Malware Dynamic Analysis Evasion Techniques: A Survey Amir Afianian1, Salman Niksefat1, Babak Sadeghiyan1, and David Baptiste2 1APA Research Center, Amirkabir University of Technology 2ESIEA (C + V)O lab 1fa.afianian, niksefat,
[email protected] [email protected] June 2018 Abstract The Cyber world is plagued with ever-evolving malware that readily infiltrates all defense mechanisms, operates viciously unbeknownst to the user and surreptitiously exfiltrate sensitive data. Understanding the in- ner workings of such malware provides a leverage to effectively combat them. This understanding, is pursued through dynamic analysis which is conducted manually or automatically. Malware authors accordingly, have devised and advanced evasion techniques to thwart or evade these analyses. In this paper, we present a comprehensive survey on malware dynamic analysis evasion techniques. In addition, we propose a detailed classification of these techniques and further demonstrate how their effi- cacy hold against different types of detection and analysis approach. Our observations attest that evasive behavior is mostly interested in detecting and evading sandboxes. The primary tactic of such malware we argue, is fingerprinting followed by new trends for reverse Turing test tac- tic which aims at detecting human interaction. Furthermore, we will posit that the current defensive strategies beginning with reactive methods to arXiv:1811.01190v1 [cs.CR] 3 Nov 2018 endeavors for more transparent analysis systems, are readily foiled by zero- day fingerprinting techniques or other evasion tactics such as stalling. Ac- cordingly, we would recommend pursuit of more generic defensive strate- gies with emphasis on path exploration techniques that has the potential to thwart all the evasive tactics.