Trypanorhynch Assemblages Indicate Ecological and Phylogenetical Attributes of Their Elasmobranch Final Hosts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Record of Carcharocles Megalodon in the Eastern
Estudios Geológicos julio-diciembre 2015, 71(2), e032 ISSN-L: 0367-0449 doi: http://dx.doi.org/10.3989/egeol.41828.342 Record of Carcharocles megalodon in the Eastern Guadalquivir Basin (Upper Miocene, South Spain) Registro de Carcharocles megalodon en el sector oriental de la Cuenca del Guadalquivir (Mioceno superior, Sur de España) M. Reolid, J.M. Molina Departamento de Geología, Universidad de Jaén, Campus Las Lagunillas sn, 23071 Jaén, Spain. Email: [email protected] / [email protected] ABSTRACT Tortonian diatomites of the San Felix Quarry (Porcuna), in the Eastern Guadalquivir Basin, have given isolated marine vertebrate remains that include a large shark tooth (123.96 mm from apex to the baseline of the root). The large size of the crown height (92.2 mm), the triangular shape, the broad serrated crown, the convex lingual face and flat labial face, and the robust, thick angled root determine that this specimen corresponds to Carcharocles megalodon. The symmetry with low slant shows it to be an upper anterior tooth. The total length estimated from the tooth crown height is calculated by means of different methods, and comparison is made with Carcharodon carcharias. The final inferred total length of around 11 m classifies this specimen in the upper size range of the known C. megalodon specimens. The palaeogeography of the Guadalquivir Basin close to the North Betic Strait, which connected the Atlantic Ocean to the Mediterranean Sea, favoured the interaction of the cold nutrient-rich Atlantic waters with warmer Mediterranean waters. The presence of diatomites indicates potential upwelling currents in this context, as well as high productivity favouring the presence of large vertebrates such as mysticetid whales, pinnipeds and small sharks (Isurus). -
Papers in Press
Papers in Press “Papers in Press” includes peer-reviewed, accepted manuscripts of research articles, reviews, and short notes to be published in Paleontological Research. They have not yet been copy edited and/or formatted in the publication style of Paleontological Research. As soon as they are printed, they will be removed from this website. Please note they can be cited using the year of online publication and the DOI, as follows: Humblet, M. and Iryu, Y. 2014: Pleistocene coral assemblages on Irabu-jima, South Ryukyu Islands, Japan. Paleontological Research, doi: 10.2517/2014PR020. doi:10.2517/2018PR013 Features and paleoecological significance of the shark fauna from the Upper Cretaceous Hinoshima Formation, Himenoura Group, Southwest Japan Accepted Naoshi Kitamura 4-8-7 Motoyama, Chuo-ku Kumamoto, Kumamoto 860-0821, Japan (e-mail: [email protected]) Abstract. The shark fauna of the Upper Cretaceous Hinoshima Formation (Santonian: 86.3–83.6 Ma) of the manuscriptHimenoura Group (Kamiamakusa, Kumamoto Prefecture, Kyushu, Japan) was investigated based on fossil shark teeth found at five localities: Himedo Park, Kugushima, Wadanohana, Higashiura, and Kotorigoe. A detailed geological survey and taxonomic analysis was undertaken, and the habitat, depositional environment, and associated mollusks of each locality were considered in the context of previous studies. Twenty-one species, 15 genera, 11 families, and 6 orders of fossil sharks are recognized from the localities. This assemblage is more diverse than has previously been reported for Japan, and Lamniformes and Hexanchiformes were abundant. Three categories of shark fauna are recognized: a coastal region (Himedo Park; probably a breeding site), the coast to the open sea (Kugushima and Wadanohana), and bottom-dwelling or near-seafloor fauna (Kugushima, Wadanohana, Higashiura, and Kotorigoe). -
Whale Shark Rhincodon Typus Populations Along the West Coast of the Gulf of California and Implications for Management
Vol. 18: 115–128, 2012 ENDANGERED SPECIES RESEARCH Published online August 16 doi: 10.3354/esr00437 Endang Species Res Whale shark Rhincodon typus populations along the west coast of the Gulf of California and implications for management Dení Ramírez-Macías1,2,*, Abraham Vázquez-Haikin3, Ricardo Vázquez-Juárez1 1Centro de Investigaciones Biológicas del Noroeste, Mar Bermejo 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico 2Tiburón Ballena México de Conciencia México, Manatí 4802, Col. Esperanza III, La Paz, Baja California Sur 23090, Mexico 3Asociación de Pesca Deportiva y Ecoturismo de Bahía de los Ángeles, Domicilio conocido Bahía de los Ángeles, Baja California 22980, Mexico ABSTRACT: We used photo-identification data collected from 2003 through 2009 to estimate pop- ulation structure, site fidelity, abundance, and movements of this species along the west coast of the Gulf of California to make recommendations for effective conservation and management. Of 251 whale sharks identified from 1784 photographs, 129 sharks were identified in Bahía de Los Ángeles and 125 in Bahía de La Paz. Only juveniles (mostly small) were found in these 2 bays. At Isla Espíritu Santo, we identified adult females; at Gorda Banks we identified 15 pregnant females. High re-sighting rates within and across years provided evidence of site fidelity among juvenile sharks in the 2 bays. Though the juveniles were not permanent residents, they used the areas regularly from year to year. A proportion of the juveniles spent days to a month or more in the coastal waters of the 2 bays before leaving, and periods of over a month outside the study areas before entering the bays again. -
An Introduction to the Classification of Elasmobranchs
An introduction to the classification of elasmobranchs 17 Rekha J. Nair and P.U Zacharia Central Marine Fisheries Research Institute, Kochi-682 018 Introduction eyed, stomachless, deep-sea creatures that possess an upper jaw which is fused to its cranium (unlike in sharks). The term Elasmobranchs or chondrichthyans refers to the The great majority of the commercially important species of group of marine organisms with a skeleton made of cartilage. chondrichthyans are elasmobranchs. The latter are named They include sharks, skates, rays and chimaeras. These for their plated gills which communicate to the exterior by organisms are characterised by and differ from their sister 5–7 openings. In total, there are about 869+ extant species group of bony fishes in the characteristics like cartilaginous of elasmobranchs, with about 400+ of those being sharks skeleton, absence of swim bladders and presence of five and the rest skates and rays. Taxonomy is also perhaps to seven pairs of naked gill slits that are not covered by an infamously known for its constant, yet essential, revisions operculum. The chondrichthyans which are placed in Class of the relationships and identity of different organisms. Elasmobranchii are grouped into two main subdivisions Classification of elasmobranchs certainly does not evade this Holocephalii (Chimaeras or ratfishes and elephant fishes) process, and species are sometimes lumped in with other with three families and approximately 37 species inhabiting species, or renamed, or assigned to different families and deep cool waters; and the Elasmobranchii, which is a large, other taxonomic groupings. It is certain, however, that such diverse group (sharks, skates and rays) with representatives revisions will clarify our view of the taxonomy and phylogeny in all types of environments, from fresh waters to the bottom (evolutionary relationships) of elasmobranchs, leading to a of marine trenches and from polar regions to warm tropical better understanding of how these creatures evolved. -
BETTER DATA COLLECTION in SHARK FISHERIES LEARNING from PRACTICE Cover Image: Cacaodesign.It FAO Fisheries and Aquaculture Circular No
NFIF/C1227 (En) FAO Fisheries and Aquaculture Circular ISSN 2070-6065 BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE Cover image: cacaodesign.it FAO Fisheries and Aquaculture Circular No. 1227 NFIF/C1227 (En) BETTER DATA COLLECTION IN SHARK FISHERIES LEARNING FROM PRACTICE by Monica Barone Fishery Resources Consultant FAO Fisheries Department Rome, Italy and Kim Friedman Senior Fishery Resources Officer FAO Fisheries Department Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2021 Required citation: FAO. 2021. Better data collection in shark fisheries – Learning from practice. FAO Fisheries and Aquaculture Circular No. 1227. Rome. https://doi.org/10.4060/cb5378en The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-134622-8 © FAO, 2021 Some rights reserved. This work is made available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo/legalcode). -
Short Communication a Remarkable Case of a Shark
Journal of Vertebrate Paleontology 30(2):592–597, March 2010 © 2010 by the Society of Vertebrate Paleontology SHORT COMMUNICATION A REMARKABLE CASE OF A SHARK-BITTEN ELASMOSAURID PLESIOSAUR ∗ KENSHU SHIMADA, ,1,2 TAKANOBU TSUIHIJI,3 TAMAKI SATO,4 and YOSHIKAZU HASEGAWA5; 1Environmental Science Program and Department of Biological Sciences, DePaul University, 2325 North Clifton Avenue, Chicago, Illinois 60614, U.S.A., [email protected]; 2Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601, U.S.A.; 3National Museum of Nature and Science, 3-23-1 Hyakuhin-cho, Shinjuku-ku, Tokyo 169-0073, Japan, [email protected]; 4Department of Astronomy and Earth Sciences, Tokyo Gakugei University, 4-1-1 Nukui-Kita-Machi, Koganei City, Tokyo 184-8501, Japan, [email protected]; 5Gunma Museum of Natural History, 1674-1 Kamikuroiwa, Tomimoka, Gunma 370-2345, Japan, [email protected] Futabasaurus suzukii Sato, Hasegawa, and Manabe, 2006, is an is embedded near the anterodorsal corner of the right humerus elasmosaurid plesiosaur from the Upper Cretaceous in central immediately distal to its tuberosity (Fig. 3A). The labial face of Japan. The holotype and the only known specimen of this taxon Tooth 85 faces the posterior side of the right humerus, suggest- is a partial skeleton (Fig. 1), which co-occurred with “several tens ing that the shark bit the forelimb from its anterior side. Two of shark teeth” (Sato et al., 2006:468). The shark teeth were pre- teeth, Teeth 83 and 84, are embedded in the posterodorsal cor- viously identified as those of ‘Odontaspis sp.’ (e.g., Obata et al., ner of the neural spine of “Vertebra #34,” a posterior cervical 1970), but we re-identified them as an extinct lamniform shark, vertebra (Fig. -
Body Markings of the Whale Shark: Vestigial Or Functional?
BODY MARKINGS OF THE WHALE SHARK: VESTIGIAL OR FUNCTIONAL? By STEVEN G. WILSON Department of Zoology, The University of Western Australia, Nedlands, WA 6907, Australia *Current address: Department of Zoology, University of New Hampshire, Durham, NH 03824, USA and R. AIDAN MARTIN ReefQuest Centre for Shark Research, P.O. Box 48561, 595 Burrard Street, Vancouver, BC V7X 1A3, Canada ABSTRACT The whale shark’s distinctive body markings are similar to those of other orectolobiform sharks. These markings likely conceal their sluggish, bottom-dwelling relatives through disruptive colouration. It is argued here that the whale shark’s body markings similarly function to camouflage them in their pelagic environment. The whale shark’s countershaded colouration eliminates the optical appearance of relief against its visual background. Disruptive patterns resembling elements common in its environmental background break up the whale shark’s outline. Other possible functions for the whale shark’s markings are considered, including: radiation shielding, intraspecific communication (species recognition, sex recognition, postural displays, schooling coordination), and interspecific communication (aggressive mimicry). However, they are either discounted or evidence substantiating these functions is found to be lacking. INTRODUCTION globe (Compagno 1984; Colman 1997; Eckert and Stewart 2001), Prior to 1986, there had been including Ningaloo Reef, Western only 320 reported sightings of Australia. Consequently, there is the whale shark, Rhincodon increasing research interest into typus (Orectolobiformes, the biology of whale sharks. In Rhincodontidae), worldwide addition to being the world’s (Wolfson 1986). Today they can be largest living fish and possessing a reliably encountered and studied distinctly unique body form, one in several locations around the 118 of the whale shark’s most striking relevance (Myrberg 1991). -
UC Davis UC Davis Previously Published Works
UC Davis UC Davis Previously Published Works Title Use of a hydrodynamic model to examine behavioral response of broadnose sevengill sharks (Notorynchus cepedianus) to estuarine tidal flow Permalink https://escholarship.org/uc/item/23q9c0bz Journal Environmental Biology of Fishes, 102(9) ISSN 0378-1909 Authors McInturf, AG Steel, AE Buckhorn, M et al. Publication Date 2019-09-15 DOI 10.1007/s10641-019-00894-3 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Environ Biol Fish https://doi.org/10.1007/s10641-019-00894-3 Use of a hydrodynamic model to examine behavioral response of broadnose sevengill sharks (Notorynchus cepedianus) to estuarine tidal flow Alexandra G. McInturf & Anna E. Steel & Michele Buckhorn & Philip Sandstrom & Christina J. Slager & Nann A. Fangue & A. Peter Klimley & Damien Caillaud Received: 17 February 2019 /Accepted: 13 June 2019 # Springer Nature B.V. 2019 Abstract Innovative telemetry and biologging technol- hydrodynamic model of the estuary and calculated cur- ogy has increased the amount of available movement rent vectors along each track. We hypothesized that the data on aquatic species. However, real-time information sharks would adjust their swimming speed and direction on the environmental factors influencing animal move- depending on current strength when passing through the ments can be logistically challenging to obtain, particu- channel underneath the Golden Gate Bridge. Our results larly in habitats where tides and currents vary locally. indicate that sharks did tend to follow the current flow in Hydrodynamic models are capable of simulating com- the channel, but their overall displacement did not sig- plex tidal flow, and may thus offer an alternative method nificantly correlate with tidal amplitude. -
Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997
The IUCN Species Survival Commission Elasmobranch Biodiversity, Conservation and Management Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 Edited by Sarah L. Fowler, Tim M. Reed and Frances A. Dipper Occasional Paper of the IUCN Species Survival Commission No. 25 IUCN The World Conservation Union Donors to the SSC Conservation Communications Programme and Elasmobranch Biodiversity, Conservation and Management: Proceedings of the International Seminar and Workshop, Sabah, Malaysia, July 1997 The IUCN/Species Survival Commission is committed to communicate important species conservation information to natural resource managers, decision-makers and others whose actions affect the conservation of biodiversity. The SSC's Action Plans, Occasional Papers, newsletter Species and other publications are supported by a wide variety of generous donors including: The Sultanate of Oman established the Peter Scott IUCN/SSC Action Plan Fund in 1990. The Fund supports Action Plan development and implementation. To date, more than 80 grants have been made from the Fund to SSC Specialist Groups. The SSC is grateful to the Sultanate of Oman for its confidence in and support for species conservation worldwide. The Council of Agriculture (COA), Taiwan has awarded major grants to the SSC's Wildlife Trade Programme and Conservation Communications Programme. This support has enabled SSC to continue its valuable technical advisory service to the Parties to CITES as well as to the larger global conservation community. Among other responsibilities, the COA is in charge of matters concerning the designation and management of nature reserves, conservation of wildlife and their habitats, conservation of natural landscapes, coordination of law enforcement efforts as well as promotion of conservation education, research and international cooperation. -
Habitat Use and Foraging Behavior of Tiger Sharks (Galeocerdo Cuvier)
Marine Biology 12002) 140: 237±248 DOI 10.1007/s00227-001-0711-7 M.R. Heithaus á L.M. Dill G.J. Marshall á B. Buhleier Habitat use and foraging behavior of tiger sharks Galeocerdo cuvier ) in a seagrass ecosystem Received: 27 November 2000 / Accepted: 31 July 2001 / Published online: 5 October 2001 Ó Springer-Verlag 2001 Abstract Understanding the foraging behavior and Despite multiple encounters with potential prey, sharks spatial distribution of top predators is crucial to gaining rarely engaged in prolonged high-speed chases, and did a complete understanding of communities. However, not attack prey that were vigilant. We propose that the studies of top predators are often logistically dicult tiger sharks' foraging tactic is one of stealth, and sharks and it is important to develop appropriate methods for rely upon close approaches to prey in order to be suc- identifying factors in¯uencing their spatial distribution. cessful. This study shows that using appropriate analysis Sharks are top predators in many marine communities, techniques and a variety of ®eld methods it is possible to yet no studies have quanti®ed the habitat use of large elucidate the factors in¯uencing habitat use and gain predatory sharks or determined the factors that might insights into the foraging behavior of elusive top in¯uence shark spatial distributions. We used acoustic predators. telemetry and animal-borne video cameras 1``Critter- cam'') to test the hypothesis that tiger shark 1Galeocerdo cuvier) habitat use is determined by the availability of their prey. We also used Crittercam to conduct the ®rst Introduction investigation of foraging behavior of tiger sharks. -
Species Composition of the Largest Shark Fin Retail-Market in Mainland
www.nature.com/scientificreports OPEN Species composition of the largest shark fn retail‑market in mainland China Diego Cardeñosa1,2*, Andrew T. Fields1, Elizabeth A. Babcock3, Stanley K. H. Shea4, Kevin A. Feldheim5 & Demian D. Chapman6 Species‑specifc monitoring through large shark fn market surveys has been a valuable data source to estimate global catches and international shark fn trade dynamics. Hong Kong and Guangzhou, mainland China, are the largest shark fn markets and consumption centers in the world. We used molecular identifcation protocols on randomly collected processed fn trimmings (n = 2000) and non‑ parametric species estimators to investigate the species composition of the Guangzhou retail market and compare the species diversity between the Guangzhou and Hong Kong shark fn retail markets. Species diversity was similar between both trade hubs with a small subset of species dominating the composition. The blue shark (Prionace glauca) was the most common species overall followed by the CITES‑listed silky shark (Carcharhinus falciformis), scalloped hammerhead shark (Sphyrna lewini), smooth hammerhead shark (S. zygaena) and shortfn mako shark (Isurus oxyrinchus). Our results support previous indications of high connectivity between the shark fn markets of Hong Kong and mainland China and suggest that systematic studies of other fn trade hubs within Mainland China and stronger law‑enforcement protocols and capacity building are needed. Many shark populations have declined in the last four decades, mainly due to overexploitation to supply the demand for their fns in Asia and meat in many other countries 1–4. Mainland China was historically the world’s second largest importer of shark fns and foremost consumer of shark fn soup, yet very little is known about the species composition of shark fns in this trade hub2. -
First Record of a Whale Shark Rhincodon Typus in Continental Europe
Journal of Fish Biology (2012) doi:10.1111/j.1095-8649.2012.03392.x, available online at wileyonlinelibrary.com BRIEF COMMUNICATION First record of a whale shark Rhincodon typus in continental Europe N. V. Rodrigues*†‡, J. P. S. Correia*†,J.T.C.Grac¸a§, F. Rodrigues§, R. Pinho† and M. Hirofumi§ *GIRM – School of Tourism and Maritime Technology, Marine Resources Research Group, Polytechnic Institute of Leiria, 2520-641 Peniche, Portugal, †Flying Sharks, Rua Jorge Castilho 1613, 7C – 1900-272 Lisboa, Portugal and §Tunipex, Armaz´em de Pesca no. 2 – 8700 – 914 Olh˜ao, Portugal (Received 6 February 2012, Accepted 29 May 2012) A whale shark Rhincodon typus was found in a set-net in southern Portugal in October 2011. This was the first record for continental Europe and represents an increase of the species’ known range. Upwelling events and increase in sea-surface temperatures are possible reasons for this occurrence. © 2012 The Authors Journal of Fish Biology © 2012 The Fisheries Society of the British Isles Key words: climate change; geographical distribution; Portugal. The whale shark Rhincodon typus Smith 1828, was first described from a 4·6 m (total length, LT) specimen harpooned in Table Bay, South Africa (Stevens, 2007). It is the largest living fish on earth reaching c. 18 m LT and a mass of c. 21 t. Externally, R. typus is characterized by a broad, flattened head, a very large and nearly terminal mouth, very large gill slits, three prominent longitudinal ridges on its upper flanks, a large first dorsal fin, a semi-lunate caudal fin and a unique checkerboard pattern of light spots and stripes on a dark background (Compagno, 2001).