Gradient-Based Learning Applied to Document Recognition

Total Page:16

File Type:pdf, Size:1020Kb

Gradient-Based Learning Applied to Document Recognition Gradient-Based Learning Applied to Document Recognition YANN LECUN, MEMBER, IEEE, LEON´ BOTTOU, YOSHUA BENGIO, AND PATRICK HAFFNER Invited Paper Multilayer neural networks trained with the back-propagation NN Neural network. algorithm constitute the best example of a successful gradient- OCR Optical character recognition. based learning technique. Given an appropriate network PCA Principal component analysis. architecture, gradient-based learning algorithms can be used to synthesize a complex decision surface that can classify RBF Radial basis function. high-dimensional patterns, such as handwritten characters, with RS-SVM Reduced-set support vector method. minimal preprocessing. This paper reviews various methods SDNN Space displacement neural network. applied to handwritten character recognition and compares them SVM Support vector method. on a standard handwritten digit recognition task. Convolutional TDNN Time delay neural network. neural networks, which are specifically designed to deal with the variability of two dimensional (2-D) shapes, are shown to V-SVM Virtual support vector method. outperform all other techniques. Real-life document recognition systems are composed of multiple modules including field extraction, segmentation, recognition, I. INTRODUCTION and language modeling. A new learning paradigm, called graph Over the last several years, machine learning techniques, transformer networks (GTN’s), allows such multimodule systems particularly when applied to NN’s, have played an increas- to be trained globally using gradient-based methods so as to ingly important role in the design of pattern recognition minimize an overall performance measure. Two systems for online handwriting recognition are described. systems. In fact, it could be argued that the availability Experiments demonstrate the advantage of global training, and of learning techniques has been a crucial factor in the the flexibility of graph transformer networks. recent success of pattern recognition applications such as A graph transformer network for reading a bank check is continuous speech recognition and handwriting recognition. also described. It uses convolutional neural network character The main message of this paper is that better pattern recognizers combined with global training techniques to provide record accuracy on business and personal checks. It is deployed recognition systems can be built by relying more on auto- commercially and reads several million checks per day. matic learning and less on hand-designed heuristics. This Keywords— Convolutional neural networks, document recog- is made possible by recent progress in machine learning nition, finite state transducers, gradient-based learning, graph and computer technology. Using character recognition as a transformer networks, machine learning, neural networks, optical case study, we show that hand-crafted feature extraction can character recognition (OCR). be advantageously replaced by carefully designed learning machines that operate directly on pixel images. Using NOMENCLATURE document understanding as a case study, we show that the traditional way of building recognition systems by manually GT Graph transformer. integrating individually designed modules can be replaced GTN Graph transformer network. by a unified and well-principled design paradigm, called HMM Hidden Markov model. GTN’s, which allows training all the modules to optimize HOS Heuristic oversegmentation. a global performance criterion. K-NN K-nearest neighbor. Since the early days of pattern recognition it has been known that the variability and richness of natural data, Manuscript received November 1, 1997; revised April 17, 1998. Y. LeCun, L. Bottou, and P. Haffner are with the Speech and Image be it speech, glyphs, or other types of patterns, make it Processing Services Research Laboratory, AT&T Labs-Research, Red almost impossible to build an accurate recognition system Bank, NJ 07701 USA. entirely by hand. Consequently, most pattern recognition Y. Bengio is with the Departement´ d’Informatique et de Recherche Operationelle,´ Universite´ de Montreal,´ Montreal,´ Quebec´ H3C 3J7 Canada. systems are built using a combination of automatic learning Publisher Item Identifier S 0018-9219(98)07863-3. techniques and hand-crafted algorithms. The usual method 0018–9219/98$10.00 © 1998 IEEE 2278 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 11, NOVEMBER 1998 character recognition (Sections I and II) and compare the performance of several learning techniques on a benchmark data set for handwritten digit recognition (Section III). While more automatic learning is beneficial, no learning technique can succeed without a minimal amount of prior knowledge about the task. In the case of multilayer NN’s, a good way to incorporate knowledge is to tailor its archi- tecture to the task. Convolutional NN’s [2], introduced in Section II, are an example of specialized NN architectures which incorporate knowledge about the invariances of two- dimensional (2-D) shapes by using local connection patterns Fig. 1. Traditional pattern recognition is performed with two modules: a fixed feature extractor and a trainable classifier. and by imposing constraints on the weights. A comparison of several methods for isolated handwritten digit recogni- tion is presented in Section III. To go from the recognition of individual characters to the recognition of words and of recognizing individual patterns consists in dividing the sentences in documents, the idea of combining multiple system into two main modules shown in Fig. 1. The first modules trained to reduce the overall error is introduced module, called the feature extractor, transforms the input in Section IV. Recognizing variable-length objects such as patterns so that they can be represented by low-dimensional handwritten words using multimodule systems is best done vectors or short strings of symbols that: 1) can be easily if the modules manipulate directed graphs. This leads to the matched or compared and 2) are relatively invariant with concept of trainable GTN, also introduced in Section IV. respect to transformations and distortions of the input pat- Section V describes the now classical method of HOS for terns that do not change their nature. The feature extractor recognizing words or other character strings. Discriminative contains most of the prior knowledge and is rather specific and nondiscriminative gradient-based techniques for train- to the task. It is also the focus of most of the design effort, ing a recognizer at the word level without requiring manual because it is often entirely hand crafted. The classifier, segmentation and labeling are presented in Section VI. on the other hand, is often general purpose and trainable. Section VII presents the promising space-displacement NN One of the main problems with this approach is that the approach that eliminates the need for segmentation heuris- recognition accuracy is largely determined by the ability of tics by scanning a recognizer at all possible locations on the designer to come up with an appropriate set of features. the input. In Section VIII, it is shown that trainable GTN’s This turns out to be a daunting task which, unfortunately, can be formulated as multiple generalized transductions must be redone for each new problem. A large amount of based on a general graph composition algorithm. The the pattern recognition literature is devoted to describing connections between GTN’s and HMM’s, commonly used and comparing the relative merits of different feature sets in speech recognition, is also treated. Section IX describes for particular tasks. a globally trained GTN system for recognizing handwriting Historically, the need for appropriate feature extractors entered in a pen computer. This problem is known as was due to the fact that the learning techniques used “online” handwriting recognition since the machine must by the classifiers were limited to low-dimensional spaces produce immediate feedback as the user writes. The core with easily separable classes [1]. A combination of three of the system is a convolutional NN. The results clearly factors has changed this vision over the last decade. First, demonstrate the advantages of training a recognizer at the availability of low-cost machines with fast arithmetic the word level, rather than training it on presegmented, units allows for reliance on more brute-force “numerical” hand-labeled, isolated characters. Section X describes a methods than on algorithmic refinements. Second, the avail- complete GTN-based system for reading handwritten and ability of large databases for problems with a large market machine-printed bank checks. The core of the system is and wide interest, such as handwriting recognition, has the convolutional NN called LeNet-5, which is described enabled designers to rely more on real data and less on in Section II. This system is in commercial use in the hand-crafted feature extraction to build recognition systems. NCR Corporation line of check recognition systems for the The third and very important factor is the availability banking industry. It is reading millions of checks per month of powerful machine learning techniques that can handle in several banks across the United States. high-dimensional inputs and can generate intricate decision functions when fed with these large data sets. It can be A. Learning from Data argued that the recent progress in the accuracy of speech There are several approaches to automatic machine learn- and handwriting recognition systems can
Recommended publications
  • Persian Handwritten Digit Recognition Using Combination of Convolutional Neural Network and Support Vector Machine Methods
    572 The International Arab Journal of Information Technology, Vol. 17, No. 4, July 2020 Persian Handwritten Digit Recognition Using Combination of Convolutional Neural Network and Support Vector Machine Methods Mohammad Parseh, Mohammad Rahmanimanesh, and Parviz Keshavarzi Faculty of Electrical and Computer Engineering, Semnan University, Iran Abstract: Persian handwritten digit recognition is one of the important topics of image processing which significantly considered by researchers due to its many applications. The most important challenges in Persian handwritten digit recognition is the existence of various patterns in Persian digit writing that makes the feature extraction step to be more complicated.Since the handcraft feature extraction methods are complicated processes and their performance level are not stable, most of the recent studies have concentrated on proposing a suitable method for automatic feature extraction. In this paper, an automatic method based on machine learning is proposed for high-level feature extraction from Persian digit images by using Convolutional Neural Network (CNN). After that, a non-linear multi-class Support Vector Machine (SVM) classifier is used for data classification instead of fully connected layer in final layer of CNN. The proposed method has been applied to HODA dataset and obtained 99.56% of recognition rate. Experimental results are comparable with previous state-of-the-art methods. Keywords: Handwritten Digit Recognition, Convolutional Neural Network, Support Vector Machine. Received January 1, 2019; accepted November 11, 2019 https://doi.org/10.34028/iajit/17/4/16 1. Introduction years, they are good alternatives to handcraft feature extraction method. Optical Character Recognition (OCR) is one of the attractive topics of Artificial Intelligence [3, 6, 15, 23, 24].
    [Show full text]
  • Advancements in Image Classification Using Convolutional Neural Network
    This paper has been accepted and presented on 2018 Fourth International Conference on Research in Computational Intelligence and Communication Networks. This is preprint version and original proceeding will be published in IEEE Xplore. Advancements in Image Classification using Convolutional Neural Network Farhana Sultana Abu Sufian Paramartha Dutta Department of Computer Science Department of Computer Science Department of CSS University of Gour Banga University of Gour Banga Visva-Bharati University West Bengal, India West Bengal, India West Bengal, India Email: [email protected] Email: sufi[email protected] Email: [email protected] Abstract—Convolutional Neural Network (CNN) is the state- LeCun et al. introduced the practical model of CNN [6] [7] of-the-art for image classification task. Here we have briefly and developed LeNet-5 [8]. Training by backpropagation [9] discussed different components of CNN. In this paper, We have algorithm helped LeNet-5 recognizing visual patterns from explained different CNN architectures for image classification. Through this paper, we have shown advancements in CNN from raw pixels directly without using any separate feature engi- LeNet-5 to latest SENet model. We have discussed the model neering mechanism. Also fewer connections and parameters description and training details of each model. We have also of CNN than conventional feedforward neural networks with drawn a comparison among those models. similar network size, made model training easier. But at that Keywords—AlexNet, Capsnet, Convolutional Neural Network, time in spite of several advantages, the performance of CNN Deep learning, DenseNet, Image classification, ResNet, SENet. in intricate problems such as classification of high-resolution image, was limited by the lack of large training data, lack of I.
    [Show full text]
  • Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
    Global Sparse Momentum SGD for Pruning Very Deep Neural Networks Xiaohan Ding 1 Guiguang Ding 1 Xiangxin Zhou 2 Yuchen Guo 1, 3 Jungong Han 4 Ji Liu 5 1 Beijing National Research Center for Information Science and Technology (BNRist); School of Software, Tsinghua University, Beijing, China 2 Department of Electronic Engineering, Tsinghua University, Beijing, China 3 Department of Automation, Tsinghua University; Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China 4 WMG Data Science, University of Warwick, Coventry, United Kingdom 5 Kwai Seattle AI Lab, Kwai FeDA Lab, Kwai AI platform [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] Abstract Deep Neural Network (DNN) is powerful but computationally expensive and memory intensive, thus impeding its practical usage on resource-constrained front- end devices. DNN pruning is an approach for deep model compression, which aims at eliminating some parameters with tolerable performance degradation. In this paper, we propose a novel momentum-SGD-based optimization method to reduce the network complexity by on-the-fly pruning. Concretely, given a global compression ratio, we categorize all the parameters into two parts at each training iteration which are updated using different rules. In this way, we gradually zero out the redundant parameters, as we update them using only the ordinary weight decay but no gradients derived from the objective function. As a departure from prior methods that require heavy human works to tune the layer-wise sparsity ratios, prune by solving complicated non-differentiable problems or finetune the model after pruning, our method is characterized by 1) global compression that automatically finds the appropriate per-layer sparsity ratios; 2) end-to-end training; 3) no need for a time-consuming re-training process after pruning; and 4) superior capability to find better winning tickets which have won the initialization lottery.
    [Show full text]
  • Arxiv:1907.08798V1 [Astro-Ph.SR] 20 Jul 2019 Keywords: Sun: Coronal Mass Ejections (Cmes) - Techniques: Image Processing
    Draft version July 23, 2019 Typeset using LATEX preprint style in AASTeX62 A New Automatic Tool for CME Detection and Tracking with Machine Learning Techniques Pengyu Wang,1 Yan Zhang,1 Li Feng,2 Hanqing Yuan,1 Yuan Gan,1 Shuting Li,2, 3 Lei Lu,2 Beili Ying,2, 3 Weiqun Gan,2 and Hui Li2 1Department of Computer Science and Technology, Nanjing University, 210023 Nanjing, China 2Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, 210034 Nanjing, China 3School of Astronomy and Space Science, University of Science and Technology of China, Hefei, Anhui 230026, China Submitted to ApJS ABSTRACT With the accumulation of big data of CME observations by coronagraphs, automatic detection and tracking of CMEs has proven to be crucial. The excellent performance of convolutional neural network in image classification, object detection and other com- puter vision tasks motivates us to apply it to CME detection and tracking as well. We have developed a new tool for CME Automatic detection and tracking with MachinE Learning (CAMEL) techniques. The system is a three-module pipeline. It is first a su- pervised image classification problem. We solve it by training a neural network LeNet with training labels obtained from an existing CME catalog. Those images containing CME structures are flagged as CME images. Next, to identify the CME region in each CME-flagged image, we use deep descriptor transforming to localize the common object in an image set. A following step is to apply the graph cut technique to finely tune the detected CME region.
    [Show full text]
  • Evaluation of CNN Models with Fashion MNIST Data
    Iowa State University Capstones, Theses and Creative Components Dissertations Summer 2019 Evaluation of CNN Models with Fashion MNIST Data Yue Zhang [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/creativecomponents Part of the Data Storage Systems Commons Recommended Citation Zhang, Yue, "Evaluation of CNN Models with Fashion MNIST Data" (2019). Creative Components. 364. https://lib.dr.iastate.edu/creativecomponents/364 This Creative Component is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Creative Components by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Evaluation of CNN Models with Fashion MNIST Data by Yue Zhang A report submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Minor: Statistics Program of Study Committee: Joseph Zambreno, Major Professor Alicia L Carriquiry Iowa State University Ames, Iowa 2019 Copyright c Yue Zhang, 2019. All rights reserved. ii TABLE OF CONTENTS Page LIST OF FIGURES......................................... iii ABSTRACT............................................. iv CHAPTER 1. INTRODUCTION.................................1 CHAPTER 2. BACKGROUND..................................2 CHAPTER 3. MODEL EXPLORATION.............................6 3.1 Kaggle Data.........................................6 3.2 Data Preparation......................................7 3.3 Training Data........................................8 3.4 Four Models for Training and Testing (Results and Analysis).............9 3.4.1 LeNet-5.......................................9 3.4.2 AlexNet-11.....................................9 3.4.3 VGG-16....................................... 10 3.4.4 ResNet-20...................................... 11 3.5 Comparing Results of Four Models...........................
    [Show full text]
  • Introduction to Machine Learning CMU-10701 Deep Learning
    Introduction to Machine Learning CMU-10701 Deep Learning Barnabás Póczos & Aarti Singh Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2 Contents Definition and Motivation History of Deep architectures Deep architectures Convolutional networks Deep Belief networks Applications 3 Deep architectures Defintion: Deep architectures are composed of multiple levels of non-linear operations, such as neural nets with many hidden layers. Output layer Hidden layers Input layer 4 Goal of Deep architectures Goal: Deep learning methods aim at . learning feature hierarchies . where features from higher levels of the hierarchy are formed by lower level features. edges, local shapes, object parts Low level representation 5 Figure is from Yoshua Bengio Neurobiological Motivation Most current learning algorithms are shallow architectures (1-3 levels) (SVM, kNN, MoG, KDE, Parzen Kernel regression, PCA, Perceptron,…) The mammal brain is organized in a deep architecture (Serre, Kreiman, Kouh, Cadieu, Knoblich, & Poggio, 2007) (E.g. visual system has 5 to 10 levels) 6 Deep Learning History Inspired by the architectural depth of the brain, researchers wanted for decades to train deep multi-layer neural networks. No successful attempts were reported before 2006 … Researchers reported positive experimental results with typically two or three levels (i.e. one or two hidden layers), but training deeper networks consistently yielded poorer results. Exception: convolutional neural networks, LeCun 1998 SVM: Vapnik and his co-workers developed the Support Vector Machine (1993). It is a shallow architecture. Digression: In the 1990’s, many researchers abandoned neural networks with multiple adaptive hidden layers because SVMs worked better, and there was no successful attempts to train deep networks.
    [Show full text]
  • Introduction to Machine Learning Deep Learning
    Introduction to Machine Learning Deep Learning Barnabás Póczos Credits Many of the pictures, results, and other materials are taken from: Ruslan Salakhutdinov Joshua Bengio Geoffrey Hinton Yann LeCun 2 Contents Definition and Motivation Deep architectures Convolutional networks Applications 3 Deep architectures Defintion: Deep architectures are composed of multiple levels of non-linear operations, such as neural nets with many hidden layers. Output layer Hidden layers Input layer 4 Goal of Deep architectures Goal: Deep learning methods aim at ▪ learning feature hierarchies ▪ where features from higher levels of the hierarchy are formed by lower level features. edges, local shapes, object parts Low level representation 5 Figure is from Yoshua Bengio Theoretical Advantages of Deep Architectures Some complicated functions cannot be efficiently represented (in terms of number of tunable elements) by architectures that are too shallow. Deep architectures might be able to represent some functions otherwise not efficiently representable. More formally: Functions that can be compactly represented by a depth k architecture might require an exponential number of computational elements to be represented by a depth k − 1 architecture The consequences are ▪ Computational: We don’t need exponentially many elements in the layers ▪ Statistical: poor generalization may be expected when using an insufficiently deep architecture for representing some functions. 9 Theoretical Advantages of Deep Architectures The Polynomial circuit: 10 Deep Convolutional Networks 11 Deep Convolutional Networks Compared to standard feedforward neural networks with similarly-sized layers, ▪ CNNs have much fewer connections and parameters ▪ and so they are easier to train, ▪ while their theoretically-best performance is likely to be only slightly worse.
    [Show full text]
  • Architecture for Real-Time, Low-Swap Embedded Vision Using Fpgas
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2016 Architecture for Real-Time, Low-SWaP Embedded Vision Using FPGAs Steven Andrew Clukey University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Other Computer Engineering Commons Recommended Citation Clukey, Steven Andrew, "Architecture for Real-Time, Low-SWaP Embedded Vision Using FPGAs. " Master's Thesis, University of Tennessee, 2016. https://trace.tennessee.edu/utk_gradthes/4281 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Steven Andrew Clukey entitled "Architecture for Real-Time, Low-SWaP Embedded Vision Using FPGAs." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Computer Engineering. Mongi A. Abidi, Major Professor We have read this thesis and recommend its acceptance: Seddik M. Djouadi, Qing Cao, Ohannes Karakashian Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Architecture for Real-Time, Low-SWaP Embedded Vision Using FPGAs A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Steven Andrew Clukey December 2016 Copyright © 2016 by Steven Clukey All rights reserved.
    [Show full text]
  • Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning
    Lecture 7 Convolutional Neural Networks CMSC 35246: Deep Learning Shubhendu Trivedi & Risi Kondor University of Chicago April 17, 2017 Lecture 7 Convolutional Neural Networks CMSC 35246 We saw before: y^ x1 x2 x3 x4 A series of matrix multiplications: T T T T x 7! W1 x 7! h1 = f(W1 x) 7! W2 h1 7! h2 = f(W2 h1) 7! T T T W3 h2 7! h3 = f(W3 h3) 7! W4 h3 =y ^ Lecture 7 Convolutional Neural Networks CMSC 35246 Convolutional Networks Neural Networks that use convolution in place of general matrix multiplication in atleast one layer Next: • What is convolution? • What is pooling? • What is the motivation for such architectures (remember LeNet?) Lecture 7 Convolutional Neural Networks CMSC 35246 LeNet-5 (LeCun, 1998) The original Convolutional Neural Network model goes back to 1989 (LeCun) Lecture 7 Convolutional Neural Networks CMSC 35246 AlexNet (Krizhevsky, Sutskever, Hinton 2012) ImageNet 2012 15:4% error rate Lecture 7 Convolutional Neural Networks CMSC 35246 Convolutional Neural Networks Figure: Andrej Karpathy Lecture 7 Convolutional Neural Networks CMSC 35246 Now let's deconstruct them... Lecture 7 Convolutional Neural Networks CMSC 35246 Convolution Kernel w7 w8 w9 w4 w5 w6 w1 w2 w3 Feature Map Grayscale Image Convolve image with kernel having weights w (learned by backpropagation) Lecture 7 Convolutional Neural Networks CMSC 35246 Convolution wT x Lecture 7 Convolutional Neural Networks CMSC 35246 Convolution Lecture 7 Convolutional Neural Networks CMSC 35246 Convolution wT x Lecture 7 Convolutional Neural Networks CMSC 35246 Convolution
    [Show full text]
  • Deep Learning
    Deep Learning Yann LeCun, Yoshua Bengio & Geoffrey Hinton Nature 521, 436–444 (28 May 2015) doi:10.1038/nature14539 Authors’ Relationships Michael I. Jordan 1956, UC Berkeley Geoffrey Hinton 1947, Google & U of T, BP PhD 92.9-93.10 >200 papers Andrew NG(吴恩达) PhD postdoc 1976, Stanford, Coursera Google Brain à Baidu Brain AT&T colleague Yann LeCun Yoshua Bengio 1960, Facebook & NYU, 1964, UdeM, RNN & NLP CNN & LeNet postdoc postdoc PhD PhD Abstraction Deep learning allows computational models that are composed of multiple processing layers to learn representations of data with multiple levels of abstraction. These methods have dramatically improved the state-of-the-art in speech recognition, visual object recognition, object detection and many other domains such as drug discovery and genomics. Deep learning discovers intricate structure in large data sets by using the backpropagation algorithm to indicate how a machine should change its internal parameters that are used to compute the representation in each layer from the representation in the previous layer. Deep convolutional nets have brought about breakthroughs in processing images, video, speech and audio, whereas recurrent nets have shone light on sequential data such as text and speech. Deep Learning • Definition • Applied Domains • Speech recognition, … • Mechanism • Networks • Deep Convolutional Nets (CNN) • Deep Recurrent Nets (RNN) Applied Domains • Speech Recognition • Speech à Words • Visual Object Recognition • ImageNet (car, dog) • Object Detection • Face detection • pedestrian detection • Drug Discovery • Predict drug activity • Genomics • Deep Genomics company Conventional Machine Learning • Limited in their ability to process natural data in their raw form. • Feature!!! • Coming up with features is difficult, time-consuming, requires expert knowledge.
    [Show full text]
  • DEEP LEARNING – a PERSONAL PERSPECTIVE Urs Muller MIT 6.S191 Introduction to Deep Learning NEURAL NETWORK Training Data MAGIC
    DEEP LEARNING – A PERSONAL PERSPECTIVE Urs Muller MIT 6.S191 Introduction To Deep Learning NEURAL NETWORK Training data MAGIC Random Learning network algorithm architecture Excellent results 2 THE REAL MAGIC OF DEEP LEARNING Let’s us solve problems we don’t know how to program 3 NEURAL NETWORKS RESEARCH AT BELL LABS, HOLMDEL 1985 – 1995 4 BELL LABS BUILDING IN HOLMDEL Now called Bell Works Around 1990: 6,000 employees in Holmdel ~300 in Research ~30 in machine learning, including: Larry Jackel, Yann LeCun, Leon Bottou, John Denker, Vladimir Vapnik, Yoshua Bengio, Hans Peter Graf, Patrice Simard, Corinna Cortes, and many others 5 ORIGINAL DATABASE ~300 DIGITS Demonstrated need for large database for benchmarking → USPS database → MNIST database (60,000 digits) 6 USING PRIOR KNOWLEDGE What class is point “X”? If representation is north, south, east, west, then choose green If better representation is elevation above sea level choose red x Using prior knowledge beats requiring tons of training data Example: use convolutions for OCR 7 CONVOLUTIONAL NEURAL NETWORK (CNN) 8 LENET 1993 9 HOW WE CAME TO VIEW LEARNING Largely Vladimir Vapnik’s infuence Choose the right structure – “Structural Risk Minimization” → Bring prior knowledge to the learning machine Capacity control – matching learning machine complexity to available data → Examine learning curves 10 LEARNING CURVES Error If test error >> training error: get more training examples or decrease capacity If test error ~ training error: Test set error increase capacity Smart structure allows
    [Show full text]
  • 6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2017 Fuxin Li
    6. Convolutional Neural Networks CS 519 Deep Learning, Winter 2017 Fuxin Li With materials from Zsolt Kira Quiz coming up… • Next Thursday (2/2) • 20 minutes • Topics: • Optimization • Basic neural networks • No Convolutional nets in this quiz The Image Classification Problem (Multi-label in principle) ML “grass” ML “motorcycle” ML “person” “panda” “dog” 3 Neural Networks • Extremely high dimensionality! • 256x256 image has already 65,536 * 3 dimensions • One hidden layer with 500 hidden units require 65,536 * 3 * 500 connections (98 Million parameters) Challenges in Image Classification Structure between neighboring pixels in natural images The correlation prior for horizontal and vertical shifts (averaged over 1000 images) looks like this: Takeaways: 1) Long-range correlation 2) Local correlation stronger than non-local The convolution operator Sobel filter Convolution * Convolution 7 ∗ 2D Convolution with Padding 0 0 0 0 0 0 1 3 1 0 -2 -2 1 0 0 -1 1 0 -2 0 1 = 0 2 2 -1 0 1 1 1 0 0 0 0 0 ∗ 2D Convolution with Padding 0 0 0 0 0 0 1 3 1 0 -2 -2 1 2 0 0 -1 1 0 -2 0 1 = 0 2 2 -1 0 1 1 1 0 0 0 0 0 3 × 1 +∗ 1 × 1 = 2 − 2D Convolution with Padding 0 0 0 0 0 0 1 3 1 0 -2 -2 1 2 -1 0 0 -1 1 0 -2 0 1 = 0 2 2 -1 0 1 1 1 0 0 0 0 0 1 × 2∗+ 1 × 1 + 1 × 1 + 1 × 1 = 1 − − − 2D Convolution with Padding 0 0 0 0 0 0 1 3 1 0 -2 -2 1 2 -1 -6 0 0 -1 1 0 -2 0 1 = 0 2 2 -1 0 1 1 1 0 0 0 0 0 ∗ What if: 0 0 3 3 0 0 1 3 1 0 -2 -2 1 2 -1 -18 0 0 -1 1 0 -2 0 1 = 0 2 2 -1 0 1 1 1 0 0 0 0 0 ∗ 2D Convolution with Padding 0 0 0 0 0 0 1 3 1 0 -2 -2 1 2 -1 -6 0 0 -1
    [Show full text]