Geosecs Indian Ocean Expedition

Total Page:16

File Type:pdf, Size:1020Kb

Geosecs Indian Ocean Expedition - GEOSECS INDIAN OCEAN EXPEDITION Volume 5 HYDROGRAPHIC DATA 1977-1978 By Ray F. Weiss, Wallace S. Broecker, Harmon Craig, Derek Spencer Sponsored by International Decade of Ocean Exploration National Science Foundation June 1983 GEOSECS SCIENTIFIC ADVISORY COMMITTEE COMPILATION OF ATLAS MATERIAL BY Arnold E. Bainbridge, Scripps Institution of Oceanography, Robert T. Williams GEOSECS Operations Group, Ex Officio Kristin M. Sanborn Pierre E. Biscaye, Lamont-Doherty Derek W. Spencer,* Woods Hole Geological Observatory Oceanographic Institution Peter G. Brewer, Woods Hole Henry M. Stommel, Massachusetts Oceanographic Institution Institute of Technology Wallace S. Broecker,* Lamont-Doherty Taro Takahashi, Lamont-Doherty Geological Observatory Geological Observatory Harmon Craig,* Scripps Institution of Karl K. Turekian, Yale University Oceanography Ray F. Weiss, Scripps Institution of John M. Edmond, Massachusetts Institute Oceanography of Technology Klaus Wyrtki, University of Hawaii Arnold Gordon, Lamont-Doherty Geological Observatory H. Gate Ostlund,* University of Miami * GEOSECS Executive Committee Joseph L. Reid, Scripps Institution of Oceanography For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C 20402 Stock Number 038-000-00525-1 Price $17.00 ii Contents Page FOREWORD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 V ACKNOWLEDGEMENTS 0 0 o o o o 0 0 0 0 0 o o o o o 0 0 0 0 o 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 vii INTRODUCTION 0 0 0 0 0 0 0 o o 0 o o o 0 0 o 0 0 o 0 0 o o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ix EXPEDITIONTRACK o o 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 o o o 0 o o o o o o o o o o o o o 0 0 o 0 0 o 0 0 0 0 0 0 xv PERSONNEL LIST o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o • 0 0 0 o o • o 0 0 xvii STATION AND CAST DESCRIPTION 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 xxi CHAPTER1-PRECISIONOFGEOSECSSHIPBOARDDATA o 00 0 000 o o 00 1 CHAPTER2-HYDROGRAPHICDATA 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 o o o o o o o o o 0 o o 9 CHAPTER3-CARBONATECHEMISTRY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 o o 0 o 29 CHAPTER4-RADONDATA 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 o o o o 0. o o 0 o o o o o 0 43 iii ARNOLD E. BAINBRIDGE December 16, 1930-February 27,1979 In memory of friendship and the pleasure of his company, in recognition of his many contributions to the GEOSECS program: This book, which is primarily the result of his efforts, is gratefully and affectionately dedicated by his colleagues and shipmates. iv Foreword The GEOSECS Program was conceived by a handful of far-sighted and the shoreside laboratory construction and improvements were geochemists and physical oceanographers in 1967. They successfully completed. The analytical goals were met or exceeded in all cases. organized their scientific colleagues, developed a solid scientific and The responsibilities for upgrading the shoreside laboratories were logistics plan, and carried out preliminary field work so that the Program assumed by the individual scientist at each institution. But, the respon­ was ready to begin simultaneously with the initiation of the International sibility for the shipboard equipment rested entirely with one man, Mr. Decade of Ocean Exploration in 1970. Arnold E. Bainbridge of the Scripps Institution of Oceanography. The The members of that original GEOSECS panel were as follows: oceanographic community owes Mr. Bainbridge and his highly skilled technicians who formed GEOSECS Operations Group a debt of gratitude Wallace S. Broecker, Lamont-Doherty Geological Observatory for their heroic efforts in preparation of the ships for the work to be done at Harmon Craig, Sci'ipps Institution of Oceanography sea, and for the excellence of the shipboard sampling and analyses. H. Gote Ostlund, University of Miami These Atlas volumes were compiled by Mr. Bainbridge and the other P. Kilho Park, Oregon State University GEOSECS scientists with the same care that typifies the collection and Joseph L. Reid, Scripps Institution of Oceanography analyses of samples. They are now ready to take their place in Derek W. Spencer, Woods Hole Oceanographic Institution oceanographic literature along with the volumes of the CHALLENGER and Henry M. Stommel, Massachusetts Institute of Technology METEOR. Taro Takahashi, Lamont-Doherty Geological Observatory TheN ational Science Foundation and, in particular, the International Karl K. Turekian, Yale University Decade of Ocean Exploration, is privileged to have played a role in this Herbert L. Volchok, Atomic Energy Commission historic venture. The objective of the program was "the study of the geochemical properties of the ocean with respect to large-scale circulations problems." The goals for measurement accuracies, which the scientists set for Feenan D. Jennings themselves, were so rigorous that each shipboard and shoreside laboratory Head, International Decade measurement was at the very forefront of the technology. Nevertheless, of Ocean Exploration within the eighteen months between the start of the program in January National Science Foundation 1971 and the start of the Atlantic transect in July 1972, the shipboard Washington, D.C. sampling and analytical tools were designed, constructed, and installed, May 1976 V Acknowledgements The idea of carrying out a cooperative ocean-wide survey of radioisotopes During the Atlantic and Pacific expeditions, Phyllis Laking of WHOI and geochemical tracers in the sea originated with Henry Stommel; he, served as Administrative Assistant to the Executive Committee. She George Veronis, and Klaus Wyrtki have provided advice, encouragement, handled proposals, organized meetings, filed the quarterly reports, and and strong support throughout the GEOSECS program. shouldered the most onerous burdens of the administrative program. With the exception of some early planning grants, funding for the For the Indian Ocean expedition, these responsibilities were assumed by program has been provided by the National Science Foundation Office of Barbara Stickney of RSMAS. Ms. Laking and Ms. Stickney were aided in International Decade of Ocean Exploration. Feenan Jennings, head of the their efforts by Ellen Coxe of LOGO; Sandra Tacoma, Kris Stewart, and NSF-IDOE office from 1971 to 1978, provided leadership, wisdom and Cathy Carrol of SIO; and Bruna Williams and Harry Grow of COG. advice that played a crucial role in the success of GEOSECS. During the Drs. P. M. Fye and W. Nierenberg, Directors of WHOI and SIO respec­ formative years of the program, funds were provided for planning by the tively, strongly encouraged the development of the GEOSECS proposal National Science Foundation (Oceanography Section) and the U.S. Atomic and contributed to the solution of many problems in planning and execution. Energy Commission (now Department of Energy). The assistance of Drs. Special praise goes to the staffs of Nimitz Marine Facilities at SIO and the Hugh McClellan and Charles Osterberg of these agencies is acknowledged Port Office and Shop Facilities at WHOI. Without the efforts and dedication with many thanks. of all these people and many others at both institutions, the GEOSECS Three test and calibration cruises were a very important part of the shipboard work would have been much more difficult. development of GEOSECS. During these early preparations, the GEOSECS Operations Group was ably assisted by John Goddard of LOGO, and Susan W. S. Broecker, LOGO Kadar and Peter Sachs of WHOI. Shale Niskin of General Oceanics, Inc. H. Craig, SIO provided designs, equipment, and cheerful assistance at sea on three cruises. D. W. Spencer, WHOI Credit for the development of the equipment used on the test cruises and H. G. Ostlund, RSMAS the major expeditions goes to many people. The principal role was taken Executive Committee, by Arnold Bainbridge, Project Director of the GEOSECS Operations Group. Geochemical Ocean Sections Study He personally supervised many aspects of instrument development and data flow from acquisition to final corrected and calibrated results. In all GEOSECS Operations Group-Analysts and Technicians this work he was assisted by Rick Ackermann, electronics engineer; Tom Digre and Jack Spiegelberg, computer programmers, Bob Williams and Arnold Mantyla, chief analysts, Len Cunningham, chief marine technician, Marie-Claude Beaupre Arnold W. Mantyla and Fred Dixon, development technician. These individuals, together with David L. 8os Norma L. Mantyla Matthew B. Christiansen Michael T. Morrione the other COG staff members, developed the most modern, versatile and Jacob C. Colbert Randall M. Ragan efficient seagoing data and sampling system ever used for geochemical and Leonard M. Cunningham Waiter A. Richter hydrographic studies of the ocean. Thomas J. Digre Kristin M. Sanborn The GEOSECS Indian Ocean Expedition was carried out aboard R/ V Timothy J.
Recommended publications
  • An Integrated Chemical and Stable-Isotope Model of the Origin of Midocean Ridge Hot Spring Systems
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 90, NO. B14, PAGES 12,583-12,606, DECEMBER 10, 1985 An Integrated Chemical and Stable-Isotope Model of the Origin of Midocean Ridge Hot Spring Systems TERESASUTER BOWERS 1 AND HUGH P. TAYLOR,JR. Division of Geologicaland Planetary Sciences,California Institute of Technology,Pasadena Chemical and isotopic changes accompanying seawater-basalt interaction in axial midocean ridge hydrothermal systemsare modeled with the aid of chemical equilibria and mass transfer computer programs,incorporating provision for addition and subtractionof a wide-range of reactant and product minerals, as well as cation and oxygen and hydrogen isotopic exchangeequilibria. The models involve stepwiseintroduction of fresh basalt into progressivelymodified seawater at discrete temperature inter- vals from 100ø to 350øC, with an overall water-rock ratio of about 0.5 being constrainedby an assumed •80,2 o at 350øCof +2.0 per mil (H. Craig,personal communication, 1984). This is a realisticmodel because:(1) the grade of hydrothermal metamorphism increasessharply downward in the oceanic crust; (2) the water-rock ratio is high (> 50) at low temperaturesand low (<0.5) at high temperatures;and (3) it allows for back-reaction of earlier-formed minerals during the course of reaction progress.The results closelymatch the major-elementchemistry (Von Damm et al., 1985) and isotopic compositions(Craig et al., 1980) of the hydrothermalsolutions presently emanating from ventsat 21øN on the East Pacific Rise. The calculatedsolution chemistry,for example, correctly predicts completeloss of Mg and SO,• and substantial increases in Si and Fe; however, discrepanciesexist in the predicted pH (5.5 versus 3.5 measured)and state of saturation of the solution with respectto greenschist-faciesminerals.
    [Show full text]
  • Sources of Variation in the Stable Isotopic Composition of Plants*
    CHAPTER 2 Sources of variation in the stable isotopic composition of plants* JOHN D. MARSHALL, J. RENÉE BROOKS, AND KATE LAJTHA Introduction The use of stable isotopes of carbon, nitrogen, oxygen, and hydrogen to study physiological processes has increased exponentially in the past three decades. When Harmon Craig (1953, 1954), a geochemist and early pioneer of natural abundance stable isotopes, fi rst measured isotopic values of plant materials, he found that plants tended to have a fairly narrow δ13C range of −25 to −35‰. In these initial surveys, he was unable to fi nd large taxonomic or environmental effects on these values. Since that time ecologists have identi- fi ed clear isotopic signatures based not only on different photosynthetic pathways, but also on ecophysiological differences, such as photosynthetic water-use effi ciency (WUE) and sources of water and nitrogen used. As large empirical databases have accumulated and our theoretical understanding of isotopic composition has improved, scientists have continued to discover mismatches between theoretical and observed values, as well as confounding effects from sources and factors not previously considered. In the best tradi- tion of science, these discoveries have led to important new insights into physiological or ecological processes, as well as new uses of stable isotopes in plant ecophysiology. This chapter reviews the most common applications of stable isotope analysis in plant ecophysiology. Carbon isotopes Photosynthetic pathways 13 Plants contain less C than the atmospheric CO2 on which they rely for photosynthesis. They are therefore “depleted” of 13C relative to the atmo- sphere. This depletion is caused by enzymatic and physical processes that discriminate against 13C in favor of 12C.
    [Show full text]
  • Biosphere: How Life Alters Climate
    THIS IS THE TEXT OF AN ESSAY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. AUGUST 2021. HYPERLINKS WITHIN THAT SITE ARE NOT INCLUDED IN THIS FILE. FOR AN OVERVIEW SEE THE BOOK OF THE SAME TITLE (HARVARD UNIV. PRESS, REV. ED. 2008). COPYRIGHT © 2003-2021 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS. Biosphere: How Life Alters Climate People had long speculated that the climate might be altered where forests were cut down, marshes drained or land irrigated. Scientists were skeptical. During the first half of the 20th century, they studied climate as a system of mechanical physics and mineral chemistry, churning along heedless of the planet’s thin film of living organisms. Then around 1960, evidence of a rise in carbon dioxide showed that at least one species, humanity, could indeed alter global climate. As scientists looked more deeply into how carbon moved in and out of the atmosphere, they discovered many ways that other organisms could also exert powerful influences. Forests in particular were deeply involved in the carbon cycle, and from the 1970s onward, scientists argued over just what deforestation might mean for climate. By the 1980s, it was certain that all the planet’s ecosystems were major players in the climate changes that would determine their own future. CARBON DIOXIDE AND THE BIOSPHERE (1938-1950S) - CAN PEOPLE CHANGE CLIMATE? - WHERE DOES THE CARBON GO? (1971-1980S) - METHANE (1979-1980S) - GAIA (1972-1980S) - GLOBAL WARMING FEEDBACKS “In our century the biosphere has acquired an entirely new meaning; it is being revealed as a planetary phenomenon of cosmic character.” — W.I.
    [Show full text]
  • Isotopic Composition of Diagenetic Carbonates in Marine Miocene Formations of California and Oregon
    Isotopic Composition of Diagenetic Carbonates in Marine Miocene Formations of California and Oregon GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-B Isotopic Composition of Diagenetic Carbonates in Marine Miocene Formations of California and Oregon By K. J. MURATA, IRVING FRIEDMAN, and BETH M. MADSEN SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 614-B A discussion of the isotopic composition of diagenetic carbonates i?i terms of chemical processes that operate in deeply buried marine sediments UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1969 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 45 cents (paper cover) CONTENTS Abstract .________________________________________ Bl Oxygen isotopic composition of dolomite_____________ B13 Introduction. _______________________________________ 1 Nature of formation water and its influence on oxygen Acknowledgments. _____________________________ 2 isotopic composition of dolomite._______________ 15 Mode of occurrence of diagenetic carbonate____________ 2 Dolomite with variable light carbon and independently Factors that control carbon and oxygen isotopic composi­ variable oxygen.______-___-__--___-_-_-_--______. 16 tion. ____________________________________________ 4 Dolomite with variable heavy carbon and relatively con­ Time and circumstance of diagenesis__________________ 5 stant heavy oxygen_______________________________
    [Show full text]
  • W. M. White Geochemistry Chapter 9: Stable Isotopes
    W. M. White Geochemistry Chapter 9: Stable Isotopes CHAPTER 9: STABLE ISOTOPE GEOCHEMISTRY 9.1 INTRODUCTION table isotope geochemistry is concerned with variations of the isotopic compositions of elements arising from physicochemical processes rather than nuclear processes. Fractionation* of the iso- S topes of an element might at first seem to be an oxymoron. After all, in the last chapter we saw that the value of radiogenic isotopes was that the various isotopes of an element had identical chemical properties and therefore that isotope ratios such as 87Sr/86Sr are not changed measurably by chemical processes. In this chapter we will find that this is not quite true, and that the very small differences in the chemical behavior of different isotopes of an element can provide a very large amount of useful in- formation about chemical (both geochemical and biochemical) processes. The origins of stable isotope geochemistry are closely tied to the development of modern physics in the first half of the 20th century. The discovery of the neutron in 1932 by H. Urey and the demonstra- tion of variable isotopic compositions of light elements by A. Nier in the 1930’s and 1940’s were the precursors to this development. The real history of stable isotope geochemistry begins in 1947 with the publication of Harold Urey’s paper, “The Thermodynamic Properties of Isotopic Substances”, and Bigeleisen and Mayer’s paper “Calculation of equilibrium constants for isotopic exchange reactions”. Urey not only showed why, on theoretical grounds, isotope fractionations could be expected, but also suggested that these fractionations could provide useful geological information.
    [Show full text]
  • Eolss Sample Chapters
    GEOPHYSICS AND GEOCHEMISTRY - Vol.I - Geochemistry: Branches, Processes, Phenomena - Scott M. McLennan GEOCHEMISTRY: BRANCHES, PROCESSES, PHENOMENA Scott M. McLennan Department of Geosciences, State University of New York at Stony Brook, USA Keywords: Chemical elements, cosmochemistry, geochemical cycles, geochronology, isotopes, meteorites, Periodic table. Contents 1. Introduction 2. Historical Foundations of Geochemistry 3. Branches of Geochemistry 4. The Data of Geochemistry 5. Cosmochemistry: Where Geochemistry Begins 6. The Periodic Table: a Geochemical Perspective 7. Isotopes, Reservoirs, and Ages 8. Geochemical Cycles 9. The future of Geochemistry Glossary Bibliography Biographical Sketch Summary Geochemistry is concerned with understanding the distribution and cycling of the chemical elements, and their isotopes, throughout nature. It is of fundamental importance to understanding the earth and planetary sciences on a variety of both theoretical and applied levels. Accordingly, geochemistry is a highly inter-disciplinary subject and addresses problems across a broad range of the sciences, such as geology, astronomy, planetary sciences, physics, chemistry, biology, material sciences, and others. The discipline has its origins in alchemy and early metallurgy but rapidly evolved into a modern science with the discovery of the chemical elements and their properties. Geochemistry, and the closely affiliated sub-discipline of cosmochemistry, is studied through a wide variety of theoretical, experimental, and analytical methods. The subject has evolved from a substantially descriptive to a highly quantitative and predictiveUNESCO discipline. For the future, geochemistry– EOLSS will continue to contribute to our understanding of fundamental questions regarding the origin and evolution of the earth and planets andSAMPLE increasingly will play an im portantCHAPTERS role in many of the environmental issues facing humankind.
    [Show full text]
  • A Comprehensive Global Oceanic Dataset of Helium Isotope and Tritium Measurements
    Earth Syst. Sci. Data, 11, 441–454, 2019 https://doi.org/10.5194/essd-11-441-2019 © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. A comprehensive global oceanic dataset of helium isotope and tritium measurements William J. Jenkins1, Scott C. Doney1,a, Michaela Fendrock1, Rana Fine2, Toshitaka Gamo3, Philippe Jean-Baptiste4, Robert Key5, Birgit Klein6, John E. Lupton7, Robert Newton8, Monika Rhein9, Wolfgang Roether9, Yuji Sano3, Reiner Schlitzer10, Peter Schlosser8,b, and Jim Swift11 1Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA 2RSMAS, University of Miami, Miami, Florida 33149, USA 3Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan 4LSCE, CEA-CNRS-UVSQ, CEA/Saclay, 91191 Gif-sur-Yvette CEDEX, France 5Princeton University, Princeton, New Jersey, USA 6BSH, 20359 Hamburg, Germany 7NOAA Pacific Marine Environmental Laboratory, Newport, Oregon, USA 8LDEO, Columbia University, Palisades, New York, USA 9IUP, University of Bremen, 28359 Bremen, Germany 10Alfred Wegener Institute, 27568 Bremerhaven, Germany 11SIO, University of California San Diego, La Jolla, California, USA anow at: University of Virginia, Charlottesville, Virginia 22904, USA bnow at: Arizona State University, Tucson, Arizona, USA Correspondence: William J. Jenkins ([email protected]) Received: 29 October 2018 – Discussion started: 14 November 2018 Revised: 13 March 2019 – Accepted: 19 March 2019 – Published: 5 April 2019 Abstract. Tritium and helium isotope data provide key information on ocean circulation, ventilation, and mix- ing, as well as the rates of biogeochemical processes and deep-ocean hydrothermal processes. We present here global oceanic datasets of tritium and helium isotope measurements made by numerous researchers and lab- oratories over a period exceeding 60 years.
    [Show full text]
  • Biosphere: How Life Alters Climate
    THIS IS THE TEXT OF AN ESSAY IN THE WEB SITE “THE DISCOVERY OF GLOBAL WARMING” BY SPENCER WEART, HTTP://WWW.AIP.ORG/HISTORY/CLIMATE. JULY 2007. HYPERLINKS WITHIN THAT SITE ARE NOT INCLUDED IN THIS FILE. FOR AN OVERVIEW SEE THE BOOK OF THE SAME TITLE (HARVARD UNIV. PRESS, 2003). COPYRIGHT © 2003-2007 SPENCER WEART & AMERICAN INSTITUTE OF PHYSICS. Biosphere: How Life Alters Climate People had long speculated that the climate might be altered where forests were cut down, marshes drained or land irrigated. Scientists were skeptical. During the first half of the 20th century, they studied climate as a system of mechanical physics and mineral chemistry, churning along heedless of the planet’s thin film of living organisms. Then around 1960, evidence of a rise in carbon dioxide showed that at least one species, could indeed alter global climate—humanity. As scientists looked more deeply into how carbon moved in and out of the atmosphere, they discovered many ways that other organisms could also exert powerful influences. Forests in particular were deeply involved in the carbon cycle, and from the 1970s onward, scientists argued over just what deforestation might mean for climate. By the 1980s, it was certain that all the planet’s ecosystems were major players in the climate changes that would determine their own future. This essay includes separate sections on the Controversy over the Carbon Budget, Methane and the Gaia Hypothesis. “In our century the biosphere has acquired an entirely new meaning; it is being revealed as a planetary phenomenon of cosmic character.” — W.I.
    [Show full text]
  • The Geochemistry of the Stable Carbon Isotopes* HARMONCRAIG
    GeocIdmica et Cosmochimica Acta, 1953, \*01.3, pp. 53 to 92. Pe?gsm~n Press Ltd.‘ London The geochemistry of the stable carbon isotopes* HARMONCRAIG Department of Geology and Institute for Nuclear Studies, University of Chicago (Received 25 May 1952) ABSTRACT Several hundred samples of carbon from various geologic sources have been analyzed in a new survc~ of the variation of the ratio B3jW in nature. Mass spectrometric determinations were made on the in- struments developed by H. C. UREY and his co-workers utilizing two complete feed systems with mag- netic switching to determine small differences in isotope ratios between samples and a standard gas. With this procedure variations of the ratio O9/C1z can be determined with an accuracy of + O-019b of the ratio. The results confirm previous work with a few exceptions. The range of variation in the ratio is 4.59b. Terrestrial organic carbon and carbonate rocks constitute two well defined groups, tho carbonates being richer in Us by some 2%. Marine organic carbon lies in a range intermediate between these groups. Atmospheric CO, is richer in 03 than w&s formerly believed. Fossil wood, coal, and limestones show no correlation of 03/cL2 ratio with age. If petroleum is of marine organic origin a considerable change in isotopic composition has probably occurred. Such a change seems to heve occurred in carbon from black shales and carbonaceous schists. Samples of graphites, diamonds, igneous rocks, and gases from Tellow- atone Park have been analyzed, The origin of graphite cannot be determined from C1s/C1zratios. The terrestrial distribution of carbon isotopes between igneous rocks and sediments is discussed with reference to the available meteoritic determinations.
    [Show full text]
  • Contents 2.1 Overview
    Chapter 2 TERMINOLOGY, STANDARDS AND MASS SPECTROMETRY Contents 2.1 Overview ....................................................................................................................... 1 2.2 Isotopes, Isotopologues, Isotopomers, and Mass Isotopomers ..................................... 1 2.2.1 ‘Isotope’ vs. ‘Isotopic’ ........................................................................................... 2 2.3 The Delta Value ............................................................................................................ 2 2.4 The Fractionation Factor ........................................................................................... 8 2.5 1000ln, , and the Value ....................................................................................... 10 2.6 Reference Standards.................................................................................................... 12 2.6.1 Hydrogen.............................................................................................................. 13 2.6.2 Carbon .................................................................................................................. 17 2.6.3 Nitrogen ............................................................................................................... 17 2.6.4 Oxygen ................................................................................................................. 18 2.6.5 Sulfur...................................................................................................................
    [Show full text]
  • Dr. Harvey A. Itano, Dr. Harmon Craig and Dr. John Miles Elected to Membership in the National Academy of Sciences
    Dr. Harvey A. Itano, Dr. Harmon Craig and Dr. John Miles elected to membership in the National Academy of Sciences April 24, 1979 Three University of California, San Diego faculty members have been elected to membership in the National Academy of Sciences, one of the highest honors for any American scientist. They are Dr. Harvey A. Itano, professor of pathology with the School of Medicine; Dr. Harmon Craig, professor of geochemistry and oceanographer with Scripps Institution of Oceanography, and Dr. John Miles, professor of geophysics and fluid dynamics with the Institute of Geophysics and Planetary Physics. The three new members bring UC San Diego's total academy membership to 51. The ratio of members to total faculty is one of the highest, if not the highest, in the country. In all, 60 new members were elected today (Tuesday, April 24) at the academy's 116th annual meeting in Washington, D.C. Of those elected today, ten were from University of California campuses. In addition to the three UC San Diego members, five were elected from UC Berkeley, one elected from UCLA and one elected from Riverside. Chartered by President Abraham Lincoln, the academy is an independent group with the responsibility for advising and counseling the federal government on scientific and technical matters. Itano is known for his work with sickle cell anemia, an hereditary anemia. He was the co-discoverer, with Drs. Linus Pauling and Jonathan Singer, of the inherited abnormal hemoglobin S which causes sickle cell anemia and also the co-discoverer of hemoglobins C and E and the discoverer of hemoglobin D.
    [Show full text]
  • Helium Isotopes at the Rainbow Hydrothermal Site (Mid-Atlantic Ridge, 36°14'N)
    Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14’N) Philippe Jean-Baptiste, Elise Fourré, Jean-Luc Charlou, Christopher R. German, Joël Radford-Knoery To cite this version: Philippe Jean-Baptiste, Elise Fourré, Jean-Luc Charlou, Christopher R. German, Joël Radford- Knoery. Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14’N). Earth and Planetary Science Letters, Elsevier, 2004, 221 (1-4), pp.325-335. 10.1016/S0012-821X(04)00094- 9. hal-03116204 HAL Id: hal-03116204 https://hal.archives-ouvertes.fr/hal-03116204 Submitted on 24 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Helium isotopes at the Rainbow hydrothermal site (Mid-Atlantic Ridge, 36°14′N) Philippe Jean-Baptistea, Elise Fourréa, Jean-Luc Charloub, Christopher R. Germanc and Joel Radford-Knoeryb aIPSL/LSCE, UMR CEA-CNRS 1572, CE Saclay, 91191, Gif-sur-Yvette Cedex, France bIFREMER, DRO-GM, Centre de Brest, P.O. Box 70, 29280, Plouzané, France cSouthampton Oceanography Centre, Empress Dock, Southampton S014 3ZH, UK *: Corresponding author : Tel.: +33-169087714; Fax: +33-169087716 [email protected] Abstract: The 3He/4He ratio and helium concentration have been measured in the vent fluids and the dispersing plume of the Rainbow hydrothermal site, on the Mid-Atlantic Ridge (MAR).
    [Show full text]