ Dr. Latha Venkatesan M.Sc., (N), M.Phil., Ph.D., Principal and Professor in Nursing Apollo College of Nursing, Chennai -600 095 Clinical Guide : __________________________ Mrs. Shobana Gangadharan M.Sc., (N), Professor Community Health Nursing Apollo College of Nursing, Chennai -600 095. Medical Guide : __________________________ Dr.Mathrubootham Sridhar M.R.C.P.C.H.(Paed)., Consultant –Paediatrician, Apollo Childrens Hospitals, Chennai -600 006 A DISSERTATION SUBMITTED TO THE TAMILNADU DR.M.G.R.MEDICAL UNIVERSITY, CHENNAI, IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN NURSING MARCH 2011 DECLARATION I hereby declare that the present dissertation entitled “Effectiveness Of Neem Oil Upon Pediculosis” is the outcome of the original research work undertaken and carried out by me, under the guidance of Dr.Latha Venkatesan., M.Sc (N)., M.Phil., Ph.D., Principal and Mrs.Shobana G, M.Sc (N)., Professor, Community Health Nursing, Apollo College Of Nursing, Chennai. I also declare that the material of this has not formed in anyway, the basis for the award of any degree or diploma in this University or any other Universities. ACKNOWLEDGEMENT I thank God Almighty for being with me and guiding me throughout my Endeavour and showering His profuse blessings in each and every step to complete the dissertation.
    [Show full text]
  • Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected]
    Florida International University FIU Digital Commons FIU Electronic Theses and Dissertations University Graduate School 11-6-2015 Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1 Mansi Sharma Florida International University, [email protected] DOI: 10.25148/etd.FIDC000197 Follow this and additional works at: https://digitalcommons.fiu.edu/etd Part of the Parasitology Commons Recommended Citation Sharma, Mansi, "Regulatory mechanisms of Leishmania Aquaglyceroporin AQP1" (2015). FIU Electronic Theses and Dissertations. 2300. https://digitalcommons.fiu.edu/etd/2300 This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU Digital Commons. For more information, please contact [email protected]. FLORIDA INTERNATIONAL UNIVERSITY Miami, Florida REGULATORY MECHANISMS OF LEISHMANIA AQUAGLYCEROPORIN AQP1 A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BIOLOGY by Mansi Sharma 2015 To: Dean Michael R. Heithaus College of Arts and Sciences This dissertation, written by Mansi Sharma, and entitled, Regulatory Mechanisms of Leishmania Aquaglyceroporin AQP1, having been approved in respect to style and intellectual content, is referred to you for judgment. We have read this dissertation and recommend that it be approved. _______________________________________ Lidia Kos _____________________________________ Kathleen
    [Show full text]
  • Cutaneous Leishmaniasis Due to Leishmania (Viannia) Panamensis in Two Travelers Successfully Treated with Miltefosine
    Am. J. Trop. Med. Hyg., 103(3), 2020, pp. 1081–1084 doi:10.4269/ajtmh.20-0086 Copyright © 2020 by The American Society of Tropical Medicine and Hygiene Case Report: Cutaneous Leishmaniasis due to Leishmania (Viannia) panamensis in Two Travelers Successfully Treated with Miltefosine S. Mann,1* T. Phupitakphol,1 B. Davis,2 S. Newman,3 J. A. Suarez,4 A. Henao-Mart´ınez,1 and C. Franco-Paredes1,5 1Division of Infectious Diseases, University of Colorado School of Medicine, Aurora, Colorado; 2Division of Pathology, University of Colorado School of Medicine, Aurora, Colorado; 3Division of Dermatology, University of Colorado School of Medicine, Aurora, Colorado; 4Gorgas Memorial Institute of Tropical Medicine, Panama ´ City, Panama; ´ 5Hospital Infantil de Mexico, ´ Federico Gomez, ´ Mexico ´ City, Mexico ´ Abstract. We present two cases of Leishmania (V) panamensis in returning travelers from Central America suc- cessfully treated with miltefosine. The couple presented with ulcerative skin lesions nonresponsive to antibiotics. Skin biopsy with polymerase chain reaction (PCR) revealed L. (V) panamensis. To prevent the development of mucosal disease and avoid the inconvenience of parental therapy, we treated both patients with oral miltefosine. We suggest that milte- fosine represents an important therapeutic alternative in the treatment of cutaneous lesions caused by L. panamensis and in preventing mucosal involvement. A 31-old-man and a 30-year-old woman traveled to Costa Because of the presence of a thick fibrous scar at the ul- Rica for their honeymoon. They visited many regions of this cerative lesion border, we recommended a short course of country and participated in hiking, rafting, and camping.
    [Show full text]
  • Relevance of Epidemiological Surveillance in Travelers: an Imported Case of Leishmania Tropica in Mexico
    CASE REPORT http://doi.org/10.1590/S1678-9946202062041 Relevance of epidemiological surveillance in travelers: an imported case of Leishmania tropica in Mexico Edith Araceli Fernández-Figueroa 1,2, Sokani Sánchez-Montes 2, Haydee Miranda-Ortíz 3, Alfredo Mendoza-Vargas 3, Rocely Cervantes-Sarabia4, Roberto Alejandro Cárdenas-Ovando 5, Adriana Ruiz-Remigio4, Ingeborg Becker 2,4 ABSTRACT We report the case of a patient with cutaneous leishmaniasis who showed a rapidly progressing ulcerative lesion after traveling to multiple countries where different Leishmania species are endemic. Diagnosis of Leishmania tropica, an exotic species in Mexico was established by using serological and molecular tools. KEYWORDS: Leishmania tropica. Molecular epidemiology. Local cutaneous leishmaniasis. Travel medicine. 1Instituto Nacional de Medicina Genómica, Departamento de Genómica Poblacional, Genómica Computacional e Integrativa, Ciudad de México, Mexico INTRODUCTION 2Universidad Nacional Autónoma de México, Facultad de Medicina, Unidad de Human cutaneous leishmaniasis is a zoonotic emerging tropical disease caused Investigación en Medicina Experimental, by 20 species of flagellated protozoa of the genus Leishmania, generating 150,000 Centro de Medicina Tropical, Ciudad de new human cases per year, that are distributed across 98 countries throughout the Old México, Mexico World and the New World1-3. Most of the Old World cases are caused by Leishmania 3Instituto Nacional de Medicina Genómica, aethiopica, Leishmania infantum, Leishmania major and Leishmania
    [Show full text]
  • “Candidatus Deianiraea Vastatrix” with the Ciliate Paramecium Suggests
    bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The extracellular association of the bacterium “Candidatus Deianiraea vastatrix” with the ciliate Paramecium suggests an alternative scenario for the evolution of Rickettsiales 5 Castelli M.1, Sabaneyeva E.2, Lanzoni O.3, Lebedeva N.4, Floriano A.M.5, Gaiarsa S.5,6, Benken K.7, Modeo L. 3, Bandi C.1, Potekhin A.8, Sassera D.5*, Petroni G.3* 1. Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università 10 degli studi di Milano, Milan, Italy 2. Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint-Petersburg, Russia 3. Dipartimento di Biologia, Università di Pisa, Pisa, Italy 4 Centre of Core Facilities “Culture Collections of Microorganisms”, Saint Petersburg State 15 University, Saint Petersburg, Russia 5. Dipartimento di Biologia e Biotecnologie, Università degli studi di Pavia, Pavia, Italy 6. UOC Microbiologia e Virologia, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy 7. Core Facility Center for Microscopy and Microanalysis, Saint Petersburg State University, Saint- Petersburg, Russia 20 8. Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint- Petersburg, Russia * Corresponding authors, contacts: [email protected] ; [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/479196; this version posted November 27, 2018.
    [Show full text]
  • The Clinical Features of Smallpox
    CHAPTER 1 THE CLINICAL FEATURES OF SMALLPOX Contents Page Introduction 2 Varieties of smallpox 3 The classification of clinical types of variola major 4 Ordinary-type smallpox 5 The incubation period 5 Symptoms of the pre-eruptive stage 5 The eruptive stage 19 Clinical course 22 Grades of severity 22 Modified-type smallpox 22 Variola sine eruptione 27 Subclinical infection with variola major virus 30 Evidence from viral isolations 30 Evidence from serological studies 30 Flat-type smallpox 31 The rash 31 Clinical course 32 Haemorrhagic-type smallpox 32 General features 32 Early haemorrhagic-type smallpox 37 Late haemorrhagic-type smallpox 38 Variola minor 38 Clinical course 38 Variola sine eruptione and subclinical infection 40 Smallpox acquired by unusual routes of infection 40 Inoculation variola and variolation 40 Congenital smallpox 42 Effects of vaccination on the clinical course of smallpox 42 Effects of vaccination on toxaemia 43 Effects of vaccination on the number of lesions 43 Effects of vaccination on the character and evolution of the rash 43 Effects of vaccination in variola minor 44 Laboratory findings 44 Virological observations 44 Serological observations 45 Haematological observations 46 1 2 SMALLPOX AND ITS ERADICATION Page Complications 47 The skin 47 Ocular system 47 Joints and bones 47 Respiratory system 48 Gastrointestinal system 48 Genitourinary system 49 Central nervous system 49 Sequelae 49 Pockmarks 49 Blindness 50 Limb deformities 50 Prognosis of variola major 50 Calculation of case-fatality rates 50 Effects
    [Show full text]
  • Survey of Antibodies to Trypanosoma Cruzi and Leishmania Spp. in Gray and Red Fox Populations from North Carolina and Virginia Author(S): Alexa C
    Survey of Antibodies to Trypanosoma cruzi and Leishmania spp. in Gray and Red Fox Populations From North Carolina and Virginia Author(s): Alexa C. Rosypal , Shanesha Tripp , Samantha Lewis , Joy Francis , Michael K. Stoskopf , R. Scott Larsen , and David S. Lindsay Source: Journal of Parasitology, 96(6):1230-1231. 2010. Published By: American Society of Parasitologists DOI: http://dx.doi.org/10.1645/GE-2600.1 URL: http://www.bioone.org/doi/full/10.1645/GE-2600.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. J. Parasitol., 96(6), 2010, pp. 1230–1231 F American Society of Parasitologists 2010 Survey of Antibodies to Trypanosoma cruzi and Leishmania spp. in Gray and Red Fox Populations From North Carolina and Virginia Alexa C. Rosypal, Shanesha Tripp, Samantha Lewis, Joy Francis, Michael K. Stoskopf*, R. Scott Larsen*, and David S.
    [Show full text]
  • Fleas and Flea-Borne Diseases
    International Journal of Infectious Diseases 14 (2010) e667–e676 Contents lists available at ScienceDirect International Journal of Infectious Diseases journal homepage: www.elsevier.com/locate/ijid Review Fleas and flea-borne diseases Idir Bitam a, Katharina Dittmar b, Philippe Parola a, Michael F. Whiting c, Didier Raoult a,* a Unite´ de Recherche en Maladies Infectieuses Tropicales Emergentes, CNRS-IRD UMR 6236, Faculte´ de Me´decine, Universite´ de la Me´diterrane´e, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France b Department of Biological Sciences, SUNY at Buffalo, Buffalo, NY, USA c Department of Biology, Brigham Young University, Provo, Utah, USA ARTICLE INFO SUMMARY Article history: Flea-borne infections are emerging or re-emerging throughout the world, and their incidence is on the Received 3 February 2009 rise. Furthermore, their distribution and that of their vectors is shifting and expanding. This publication Received in revised form 2 June 2009 reviews general flea biology and the distribution of the flea-borne diseases of public health importance Accepted 4 November 2009 throughout the world, their principal flea vectors, and the extent of their public health burden. Such an Corresponding Editor: William Cameron, overall review is necessary to understand the importance of this group of infections and the resources Ottawa, Canada that must be allocated to their control by public health authorities to ensure their timely diagnosis and treatment. Keywords: ß 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved. Flea Siphonaptera Plague Yersinia pestis Rickettsia Bartonella Introduction to 16 families and 238 genera have been described, but only a minority is synanthropic, that is they live in close association with The past decades have seen a dramatic change in the geographic humans (Table 1).4,5 and host ranges of many vector-borne pathogens, and their diseases.
    [Show full text]
  • Characterization of a Leishmania Tropica Antigen That Detects Immune Responses in Desert Storm Viscerotropic Leishmaniasis Patients
    Proc. Natl. Acad. Sci. USA Vol. 92, pp 7981-7985, August 1995 Medical Sciences Characterization of a Leishmania tropica antigen that detects immune responses in Desert Storm viscerotropic leishmaniasis patients (parasite/diagnosis/repetitive epitope/subclass) DAVIN C. DILLON*t, CRAIG H. DAY*, JACQUELINE A. WHITTLE*, ALAN J. MAGILLt, AND STEVEN G. REED*t§ *Infectious Disease Research Institute, Seattle, WA 98104; and tWalter Reed Army Institute of Research, Washington, DC 20307 Communicated by Paul B. Beeson, Redmond, WA, April 5, 1995 ABSTRACT A chronic debilitating parasitic infection, An alternative diagnostic strategy is to identify and apply viscerotropic leishmaniasis (VTL), has been described in immunodominant recombinant antigens to increase assay sen- Operation Desert Storm veterans. Diagnosis of this disease, sitivity and specificity. We report herein the cloning, expres- caused by Leishmania tropica, has been difficult due to low or sion, and evaluation of an immunodominant L. tropica anti- absent specific immune responses in traditional assays. We genT capable ofboth specific antibody detection and elicitation report the cloning and characterization of two genomic frag- of interferon y (IFN-y) production in peripheral blood mono- ments encoding portions of a single 210-kDa L. tropica protein nuclear cells (PBMCs) from VTL patients. These results useful for the diagnosis ofVTL in U.S. military personnel. The demonstrate the danger of relying on crude immunological recombinant proteins encoded by these fragments, recombi- assays for the diagnosis of subtle, albeit serious, VTL in Desert nant (r) Lt-1 and rLt-2, contain a 33-amino acid repeat that Storm patients. reacts with sera from Desert Storm VTL patients and with sera from L.
    [Show full text]
  • Wildlife Diseases and Humans
    Robert G. McLean Chief, Vertebrate Ecology Section Medical Entomology & Ecology Branch WILDLIFE DISEASES Division of Vector-borne Infectious Diseases National Center for Infectious Diseases AND HUMANS Centers for Disease Control and Prevention Fort Collins, Colorado 80522 INTRODUCTION GENERAL PRECAUTIONS Precautions against acquiring fungal diseases, especially histoplasmosis, Diseases of wildlife can cause signifi- Use extreme caution when approach- should be taken when working in cant illness and death to individual ing or handling a wild animal that high-risk sites that contain contami- animals and can significantly affect looks sick or abnormal to guard nated soil or accumulations of animal wildlife populations. Wildlife species against those diseases contracted feces; for example, under large bird can also serve as natural hosts for cer- directly from wildlife. Procedures for roosts or in buildings or caves contain- tain diseases that affect humans (zoo- basic personal hygiene and cleanliness ing bat colonies. Wear protective noses). The disease agents or parasites of equipment are important for any masks to reduce or prevent the inhala- that cause these zoonotic diseases can activity but become a matter of major tion of fungal spores. be contracted from wildlife directly by health concern when handling animals Protection from vector-borne diseases bites or contamination, or indirectly or their products that could be infected in high-risk areas involves personal through the bite of arthropod vectors with disease agents. Some of the measures such as using mosquito or such as mosquitoes, ticks, fleas, and important precautions are: tick repellents, wearing special cloth- mites that have previously fed on an 1. Wear protective clothing, particu- ing, or simply tucking pant cuffs into infected animal.
    [Show full text]