The Roles of Phospholipase A2 in Phagocytes

Total Page:16

File Type:pdf, Size:1020Kb

The Roles of Phospholipase A2 in Phagocytes fcell-09-673502 June 5, 2021 Time: 16:58 # 1 REVIEW published: 10 June 2021 doi: 10.3389/fcell.2021.673502 The Roles of Phospholipase A2 in Phagocytes Deepti Dabral* and Geert van den Bogaart* Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands Phagocytic cells, such as macrophages, neutrophils, and dendritic cells, ingest particles larger than about 0.5 mM and thereby clear microbial pathogens and malignant cells from the body. These phagocytic cargoes are proteolytically degraded within the lumen of phagosomes, and peptides derived from them are presented on Major Histocompatibility Complexes (MHC) for the activation of T cells. Mammalian PLA2 isozymes belong to a large family of enzymes that cleave phospholipids at the second position of the glycerol backbone, releasing a free fatty acid and a lysolipid moiety. In human macrophages, at least 15 different PLA2 forms are expressed, and expression of many of these is dependent on pathogenic stimulation. Intriguing questions are why Edited by: so many PLA2 forms are expressed in macrophages, and what are the functional James T. Murray, consequences of their altered gene expression after encountering pathogenic stimuli. In Swansea University Medical School, this review, we discuss the evidence of the differential roles of different forms of PLA in United Kingdom 2 phagocytic immune cells. These roles include: lipid signaling for immune cell activation, Reviewed by: Scott Kobayashi, initial phagocytic particle uptake, microbial action for the killing and degradation of Rocky Mountain Laboratories (NIAID), ingested microbes, and the repair of membranes induced by oxygen radicals. We also United States Anetta Härtlova, discuss the roles of PLA2 in the subsequent digestion of ingested phagocytic cargoes University of Gothenburg, Sweden for antigen presentation to T cells. *Correspondence: Keywords: phagocytosis, PLA , pathogens, macrophages, trafficking Deepti Dabral 2 [email protected] Geert van den Bogaart [email protected] INTRODUCTION Specialty section: A role for phospholipase A2 (PLA2) in phagocytic immune cells has been suggested since the 1980s This article was submitted to (Waite et al., 1979; Scott et al., 1980). These phagocytic cells, such as macrophages, neutrophils, Signaling, and dendritic cells, ingest particles larger than about 0.5 mM and thereby clear microbial a section of the journal pathogens and malignant cells from the body (Uribe-Querol and Rosales, 2020). Particularly Frontiers in Cell and Developmental macrophages and dendritic cells also present peptides derived from these phagocytosed antigens Biology on major histocompatibility complex (MHC) types I and II to activate cytolytic and helper T cells, Received: 27 February 2021 respectively, while lipids can be presented on CD1 (Burgdorf and Kurts, 2008). The process of Accepted: 11 May 2021 phagocytosis and the subsequent processing of the ingested antigen are essential processes that Published: 10 June 2021 contribute to both innate and adaptive immunity. As we will discuss in this review, evidence Citation: suggests that PLA2 is involved in all stages of pathogen encounter, from the initial signaling, to Dabral D and van den Bogaart G the uptake, degradation and presentation of the antigen. (2021) The Roles of Phospholipase A2 in Phagocytes. The nomenclature of PLA2 is very complex and disordered as it follows a chronology reflecting Front. Cell Dev. Biol. 9:673502. their time-line of discovery (Dennis et al., 2011; Murakami et al., 2015; Ramanadham et al., 2015). doi: 10.3389/fcell.2021.673502 Mammalian PLA2 isozymes belong to a large family, which have been assigned into groups I to Frontiers in Cell and Developmental Biology| www.frontiersin.org 1 June 2021| Volume 9| Article 673502 fcell-09-673502 June 5, 2021 Time: 16:58 # 2 Dabral and van den Bogaart PLA2 in Phagocytic Immune Cells XVI based on their primary amino acid sequence (Dennis et al., signaling by lipids carried out by cPLA2a, (ii) the focal exocytosis 2011; Murakami et al., 2015; Ramanadham et al., 2015). Based on to support phagosome formation by iPLA2b, (iii) the killing of 2C their subcellular localization and Ca requirement, these groups the microbe by sPLA2-V, and LPLA2 forms, and (iv) the repair can be further categorized into six types called sPLA2, iPLA2, of damaged phagosomal membranes inflicted by reactive oxygen cPLA2, LPLA2, aiPLA2, and PAF-AH, and all these types are species by LPLA2 and aiPLA2. In this review, we aim is to provide 2C further categorized into subtypes (Table 1) (i) sPLA2 are Ca - an overview of these functions of PLA2 forms. dependent secretory PLA2 forms found in secretions, such as a tears, plasma and pancreatic juice (Dennis et al., 2011; Murakami et al., 2015; Ramanadham et al., 2015). These enzymes belong LIPID SIGNALING BY cPLA2a to groups I, II, III, V, IX, X, XI, XII, XIII, and XIV (Dennis et al., 2011; Murakami et al., 2015; Ramanadham et al., 2015). Phospholipase A2 enzymes hydrolyze membrane phospholipids Within the sPLA2 subgroup, a capital English letter indicates that are composed of a glycerol backbone esterified to two the subtype of enzymes. For example, sPLA2-IIA is present in hydrophobic fatty acids tails at the sn- (stereospecifically synovial fluid, while sPLA2-IID is present in pancreas and spleen numbered) 1 and 2 positions, and a hydrophilic head group 2C (Dennis et al., 2011). (ii) cPLA2 are Ca -dependent cytosolic at the sn-3 position (Figure 2). Phospholipids with the head enzymes which belong to group IV, and its subtypes are cPLA2a, groups choline, ethanolamine, serine, and inositol form the main -b,-g,-d,-+, and -z (Dennis et al., 2011; Murakami et al., 2015; classes of phospholipids and are called phosphatidylcholine 2C Ramanadham et al., 2015). (iii) iPLA2 are Ca -independent (PC), phosphatidylethanolamine (PE), phosphatidylserine (PS), cytosolic forms which belong to group VI, and its subtypes are and phosphatidylinositol (PI), respectively. The catalytic action iPLA2-b,-g,-d,-+,-z, and -! (Dennis et al., 2011; Murakami et al., of PLA2 releases the free fatty acid from the sn-2 position, 2015; Ramanadham et al., 2015). Within the cPLA2 and iPLA2 such as arachidonic acid (ARA; 20:4), docosahexaenoic acid types, the different subtypes are mostly indicated by Greek letters (C22:6), oleic acid (C18:1), while lysophospholipids, such as lyso- (Dennis et al., 2011; Murakami et al., 2015; Ramanadham et al., phosphatidyl-choline/-ethanolamine/-inositol (LPC/LPE/LPI), 2015). However, this nomenclature is not always consistently remain esterified in the membrane. used and for example cPLA2-IVa and iPLA2-VIb are also known Both the lyso-phospholipids and the free fatty acids produced as cPLA2-IVA and iPLA2-VIA. (iv) LPLA2 is a lysosomal PLA2 by PLA2 can be bioactive molecules and/or form precursors which belongs to group XV (Shayman et al., 2011; Shayman for the generation of bioactive lipid hormones (Brash, 2001; 2C and Tesmer, 2019). (v) aiPLA2 are acidic Ca -independent Carneiro et al., 2013). PLA2 activity is especially important for PLA2 forms which belong to group XVI, and are better known the generation of a class of lipid hormones called eicosanoids. as peroxisomal PLA2 (Sorokina et al., 2009; Fisher, 2018). (vi) Eicosanoids are a broad family of oxygenated lipid compounds platelet-activating factor hydrolases (PAFAH) belong to groups that include prostaglandins, thromboxanes, and leukotrienes. VIIA (also known as lipoprotein-associated PLA2I Lp-PLA2), Eicosanoids are generated via non-enzymatic oxidation of ARA VIIB and VIII (Stafforini, 2009; Dennis et al., 2011). or by the action of enzymes, such as cyclooxygenase (COX), In human macrophages, 15 PLA2 forms are found at the lipooxygenase (LOX), and cytochrome P450 (CYP) (Dennis transcript level, including sPLA2 (sPLA2-IID, -V, and -XIIA), and Norris, 2015; Gil-de-Gómez et al., 2020). Eicosanoids exert cPLA2 (cPLA2-IV a, b, and g), iPLA2 (iPLA2-VI b, g, d, +, z, and immunomodulatory functions and, depending on the species !), LPLA2, LpPLA2, and aiPLA2 (Elstad et al., 1989; Rubio et al., of eicosanoids, can have pro- or anti-inflammatory effects 2015). Of these forms, LPLA2 and LpPLA2 carry a signal peptide (Dennis and Norris, 2015). Upon encountering a pathogen, required for cotranslational insertion into the ER and subsequent immune phagocytes produce elevated levels of eicosanoids and transport through the Golgi where they undergo N-glycosylation, an increased amount of eicosanoids in circulation is considered while others are either cytosolic or membrane bound proteins a hallmark of inflammation (Dennis and Norris, 2015). Non- (Dennis et al., 2011; Murakami et al., 2015; Ramanadham et al., steroidal anti-inflammatory drugs (NSAIDs), such as ibuprofen, 2015). Analysis of published gene expression data of blood indomethacin, and asprin, target COX and PLA2 to alleviate pain, monocyte-derived dendritic cells from 38 healthy individuals redness, and swelling associated with inflammation (Singh et al., (Lee et al., 2014) revealed that the expression of some of these 2005; Dennis and Norris, 2015). PLA2 forms is dependent on pathogenic stimulation (Figure 1). Mammalian cells are rich in ARA, but this is mostly For example, the expression of cPLA2-IVa and -IVg are incorporated in phospholipids by esterification to the glycerol upregulated, while sPLA2-XIIA and PAFAHII are downregulated backbone at the sn-2 position. For example,
Recommended publications
  • Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant
    Alopecia in a Viable Phospholipase C Delta 1 and Phospholipase C Delta 3 Double Mutant Fabian Runkel1¤, Maik Hintze1,2, Sebastian Griesing1,2, Marion Michels1, Birgit Blanck1, Kiyoko Fukami3, Jean-Louis Gue´net4, Thomas Franz1* 1 Anatomisches Institut, Universita¨t Bonn, Bonn, Germany, 2 Studiengang Molekulare Biomedizin, LIMES, Bonn, Germany, 3 Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Hachioji-city, Tokyo, Japan, 4 De´partement de Biologie du De´veloppement, Institut Pasteur, Paris, France Abstract Background: Inositol 1,4,5trisphosphate (IP3) and diacylglycerol (DAG) are important intracellular signalling molecules in various tissues. They are generated by the phospholipase C family of enzymes, of which phospholipase C delta (PLCD) forms one class. Studies with functional inactivation of Plcd isozyme encoding genes in mice have revealed that loss of both Plcd1 and Plcd3 causes early embryonic death. Inactivation of Plcd1 alone causes loss of hair (alopecia), whereas inactivation of Plcd3 alone has no apparent phenotypic effect. To investigate a possible synergy of Plcd1 and Plcd3 in postnatal mice, novel mutations of these genes compatible with life after birth need to be found. Methodology/Principal Findings: We characterise a novel mouse mutant with a spontaneously arisen mutation in Plcd3 (Plcd3mNab) that resulted from the insertion of an intracisternal A particle (IAP) into intron 2 of the Plcd3 gene. This mutation leads to the predominant expression of a truncated PLCD3 protein lacking the N-terminal PH domain. C3H mice that carry one or two mutant Plcd3mNab alleles are phenotypically normal. However, the presence of one Plcd3mNab allele exacerbates the alopecia caused by the loss of functional Plcd1 in Del(9)olt1Pas mutant mice with respect to the number of hair follicles affected and the body region involved.
    [Show full text]
  • Inhibitory Effects of Plant Phenolic Compounds on Enzymatic and Cytotoxic Activities Induced by a Snake Venom Phospholipase A
    295 VITAE, REVISTA DE LA FACULTAD DE QUÍMICA FARMACÉUTICA ISSN 0121-4004 / ISSNe 2145-2660. Volumen 18 número 3, año 2011. Universidad de Antioquia, Medellín, Colombia. págs. 295-304 INHIBITORY EFFECTS OF PLANT PHENOLIC COMPOUNDS ON ENZYMATIC AND CYTOTOXIC ACTIVITIES INDUCED BY A SNAKE VENOM PHOSPHOLIPASE A 2 EFECTOS INHIBITORIOS DE COMPUESTOS FENÓLICOS DE PLANTAS SOBRE LA ACTIVIDAD ENZIMÁTICA Y CITOTOXICA INDUCIDA POR UNA FOSFOLIPASA A 2 DE VENENO DE SERPIENTE Jaime A. PEREAÑEZ 1*, Vitelbina NÚÑEZ 1,2 , Arley C. PATIÑO 1, Mónica LONDOÑO 1, Juan C. QUINTANA 1 Received: 23 February 2010 Accepted: 25 April 2011 ABSTRACT Polyphenolic compounds have shown to inhibit toxic effects induced by snake venom proteins. In this work, we demonstrate that gallic acid, ferulic acid, caffeic acid, propylgallate and epigallocatechingallate inhibit the enzymatic activity of a phospholipase A 2 (PLA 2), using egg yolk as substrate. The IC50 values are between 0.38 – 3.93 mM. These polyphenolic compounds also inhibit the PLA 2 enzymatic activity when synthetic substrate is used. Furthermore, these compounds decreased the cyotoxic effect induced by a myotoxic PLA 2; specifically, epigallocatechin gallate exhibited the best inhibitory capacity with 90.92 ± 0.82%, while ferulic acid showed the lowest inhibitory activity with 30.96 ± 1.42%. Molecular docking studies were performed in order to determine the possible modes of action of phenolic compounds. All polyphenols showed hydrogen bonds with an active site of enzyme; moreover, epigallocatechingallate presented the strongest binding compared with the other compounds. Additionally, a preliminary structure-activity relationship analysis showed a correlation between the IC50 and the topological polar surface area of each compound (p = 0.0491, r = -0.8079 (-0.9878 to -0.2593)), which indicates the surface area required for each molecule to bind with the majority of the enzyme.
    [Show full text]
  • Lysophosphatidic Acid and Its Receptors: Pharmacology and Therapeutic Potential in Atherosclerosis and Vascular Disease
    JPT-107404; No of Pages 13 Pharmacology & Therapeutics xxx (2019) xxx Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Lysophosphatidic acid and its receptors: pharmacology and therapeutic potential in atherosclerosis and vascular disease Ying Zhou a, Peter J. Little a,b, Hang T. Ta a,c, Suowen Xu d, Danielle Kamato a,b,⁎ a School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD 4102, Australia b Department of Pharmacy, Xinhua College of Sun Yat-sen University, Tianhe District, Guangzhou 510520, China c Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St Lucia, QLD 4072, Australia d Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA article info abstract Available online xxxx Lysophosphatidic acid (LPA) is a collective name for a set of bioactive lipid species. Via six widely distributed G protein-coupled receptors (GPCRs), LPA elicits a plethora of biological responses, contributing to inflammation, Keywords: thrombosis and atherosclerosis. There have recently been considerable advances in GPCR signaling especially Lysophosphatidic acid recognition of the extended role for GPCR transactivation of tyrosine and serine/threonine kinase growth factor G-protein coupled receptors receptors. This review covers LPA signaling pathways in the light of new information. The use of transgenic and Atherosclerosis gene knockout animals, gene manipulated cells, pharmacological LPA receptor agonists and antagonists have Gproteins fi β-arrestins provided many insights into the biological signi cance of LPA and individual LPA receptors in the progression Transactivation of atherosclerosis and vascular diseases.
    [Show full text]
  • (4,5) Bisphosphate-Phospholipase C Resynthesis Cycle: Pitps Bridge the ER-PM GAP
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UCL Discovery Topological organisation of the phosphatidylinositol (4,5) bisphosphate-phospholipase C resynthesis cycle: PITPs bridge the ER-PM GAP Shamshad Cockcroft and Padinjat Raghu* Dept. of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, London WC1E 6JJ, UK; *National Centre for Biological Sciences, TIFR-GKVK Campus, Bellary Road, Bangalore 560065, India Address correspondence to: Shamshad Cockcroft, University College London UK; Phone: 0044-20-7679-6259; Email: [email protected] Abstract Phospholipase C (PLC) is a receptor-regulated enzyme that hydrolyses phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) at the plasma membrane (PM) triggering three biochemical consequences, the generation of soluble inositol 1,4,5-trisphosphate (IP3), membrane– associated diacylglycerol (DG) and the consumption of plasma membrane PI(4,5)P2. Each of these three signals triggers multiple molecular processes impacting key cellular properties. The activation of PLC also triggers a sequence of biochemical reactions, collectively referred to as the PI(4,5)P2 cycle that culminates in the resynthesis of this lipid. The biochemical intermediates of this cycle and the enzymes that mediate these reactions are topologically distributed across two membrane compartments, the PM and the endoplasmic reticulum (ER). At the plasma membrane, the DG formed during PLC activation is rapidly converted to phosphatidic acid (PA) that needs to be transported to the ER where the machinery for its conversion into PI is localised. Conversely, PI from the ER needs to be rapidly transferred to the plasma membrane where it can be phosphorylated by lipid kinases to regenerate PI(4,5)P2.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • PROTEOMIC ANALYSIS of HUMAN URINARY EXOSOMES. Patricia
    ABSTRACT Title of Document: PROTEOMIC ANALYSIS OF HUMAN URINARY EXOSOMES. Patricia Amalia Gonzales Mancilla, Ph.D., 2009 Directed By: Associate Professor Nam Sun Wang, Department of Chemical and Biomolecular Engineering Exosomes originate as the internal vesicles of multivesicular bodies (MVBs) in cells. These small vesicles (40-100 nm) have been shown to be secreted by most cell types throughout the body. In the kidney, urinary exosomes are released to the urine by fusion of the outer membrane of the MVBs with the apical plasma membrane of renal tubular epithelia. Exosomes contain apical membrane and cytosolic proteins and can be isolated using differential centrifugation. The analysis of urinary exosomes provides a non- invasive means of acquiring information about the physiological or pathophysiological state of renal cells. The overall objective of this research was to develop methods and knowledge infrastructure for urinary proteomics. We proposed to conduct a proteomic analysis of human urinary exosomes. The first objective was to profile the proteome of human urinary exosomes using liquid chromatography-tandem spectrometry (LC- MS/MS) and specialized software for identification of peptide sequences from fragmentation spectra. We unambiguously identified 1132 proteins. In addition, the phosphoproteome of human urinary exosomes was profiled using the neutral loss scanning acquisition mode of LC-MS/MS. The phosphoproteomic profiling identified 19 phosphorylation sites corresponding to 14 phosphoproteins. The second objective was to analyze urinary exosomes samples isolated from patients with genetic mutations. Polyclonal antibodies were generated to recognize epitopes on the gene products of these genetic mutations, NKCC2 and MRP4. The potential usefulness of urinary exosome analysis was demonstrated using the well-defined renal tubulopathy, Bartter syndrome type I and using the single nucleotide polymorphism in the ABCC4 gene.
    [Show full text]
  • Lysophosphatidic Acid Signaling in the Nervous System
    Neuron Review Lysophosphatidic Acid Signaling in the Nervous System Yun C. Yung,1,3 Nicole C. Stoddard,1,2,3 Hope Mirendil,1 and Jerold Chun1,* 1Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, USA 2Biomedical Sciences Graduate Program, University of California, San Diego School of Medicine, La Jolla, CA 92037, USA 3Co-first author *Correspondence: [email protected] http://dx.doi.org/10.1016/j.neuron.2015.01.009 The brain is composed of many lipids with varied forms that serve not only as structural components but also as essential signaling molecules. Lysophosphatidic acid (LPA) is an important bioactive lipid species that is part of the lysophospholipid (LP) family. LPA is primarily derived from membrane phospholipids and signals through six cognate G protein-coupled receptors (GPCRs), LPA1-6. These receptors are expressed on most cell types within central and peripheral nervous tissues and have been functionally linked to many neural pro- cesses and pathways. This Review covers a current understanding of LPA signaling in the nervous system, with particular focus on the relevance of LPA to both physiological and diseased states. Introduction LPA synthesis/degradative enzymes (reviewed in Sigal et al., The human brain is composed of approximately 60%–70% lipids 2005; Brindley and Pilquil, 2009; Perrakis and Moolenaar, by dry weight (Svennerholm et al., 1994). These lipids can be 2014). In view of the broad neurobiological influences of LPA divided into two major pools, structural and signaling, which signaling, its dysregulation may lead to diverse neuropathologies include well-known families such as cholesterol, fatty acids, ei- (Bandoh et al., 2000; Houben and Moolenaar, 2011; Yung et al., cosanoids, endocannabinoids, and prostaglandins (Figure 1).
    [Show full text]
  • Targeting Lysophosphatidic Acid in Cancer: the Issues in Moving from Bench to Bedside
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by IUPUIScholarWorks cancers Review Targeting Lysophosphatidic Acid in Cancer: The Issues in Moving from Bench to Bedside Yan Xu Department of Obstetrics and Gynecology, Indiana University School of Medicine, 950 W. Walnut Street R2-E380, Indianapolis, IN 46202, USA; [email protected]; Tel.: +1-317-274-3972 Received: 28 August 2019; Accepted: 8 October 2019; Published: 10 October 2019 Abstract: Since the clear demonstration of lysophosphatidic acid (LPA)’s pathological roles in cancer in the mid-1990s, more than 1000 papers relating LPA to various types of cancer were published. Through these studies, LPA was established as a target for cancer. Although LPA-related inhibitors entered clinical trials for fibrosis, the concept of targeting LPA is yet to be moved to clinical cancer treatment. The major challenges that we are facing in moving LPA application from bench to bedside include the intrinsic and complicated metabolic, functional, and signaling properties of LPA, as well as technical issues, which are discussed in this review. Potential strategies and perspectives to improve the translational progress are suggested. Despite these challenges, we are optimistic that LPA blockage, particularly in combination with other agents, is on the horizon to be incorporated into clinical applications. Keywords: Autotaxin (ATX); ovarian cancer (OC); cancer stem cell (CSC); electrospray ionization tandem mass spectrometry (ESI-MS/MS); G-protein coupled receptor (GPCR); lipid phosphate phosphatase enzymes (LPPs); lysophosphatidic acid (LPA); phospholipase A2 enzymes (PLA2s); nuclear receptor peroxisome proliferator-activated receptor (PPAR); sphingosine-1 phosphate (S1P) 1.
    [Show full text]
  • Lipolytic Enzymes
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 3308-3312, April 1995 Biochemistry Interfacial activation-based molecular bioimprinting of lipolytic enzymes (lipases/phospholipase A2/nonaqueous media) ISMAEL MINGARRO, CONCEPCION ABAD, AND LORENZO BRACo* Departament de Bioquimica i Biologia Molecular, Facultat de Ciencies Biologiques, Universitat de Valencia, E-46100 Burjassot, Valencia, Spain Communicated by William P. Jencks, Brandeis University, Waltham, MA, October 19, 1995 (received for review June 28, 1994) ABSTRACT Interfacial activation-based molecular (bio)- ported yet, which contrasts with the extraordinary profusion imprinting (IAMI) has been developed to rationally improve during the last few years of nonaqueous studies of lipases. the performance of lipolytic enzymes in nonaqueous environ- Catalysis by lipolytic enzymes is characterized by the so-called ments. The strategy combinedly exploits (i) the known dra- interfacial activation (13), manifested as a pronounced activity matic enhancement of the protein conformational rigidity in increase upon substrate aggregation [i.e., over the substrate a water-restricted milieu and (ii) the reported conformational critical micelle concentration (cmc)]. It has long been pro- changes associated with the activation of these enzymes at posed that this activation should involve some discrete con- lipid-water interfaces, which basically involves an increased formational changes of the soluble enzyme in fixing itself at the substrate accessibility to the active site and/or an induction substrate surface (14). Recent evidence derived mainly from of a more competent catalytic machinery. Six model enzymes x-ray crystallographic studies in the case of triglyceride lipases have been assayed in several model reactions in nonaqueous (for review, see, for example, refs.
    [Show full text]
  • Mouse Plcd3 Conditional Knockout Project (CRISPR/Cas9)
    https://www.alphaknockout.com Mouse Plcd3 Conditional Knockout Project (CRISPR/Cas9) Objective: To create a Plcd3 conditional knockout Mouse model (C57BL/6J) by CRISPR/Cas-mediated genome engineering. Strategy summary: The Plcd3 gene (NCBI Reference Sequence: NM_152813 ; Ensembl: ENSMUSG00000020937 ) is located on Mouse chromosome 11. 15 exons are identified, with the ATG start codon in exon 1 and the TGA stop codon in exon 15 (Transcript: ENSMUST00000103077). Exon 9~10 will be selected as conditional knockout region (cKO region). Deletion of this region should result in the loss of function of the Mouse Plcd3 gene. To engineer the targeting vector, homologous arms and cKO region will be generated by PCR using BAC clone RP23-133L3 as template. Cas9, gRNA and targeting vector will be co-injected into fertilized eggs for cKO Mouse production. The pups will be genotyped by PCR followed by sequencing analysis. Note: Exon 9 starts from about 59.53% of the coding region. The knockout of Exon 9~10 will result in frameshift of the gene. The size of intron 8 for 5'-loxP site insertion: 1710 bp, and the size of intron 10 for 3'-loxP site insertion: 714 bp. The size of effective cKO region: ~945 bp. The cKO region does not have any other known gene. Page 1 of 8 https://www.alphaknockout.com Overview of the Targeting Strategy Wildtype allele 5' gRNA region gRNA region 3' 1 8 9 10 11 15 Targeting vector Targeted allele Constitutive KO allele (After Cre recombination) Legends Exon of mouse Plcd3 Homology arm cKO region loxP site Page 2 of 8 https://www.alphaknockout.com Overview of the Dot Plot Window size: 10 bp Forward Reverse Complement Sequence 12 Note: The sequence of homologous arms and cKO region is aligned with itself to determine if there are tandem repeats.
    [Show full text]
  • The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions
    International Journal of Molecular Sciences Review The Protein Phosphatase PP2A Plays Multiple Roles in Plant Development by Regulation of Vesicle Traffic—Facts and Questions Csaba Máthé *, Márta M-Hamvas, Csongor Freytag and Tamás Garda Department of Botany, Faculty of Science and Technology, University of Debrecen, H-4032 Debrecen, Hungary; [email protected] (M.M.-H.); [email protected] (C.F.); [email protected] (T.G.) * Correspondence: [email protected] Abstract: The protein phosphatase PP2A is essential for the control of integrated eukaryotic cell functioning. Several cellular and developmental events, e.g., plant growth regulator (PGR) mediated signaling pathways are regulated by reversible phosphorylation of vesicle traffic proteins. Reviewing present knowledge on the relevant role of PP2A is timely. We discuss three aspects: (1) PP2A regulates microtubule-mediated vesicle delivery during cell plate assembly. PP2A dephosphorylates members of the microtubule associated protein family MAP65, promoting their binding to microtubules. Regulation of phosphatase activity leads to changes in microtubule organization, which affects vesicle traffic towards cell plate and vesicle fusion to build the new cell wall between dividing cells. (2) PP2A-mediated inhibition of target of rapamycin complex (TORC) dependent signaling pathways contributes to autophagy and this has possible connections to the brassinosteroid signaling pathway. (3) Transcytosis of vesicles transporting PIN auxin efflux carriers. PP2A regulates vesicle localization and recycling of PINs related to GNOM (a GTP–GDP exchange factor) mediated pathways. The proper intracellular traffic of PINs is essential for auxin distribution in the plant body, thus in whole Citation: Máthé, C.; M-Hamvas, M.; plant development.
    [Show full text]
  • Cutinases from Mycobacterium Tuberculosis
    Identification of Residues Involved in Substrate Specificity and Cytotoxicity of Two Closely Related Cutinases from Mycobacterium tuberculosis Luc Dedieu, Carole Serveau-Avesque, Ste´phane Canaan* CNRS - Aix-Marseille Universite´ - Enzymologie Interfaciale et Physiologie de la Lipolyse - UMR 7282, Marseille, France Abstract The enzymes belonging to the cutinase family are serine enzymes active on a large panel of substrates such as cutin, triacylglycerols, and phospholipids. In the M. tuberculosis H37Rv genome, seven genes coding for cutinase-like proteins have been identified with strong immunogenic properties suggesting a potential role as vaccine candidates. Two of these enzymes which are secreted and highly homologous, possess distinct substrates specificities. Cfp21 is a lipase and Cut4 is a phospholipase A2, which has cytotoxic effects on macrophages. Structural overlay of their three-dimensional models allowed us to identify three areas involved in the substrate binding process and to shed light on this substrate specificity. By site-directed mutagenesis, residues present in these Cfp21 areas were replaced by residues occurring in Cut4 at the same location. Three mutants acquired phospholipase A1 and A2 activities and the lipase activities of two mutants were 3 and 15 fold greater than the Cfp21 wild type enzyme. In addition, contrary to mutants with enhanced lipase activity, mutants that acquired phospholipase B activities induced macrophage lysis as efficiently as Cut4 which emphasizes the relationship between apparent phospholipase A2 activity and cytotoxicity. Modification of areas involved in substrate specificity, generate recombinant enzymes with higher activity, which may be more immunogenic than the wild type enzymes and could therefore constitute promising candidates for antituberculous vaccine production.
    [Show full text]