Complex Twinning, Polytypism and Disorder Phenomena in the Crystal Structures of Antimonpearceite and Arsenpolybasite

Total Page:16

File Type:pdf, Size:1020Kb

Complex Twinning, Polytypism and Disorder Phenomena in the Crystal Structures of Antimonpearceite and Arsenpolybasite 321 The Canadian Mineralogist Vol. 45, pp. 321-333 (2007) COMPLEX TWINNING, POLYTYPISM AND DISORDER PHENOMENA IN THE CRYSTAL STRUCTURES OF ANTIMONPEARCEITE AND ARSENPOLYBASITE Luca BINDI§ Museo di Storia Naturale, Sezione di Mineralogia, Università degli Studi di Firenze, via La Pira 4, I–50121 Firenze, Italy Michel EVAIN Laboratoire de Chimie des Solides, I.M.N., UMR C6502 CNRS – Université de Nantes, 2, rue de la Houssinière, BP 32229, F–44322 Nantes Cedex 3, France Silvio MENCHETTI Dipartimento di Scienze della Terra, Università degli Studi di Firenze, via La Pira 4, I–50121 Firenze, Italy Abstract The crystal structures of antimonpearceite, arsenpolybasite-222 and arsenpolybasite-221 have been solved and refi ned from single-crystal X-ray-diffraction datasets. Antimonpearceite crystallizes in the trigonal space-group P¯3m1, with a 7.4805(5), c 11.8836(13) Å, V 575.89(8) Å3 and Z = 1. The refi nement of the structure leads to R = 0.0352 for 1095 independent observed refl ections [I/␴(I) ≥ 2] and 98 parameters. Arsenpolybasite-222 crystallizes in the monoclinic space-group C2/c, with a 26.036(2), b 15.0319(13), c 24.042(3) Å, ␤ 90.000(13)° (pseudohexagonal cell with the a = √3b orthohexagonal relation), V 9409.5(15) Å3 and Z = 16. A second-degree twinning by metric merohedry gives rise to an apparent trigonal symmetry, with the unit-cell parameters (hexagonal cell) a 15.0319(13) and c 24.042(3) Å. The refi nement of the structure leads to R = 0.0716 for 22008 independent observed refl ections [I/␴(I) ≥ 2] and 552 parameters. Arsenpolybasite-221 crystallizes in the space group P321, with a 14.9746(17), c 11.9982(6) Å, V 2330.0(4) Å3 and Z = 4. The refi nement of the structure, including a mirror-twin operation (fi rst- degree twin, ¯3'2/m'1 polychromatic point-group), leads to R = 0.0434 for 4639 independent observed refl ections [I/␴(I) ≥ 2] and 2– 2+ 184 parameters. All the structures consist of the stacking of [(Ag,Cu)6(As,Sb)2S7] and [Ag9CuS4] module layers along [001]; (As,Sb) forms isolated (As,Sb)S3 pyramids typically occurring in sulfosalts, copper links two sulfur atoms in a linear coordina- tion, and silver occupies sites with coordination ranging from quasilinear to almost tetrahedral. The substitution of Cu for Ag in 2– the [(Ag,Cu)6(As,Sb)2S7] module layer becomes greater in going from the 111 structure, through the 221, to the 222 structure. The determination of the crystal structure for all the members of the group leads us to consider them as a family of polytypes. Keywords: antimonpearceite, arsenpolybasite, polytypism, disorder, twinning, crystal-structure determination. Sommaire Nous avons résolu et affi né la structure cristalline de l’antimonpearceïte, l’arsenpolybasite-222 et l’arsenpolybasite-221 à partir de données en diffraction X prélevées sur monocristaux. L’antimonpearceïte cristallise dans le groupe spatial P¯3m1, système trigonal, avec a 7.4805(5), c 11.8836(13) Å, V 575.89(8) Å3 et Z = 1. L’affi nement de la structure a mené à un R égal à 0.0352 pour 1095 réfl exions indépendantes observées [I/␴(I) ≥ 2] et 98 paramètres. L’arsenpolybasite-222 cristallise dans le groupe spatial C2/c, système monoclinique, avec a 26.036(2), b 15.0319(13), c 24.042(3) Å, ␤ 90.000(13)° (maille pseudohex- agonale avec la relation orthohexagonale ayant la relation a = √3b), V 9409.5(15) Å3 et Z = 16. Une macle de second degré par méroédrie métrique produit une symétrie trigonale apparente, avec les paramètres réticulaires (maille hexagonale) a 15.0319(13) et c 24.042(3) Å. L’affi nement de la structure a mené à un R égal à 0.0716 pour 22008 réfl exions indépendantes observées [I/␴(I) ≥ 2] et 552 paramètres. L’arsenpolybasite-221 cristallise dans le groupe spatial P321, avec a 14.9746(17), c 11.9982(6) Å, V 2330.0(4) Å3 et Z = 4. L’affi nement de la structure, qui comprend une opération de macle mirroir (macle de premier degré, groupe ponctuel polychromatique ¯3'2/m'1), a mené à un R égal à 0.0434 pour 4639 réfl exions indépendantes observées [I/␴(I) 2– 2+ ≥ 2] et 184 paramètres. Ces trois structures sont faites d’un empilement de modules [(Ag,Cu)6(As,Sb)2S7] et [Ag9CuS4] en couches le long de [001]; le (As,Sb) forme des pyramides (As,Sb)S3 isolées typiques des sulfosels, avec le cuivre lié à deux atomes de soufre en coordinence linéaire, et les atomes d’argent en coordinence quasiment linéaire à tétraédrique. Avec une 2– substitution du Cu pour Ag, le volume du module en couche [(Ag,Cu)6(As,Sb)2S7] augmente de la structure 111 à la structure 221, et enfi n à la structure 222. La détermination de la structure des trois membres du groupe nous pousse à les considérer une famille de polytypes. Mots-clés: antimonpearceïte, arsenpolybasite, polytypisme, désordre, macles, détermination de la structure. § E-mail address: [email protected]fi .it 322 the canadian mineralogist Introduction Background Information The minerals belonging to the pearceite–polybasite A summary of all known cell metrics and space group were divided by Frondel (1963) into two series: groups in the pearceite–polybasite group is given in the fi rst one, involving pearceite [(Ag,Cu)16(As,Sb)2S11] Table 1. To describe the complex electron-density and antimonpearceite [(Ag,Cu)16(Sb,As)2S11], is associated with Ag,Cu observed in these structures, characterized by a “small” unit-cell [labeled 111] Bindi et al. (2006a) and Evain et al. (2006a, b) used and a high Cu content; the second one, with poly- a non-harmonic model based upon a development of basite [(Ag,Cu)16(Sb,As)2S11] and arsenpolybasite the atomic displacement factor (Kuhs & Heger 1979, [(Ag,Cu)16(As,Sb)2S11], has doubled unit-cell param- Boucher et al. 1993, Evain et al. 1998). In general, in eters [labeled 222] and a low Cu content. Moreover, the the presence of atomic disorder, a split-atom approach existence of an intermediate type of unit cell, labeled is classically used in structure determinations. However, 221, was claimed for both polybasite (Harris et al. 1965, that approach has several disadvantages, and gives rise Edenharter et al. 1971) and arsenpolybasite (Minčeva- to ambiguities. As Bachmann & Schulz (1984) have Stefanova et al. 1979). From the crystallographic point demonstrated, the introduction of extra positions in the of view, these minerals were initially reported as being refi nement does not necessarily means that those posi- monoclinic C2/m, although dimensionally pseudo- tions correspond to occupied equilibrium sites. This is hexagonal (Peacock & Berry 1947, Frondel 1963, Harris particularly true in the case of fast ionic conductors, for et al. 1965, Hall 1967, Sugaki et al. 1983). Recently, which there exists a delocalization of an ionic species Bindi et al. (2006a) solved and refined the crystal over a liquid-like structure, and also where cations such structure of pearceite in the space group P¯3m1. They as a d10 element easily adopt a complicated coordination showed that the structure of pearceite can be described because of s,d orbital mixing or polarization factors as a regular alternation of two kinds of layer stacked (Gaudin et al. 2001). In addition to the problem of the along the c axis: a fi rst layer (labeled A), of general physical meaning of the refi ned positions, one usually 2– composition [(Ag,Cu)6(As,Sb)2S7] , and a second layer observes that the closer the refi ned positions in a disor- 2+ (labeled B), with a general composition [Ag9CuS4] . dered structure, the higher the correlations and the more The complex polytypism phenomena (i.e., 221 and unstable the refi nements. The use of tensor elements of 222 unit-cell types) occurring in various samples of higher order in the expression of the structure factors polybasite were studied by Evain et al. (2006a). These (the “non-harmonic approach”) is then an alternative authors solved and refi ned the crystal structure of both solution, giving an equivalent description (Kuhs 1992). polybasite-221 (space group P321) and polybasite-222 The benefi t of the latter description over the split-atom (space group C2/c), and proposed a possible mechanism model is an easier convergence of the refi nement as a regulating the stabilization of unit-cell type in these result of much lower correlations among the refi ned minerals. Finally, by means of a study of a crystal of parameters, as proven in many structure determinations Se-rich antimonpearceite (with 2.55 atoms per formula (see for instance the case of argyrodite: Boucher et al. unit Se), Evain et al. (2006b) investigated the structural 1993). In both cases, however, the refi ned coordinates role of selenium in these minerals. do not have a simple physical meaning, because they In this paper, we report the structural characteriza- are simply the fi rst-order terms in the expansion of the tion of the remaining members of the pearceite–poly- conventional structure-factor. Therefore, one must be basite group, antimonpearceite, arsenpolybasite-222 very cautious in interpreting bond distances from such and arsenpolybasite-221. refi nements. A better way to interpret the refi ned param- eters is by using the joint probability-density function the crystal structures of antimonpearceite and arsenpolybasite 323 (jpdf), which can be directly calculated from the refi ned As and Se, ±0.01 for Fe, Zn, Te, Au, Pb and Bi. The parameters. This function is the weighted superposition standards employed were: native elements for Cu, Ag, of the Fourier transform of the non-harmonic atom- Au, and Te, galena for Pb, pyrite for Fe and S, synthetic displacement factors of atoms over several sites.
Recommended publications
  • Silver Enrichment in the San Juan Mountains, Colorado
    SILVER ENRICHMENT IN THE SAN JUAN MOUNTAINS, COLORADO. By EDSON S. BASTIN. INTRODUCTION. The following report forms part of a topical study of the enrich­ ment of silver ores begun by the writer under the auspices of the United States Geological Survey in 1913. Two reports embodying the results obtained at Tonopah, Nev.,1 and at the Comstock lode, Virginia City, Nev.,2 have previously been published. It was recognized in advance that a topical study carried on by a single investigator in many districts must of necessity be less com­ prehensive than the results gleaned more slowly by many investi­ gators in the course of regional surveys of the usual types; on the other hand the advances made in the study of a particular topic in one district would aid in the study of the same topic in the next. In particular it was desired to apply methods of microscopic study of polished specimens to the ores of many camps that had been rich silver producers but had not been studied geologically since such methods of study were perfected. If the results here reported appear to be fragmentary and to lack completeness according to the standards of a regional report, it must be remembered that for each district only such information could be used as was readily obtainable in the course of a very brief field visit. The results in so far as they show a primary origin for the silver minerals in many ores appear amply to justify the work in the encouragement which they offer to deep mining, irrespective of more purely scientific results.
    [Show full text]
  • Mineral Zoning and Geochemistry of Epithermal Polymetallic Zn-Pb-Ag-Cu-Bi Mineralization at Cerro De Pasco, Peru
    Article Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru BAUMGARTNER, Regine, FONTBOTÉ, Lluís, VENNEMANN, Torsten Abstract The large Cerro de Pasco Cordilleran base metal deposit in central Peru is located on the eastern margin of a middle Miocene diatreme-dome complex and comprises two mineralization stages. The first stage consists of a large pyrite-quartz body replacing Lower Mesozoic Pucará carbonate rocks and, to a lesser extent, diatreme breccia. This body is composed of pyrite with pyrrhotite inclusions, quartz, and black and red chalcedony (containing hypogene hematite). At the contact with the pyrite-quartz body, the diatreme breccia is altered to pyrite-quartz-sericite-pyrite. This body was, in part, replaced by pipelike pyrrhotite bodies zoned outward to carbonate-replacement Zn-Pb ores bearing Fe-rich sphalerite (up to 24 mol % FeS). The second mineralization stage is partly superimposed on the first and consists of zoned east-west–trending Cu-Ag-(Au-Zn-Pb) enargite-pyrite veins hosted in the diatreme breccia in the western part of the deposit and well-zoned Zn-Pb-(Bi-Ag-Cu) carbonate-replacement orebodies; in both cases, sphalerite is Fe poor and the inner parts of the orebodies show typically advanced argillic alteration [...] Reference BAUMGARTNER, Regine, FONTBOTÉ, Lluís, VENNEMANN, Torsten. Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Economic Geology, 2008, vol. 103, p. 493-537 DOI : 10.2113/​gsecongeo.103.3.493 Available at: http://archive-ouverte.unige.ch/unige:21616 Disclaimer: layout of this document may differ from the published version.
    [Show full text]
  • Silver Mineralization at Sark's Hope Mine, Sark, Channel Islands
    MINERALOGICAL MAGAZINE, DECEMBER 1983, VOL. 47, PP. 539-45 Silver mineralization at Sark's Hope mine, Sark, Channel Islands R. A. IXER Department of Geological Sciences, University of Aston in Birmingham, Gosta Green, Birmingham B4 7ET AND C. J. STANLEY Department of Mineralogy, British Museum (Natural History), Cromwell Road, South Kensington, London SW7 5BD ABSTRACT. Sark's Hope silver lead lode, which was The lead-silver-bearingvein, 'Sark's Hope Silver- mined during the 1830s and 1840s cuts a Late Precambrian Lead lode', cuts a foliated hornblende granite of granite at the southernmost point of the island of Sark. Late Precambrian age (Sutton and Watson, 1957). The primary ore assemblageis pyrite, galena,chalcopyrite, Although there is little trace of the vein today, tennantite, tetrahedrite, sphalerite, marcasite, arseno- with the outcrop workings being mostly obscured pyrite, pyrrhotine, bravoite, enargite, and the silver minerals pyrargyrite, pearceite, polybasite, and acanthite. by a thick cover of vegetation, the early accounts Gangue minerals are hematitic quartz, calcite, and illite. describe it as 0.4 to 2.5 m in width, more than 600 m Alteration products include chalcosine, covelline, blau- in length, oriented 028-037 ~ and dipping at 65-85 ~ bleibender covelline,limonite, malachite, azurite, cerussite, to the northwest. and anglesite. The generalized paragenesis is of early Fe, Small amounts of in situ ore were obtained from Co, Ni, As, and S species and later minerals of Pb, Cu, Ag, the poorly exposed and weathered parts of the vein Zn, Fe, As, Sb, and S. The earliest alteration products at the southwestern end, but most of our specimens are copper sulphides; these are followed by lead and were collected from the spoil tips, in particular from copper carbonates and sulphates, and hydrated iron and Le Pelley's shaft tip at the northeastern end of the manganese oxides.
    [Show full text]
  • Uytenbogaardtite, a New Silver.Gold Sulfide
    Carwdian Mineralogist Vol. 16, pp. 651-657 (1978) UYTENBOGAARDTITE,A NEW SILVER.GOLDSULFIDE M. D. BARTON{' Department ol Geological Sciences,Vireinia Polytechnic lttstitute and State University, Blacksburg,Virsinia 24061, U.S-4. C. KIEF"T NetherlandsOrganization for the Advancernentof Pure Research(ZWO)' Amsterdam' The Netherlands E. A. J. BURKE Institute lor the Earth Sciences,Free Uniyersity, Amsterdam 11, The Netherlands I. S. OEN GeoloeicalInstitute, University of Arnsterdam,Amsterdam, The Netherlands ABsrRAcr genberg), Altai (J.R.S.S.). C'est un min6ral t6trago' ia, ri'zz ou.P41, a 9.76, c 9.784. (Comstock); - D(calc) Uytenbogaardtite, Aga,AuSz,occurs with acanthite, a 9.68, c 9.814 Cfambang Sawah); Z 8; (Iambang I-es raies electrum and quartz in specimens from Tambang 8.34 (Comstock), 8.45 Sawah). plus 2.71(10) Sawah, Benkoelen district, Sumatra, Indonesia, the de diffraction-X les lntenses sont (421). compG' Comstock lode, Storey County, Nevada, U.S.A. (203), 2.60(9) (321) et 2.l2LQ) ks par proches de and Smeinogorski (Schlangenberg), Altai, U.S.S.R. sitions obtenues analyse sont quoique de Comstock The mineral is tetragonal, P4r22 or l4r a 9.76, Ag:AuSz, l'ufienbogaardtite jusqu'i (wids) Ces donn6es c 9.784. (Comstocklode), a 9.68, c 9.81A Cfambang contienne 4Vo de cuivre. basse- Sawah), Z - 8; D(calc) - 8.34 g/cm3 (Comstock montrent que I'uytenbogaardtite et la forme En lu- lode), 8.45 g/cma Sawah). The strongest temp6rature de Ag*AuSz sont identiques. Clambang pl6ochroique, de gris- X-ray powder diffraction lines are 2.71(L0) (2O3), midre r6fl6chie, le min6ral est gris-blanc l'air, et d'un 2.60(9) (321), 2.124(7\ (421).
    [Show full text]
  • Internal Vein Texture and Vein Evolution of the Epithermal Shila-Paula District, Southern Peru
    Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru. Alain Chauvet, Laurent Bailly, Anne-Sylvie André-Mayer, Patrick Monié, Daniel Cassard, Fernando Llosa Tajada, Juan Rosas Vargas, Johann Tuduri To cite this version: Alain Chauvet, Laurent Bailly, Anne-Sylvie André-Mayer, Patrick Monié, Daniel Cassard, et al.. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru.. Min- eralium Deposita, Spinger, 2006, 41, pp.387-410. 10.1007/s00126-006-0068-4. hal-00087435 HAL Id: hal-00087435 https://hal.archives-ouvertes.fr/hal-00087435 Submitted on 17 Jan 2007 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Internal vein texture and vein evolution of the epithermal Shila-Paula district, southern Peru Alain Chauvet1, 6 , Laurent Bailly2, Anne-Sylvie André3, Patrick Monié1, Daniel Cassard2, Fernando Llosa Tajada4, Juan Rosas Vargas4 and Johann Tuduri5 (1) UMR 5573, ISTEEM, University of Montpellier II, cc. 60, F-34095 Montpellier Cedex 5, France (2) REM, BRGM, BP 6009, F-45060 Orléans Cedex 2, France (3) UMR 7566, G2R, University Henri Poincaré, BP 239, F-54506 Vandœuvre-lès-Nancy Cedex, France (4) CEDIMIN S.A.C., Luis N.
    [Show full text]
  • THE PEARCEITE and POLYBASITE SERIES1 H. T. H.R.R.R., Department
    THE AMERICAN MINERALOGIST, VOL .52,SEPTEMBER OCTOBER, 1967 THE PEARCEITE AND POLYBASITE SERIES1 H. T. H.r.r.r.,Department of Geologyand, Geophysics, Univers,ity of M'innesota, M inneap ol,is, M innesola. Ansrnlcr Experimental study of the phasespearceite (Ag, Cu)5 AszSnand polybasite (Ag, Cu)a SbrSr has shown that copper is an essential component and that these phases are end mem- bers of two distinct series: pearceite-antimonpearceiteand polybasite-arsenpolybasite. Synthetic arsenpolybasite is homogeneous over a compositional interval which extends from 3.0 to 5 2 weight percent copper at 200'C. Its antimony analog, polybasite, is stable from 3.1 to 7.6 weight percent copper at 200'C. Synthetic pearceite is homogeneousfrom 5.5 to 19.7 weight percent copper at 200'C; whereas, its antimony analog is homogeneous from 7 9 to 19.2 weight percent copper at 200'C. A narrow two-phase field separates the two solid solution series. At about 360oC arsenpolybasite inverts to a high temperature polymorph, X-arsenpolybasite. The compositional limits of copper for the two synthetic series corresponds with that found in natural material. INtnooucrroN Pearceite and polvbasite, with similar pseudohexagonalor monoclinic form and similar composition,8(Ag, Cu)zS'(As, Sb)zSaand 8(Ag, Cu)zS .(Sb, As)253,have generallybeen regardedas the arsenicand antimony end-members respectively, of a single solid solution series. Copper re- places silver in considerableand varying amounts in both minerals, and in polybasitethere mav alsobe substantialreplacement of antimony by arsenic. Although most of the specific properties of polybasite and pearceite are known, there are still somegaps and uncertainties in the descriptions.
    [Show full text]
  • THE CRYSTAL STRUCTURE of BILLINGSLEYITE, Ag7(As,Sb)S6, a SULFOSALT CONTAINING As5+
    155 The Canadian Mineralogist Vol. 48, pp. 155-162 (2010) DOI : 10.3749/canmin.48.1.155 THE CRYSTAL STRUCTURE OF BILLINGSLEYITE, Ag7(As,Sb)S6, A SULFOSALT CONTAINING As5+ Luca BINDI§ Museo di Storia Naturale, Sezione di Mineralogia, Università di Firenze, via La Pira 4, I–50121 Firenze, Italy, and C.N.R., Istituto di Geoscienze e Georisorse, Sezione di Firenze, Via La Pira 4, I–50121 Firenze, Italy RoBeRt T. DoWNS Department of Geosciences, University of Arizona, Tucson, Arizona 85721–0077, U.S.A. SILvIo MeNcHettI Dipartimento di Scienze della Terra, Università di Firenze, via La Pira 4, I–50121 Firenze, Italy aBStRact 5+ We have characterized a portion of cotype billingsleyite, Ag7(As,Sb)S6, a rare As -bearing sulfosalt from the silver ores of the North Lily mine, East Tintic district, Utah, USA, by single-crystal X-ray diffraction and electron-microprobe analysis. We found billingsleyite to be structurally identical to synthetic Ag7AsS6. It is cubic, space group P213, with a cell parameter 3 a = 10.4760(8) Å, V = 1149.7(2) Å , and Z = 4. Electron-microprobe analyses gave the following formula: (Ag6.94Cu0.04 5+ 5+ Fe0.01)S6.99(As0.87Sb0.13)S1.00S6.01. The crystal structure has been solved and refined to R = 1.64%. It consists of (As ,Sb )S4 tetrahedra and Ag polyhedra (2-, 3- and 4-fold coordinated) forming a three-dimensional network. We present structural relation- ships with other natural and synthetic thioarsenates and thioantimonates. Keywords: billingsleyite, As5+-bearing sulfosalt, crystal-structure refinement, chemical analysis, cotype specimen.
    [Show full text]
  • The Pearceite-Polybasite Group of Minerals: Crystal Chemistry and New Nomenclature Rules
    American Mineralogist, Volume 92, pages 918–925, 2007 The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules LUCA BINDI,1,* MICHEL EVAIN,2 PAUL G. SPRY,3 AND SILVIO MENCHETTI1 1Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy 2Laboratoire de Chimie des Solides, IMN, UMR C6502 CNRS, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes CEDEX 3, France 3Department of Geological and Atmospheric Sciences, 253 Science I, Iowa State University, Ames, Iowa 50011–3210, U.S.A. ABSTRACT The present paper reports changes to the existing nomenclature for minerals belonging to the pearceite-polybasite group. Thirty-one samples of minerals in this group from different localities, with variable chemical composition, and showing the 111, 221, and 222 unit-cell types, were studied by means of X-ray single-crystal diffraction and electron microprobe. The unit-cell parameters were modeled using a multiple regression method as a function of the Ag, Sb, and Se contents. The deter- mination of the crystal structures for all the members of the group permits them to be considered as a family of polytypes and for all members to be named pearceite or polybasite. The main reason for doubling the unit-cell parameters is linked to the ordering of silver. The distinction between pearceite and polybasite is easily done with an electron microprobe analysis (As/Sb ratio). A hyphenated italic sufÞ x indicating the crystal system and the cell-type symbol should be added, if crystallographic data are available. Given this designation, the old names antimonpearceite and arsenpolybasite are abandoned here and the old names pearceite and polybasite, previously deÞ ned on a structural basis (i.e., 111 and 222), are redeÞ ned on a chemical basis.
    [Show full text]
  • Silver Sulfosalts of the SANTO NINO VEIN, Fresnlllo DISTRICT, ZACATECAS, MEXICO J. BRUCE GEMMELL*, HALF ZANTOP ANDRICHARD W
    Canadian Mineralogist Vol. 27, pp. 401-418 (1989) SilVER SUlFOSAlTS OF THE SANTO NINO VEIN, FRESNlllO DISTRICT, ZACATECAS, MEXICO J. BRUCE GEMMELL*, HALF ZANTOP AND RICHARD W. BIRNIE Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire 03755, U.S.A. ABSTRACT respectives. Les assemblages ont evolues d'une composi- tion Cu-Ag II simplement argentifere: a) tetraedrite, poly- The Santo Nino vein in the Fresnillo Ag-Pb-Zn district, basite et pyrargyrite; b) polybasite, pyrargyrite et stepha- Mexico, contains silver in acanthite and in the sulfosalts nite; c) pyrargyrite et acanthite, et d) acanthite. Les formules pyrargyrite, proustite, polybasite, selenian polybasite, tetra- moyennes sont: pyrargyrite Ag3.02(Sbl.ooAso.03)S3; prous- hedrite and stephanite, members of three silver-bearing sul- tite Ag3.08(SbO.03Aso.9S)S3; polybasite (Agis.40CuI.1S) fosalt solid-solution series. The sulfosalts, excepting (Sb1.88AsO.19)Sl1; polybasite selenifere (AgI4.S0Cu1.1S) proustite, are Sb-rich end members of their respective solid- (Sb I.92AsO.12)(Se1.8SS9.1S); tetraMrite (CuS.92Ag4.21) solution series. The mineral assemblage evolved from (Cu- (Fe1.43ZnO.73)(Sb3.91Aso.Il)S13; et stephanite (Ag4.81CuO.13) Ag)-bearing to Ag-bearing: a) tetrahedrite, polybasite and (Sbl.OSAso.06)S4' La composition et la valeur Sb/(Sb + As) pyrargyrite; b) polybasite, pyrargyrite and stephanite; c) des couples pyrargyrite-polybasite, pyrargyrite-tetraedrite, pyrargyrite and acanthite; and d) acanthite. The average polybasite-tetraMrite, et des triplets pyrargyrite- sulfosalt formulas are: pyrargyrite Ag3.02(Sbl.ooAso.03)S3; polybasite-tetraedrite, varient systematiquement (pyrargy- proustite Ag3.08(Sb0.03Aso.9S)S3;polybasite (Ag1S.40Cu1.1S) rite> tetraedrite > polybasite) et semblent liees II la tempe- (Sb l.88AsO.19)SII; selenian polybasite (AgI4.S0CU1.1s) rature [plus eUe est elevee, plus Ie rapport Sb/(Sb + As) est (Sbl.92AsO.d(Se1.8SS9.1S); tetrahedrite (CuS.92Ag4.21) faible].
    [Show full text]
  • The Pearceite-Polybasite Group of Minerals: Crystal Chemistry and New Nomenclature Rules
    American Mineralogist, Volume 92, pages 918–925, 2007 The pearceite-polybasite group of minerals: Crystal chemistry and new nomenclature rules LUCA BINDI,1,* MICHEL EVAIN,2 PAUL G. SPRY,3 AND SILVIO MENCHETTI1 1Dipartimento di Scienze della Terra, Università di Firenze, Via La Pira 4, I-50121 Firenze, Italy 2Laboratoire de Chimie des Solides, IMN, UMR C6502 CNRS, Université de Nantes, 2 rue de la Houssinière, BP32229, 44322 Nantes CEDEX 3, France 3Department of Geological and Atmospheric Sciences, 253 Science I, Iowa State University, Ames, Iowa 50011–3210, U.S.A. ABSTRACT The present paper reports changes to the existing nomenclature for minerals belonging to the pearceite-polybasite group. Thirty-one samples of minerals in this group from different localities, with variable chemical composition, and showing the 111, 221, and 222 unit-cell types, were studied by means of X-ray single-crystal diffraction and electron microprobe. The unit-cell parameters were modeled using a multiple regression method as a function of the Ag, Sb, and Se contents. The deter- mination of the crystal structures for all the members of the group permits them to be considered as a family of polytypes and for all members to be named pearceite or polybasite. The main reason for doubling the unit-cell parameters is linked to the ordering of silver. The distinction between pearceite and polybasite is easily done with an electron microprobe analysis (As/Sb ratio). A hyphenated italic suffi x indicating the crystal system and the cell-type symbol should be added, if crystallographic data are available. Given this designation, the old names antimonpearceite and arsenpolybasite are abandoned here and the old names pearceite and polybasite, previously defi ned on a structural basis (i.e., 111 and 222), are redefi ned on a chemical basis.
    [Show full text]
  • A Review. Report of the Sulfosalt Sub-Committee of the IMA Commission on Ore Mineralogy
    Eur. J. Mineral. 2008, 20, 7–46 Published online February 2008 Sulfosalt systematics: a review. Report of the sulfosalt sub-committee of the IMA Commission on Ore Mineralogy Yves MOËLO1,*, Secretary, Emil MAKOVICKY2,**, Associate Secretary, Nadejda N. MOZGOVA3, past President of the Sulfosalt Sub-Committee, John L. JAMBOR4,Nigel COOK5,Allan PRING6,Werner PAAR7, Ernest H. NICKEL8,Stephan GRAESER9,Sven KARUP-MØLLER10,Tonciˇ BALIC-ŽUNIC2, William G. MUMME8,Filippo VURRO11,Dan TOPA7,Luca BINDI12, Klaus BENTE13 and Masaaki SHIMIZU14 1 Institut des Matériaux Jean Rouxel, UMR 6502 CNRS-Université de Nantes, 2, rue de la Houssinière, 44 322 Nantes Cedex 3, France *Corresponding author, e-mail: [email protected] 2 Department of Geography and Geology, University of Copenhagen, Østervoldgade 10, 1350 Copenhagen, Denmark **Corresponding author, e-mail: [email protected] 3 IGEM, Russian Academy of Sciences, Staromonetny per. 35, Moscow 109017, Russia 4 Leslie Research and Consulting, 316 Rosehill Wynd, Tsawwassen, B.C. V4M 3L9, Canada 5 Natural History Museum (Geology), University of Oslo, Postboks 1172 Blindern, 0318 Oslo, Norway 6 South Australian Museum, Department of Mineralogy, North Terrace, Adelaide, South Australia 5000, Australia 7 Department of Materials Engineering and Physics, University of Salzburg, Hellbrunnerstraße 34, 5020 Salzburg, Austria 8 CSIRO-Exploration & Mining, PO Box 5, Wembley, Western Australia 6913, Australia 9 Naturhistorisches Museum, Augustinerstraße 2, 4001 Basel, Switzerland 10 Institute of Mineral Industry, Danish
    [Show full text]
  • ISODIMORPHISM of the POLYBASITE and PEARCEITE SERIES Crrrnonr Fnononr.,H Araar D Linia Er Sity, Cambr I,D
    THE AMERICAN MINERALOGIST, VOL. 48, MAY.JUNE, 1963 ISODIMORPHISM OF THE POLYBASITE AND PEARCEITE SERIES Crrrnonr FnoNonr.,H araar d LInia er sity, Cambr i,d. ge, M ass ac hus ells .r Assrnecr The arsenic analogue of polybasite and the antimony analogue of pearceite are shown to occur in nature. The new names arsenpolybasite and antimonpearceite are given to these minerals. Polybasite-arsenpolybasite and pearceite-antimonpearceite probably form complete solid solution series,(Ag, Cu)16(Sb,As)zSrr(AB, Cu)ro(As, Sb):Sl. The two series are isodimorphous, analogous to enargite-stibioenargite and luzonite-famatinite, both CuB(As, Sb)SrCus(Sb, As)Sa. The members of both series are monoclinic, although dimen- sionally pseudohexagonal, with the space group C2/m. The cell dimensions of the poly- basite-arsenpolybasite series (a-26 A, b-15, c-24, B90o) are all double those of the pearceite-antimonpearceite series (o-13 A, b-7.4, c-12, F90o). X-ray and. chemical data are given for members of these series from 25 localities. Antimonpearceite from Sonora, Mexico, has the composition Ag62.54, Cu 8.90,-Fe 0.05, As 1.43, Sb 9.65, S 17.62, total 100.1970,withAs:Sb:1:4.15; G 6.35;al2.8l A,b7.4I,cll.9l, p90o. Arsenpolybasite from the Neuer Morgenstern mine, Freiberg, Saxony, has Ag 71.20, Ct 3.26, Fe 0.38, As 6.87,, Sb 0.80, S 17.37, total 99.8/6, with Sb:As:1:13.9; specific gravity 6.18; a 26.08 A, b 15.M, c 23.84,F 90o.
    [Show full text]