World's Largest Grid-Storage Project Comes Online in California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Board-Approved 2013-2014 Transmission Plan
2013-2014 ISO Transmission Plan March 25, 2014 APPENDIX A: System Data California ISO/MID A-1 2013-2014 ISO Transmission Plan March 25, 2014 A1 Existing Generation Table A1-1: Existing generation plants in PG&E planning area Planning Area Generating Plant Maximum Capacity Humboldt Bay 166 Kekawaka 4.9 Pacific Lumber 32.5 PG&E - LP Samoa 25 Humboldt Fairhaven 17.3 Blue Lake 12 Humboldt Area Total 258 Santa Fe 160 Bear Canyon 20 Westford Flat 30 Western Geo 38 Geysers 5 53 Geysers 6 53 PG&E - North Coast and Geysers 7 53 North Bay Geysers 8 53 Geysers 11 106 Geysers 12 106 Geysers 13 133 Geysers 14 109 Geysers 16 118 California ISO/MID A-2 2013-2014 ISO Transmission Plan March 25, 2014 Planning Area Generating Plant Maximum Capacity Geysers 17 118 Geysers 18 118 Geysers 20 118 Bottle Rock 55 SMUD Geo 72 Potter Valley 11 Geo Energy 20 Indian Valley 3 Sonoma Landfill 6 Exxon 54 Monticello 12 North Coast and North Bay Area Total 1,619 Pit River 752 Battle Creek 17 Cow Creek 5 North Feather River 736 South Feather River 123 PG&E - West Feather River 26 North Valley Black Butte 11 CPV 717 Hatchet Ridge Wind 103 QFs 353 North Valley Area Total 2,843 California ISO/MID A-3 2013-2014 ISO Transmission Plan March 25, 2014 Planning Area Generating Plant Maximum Capacity Wadham 27 Woodland Biomass 25 UC Davis Co-Gen 4 Cal-Peak Vaca Dixon 49 Wolfskill Energy Center 60 Lambie, Creed and Goosehaven 143 EnXco 60 Solano 100 High Winds 200 Shiloh 300 Bowman Power House 4 PG&E - Camp Far West (SMUD) 7 Central Valley Chicago Park Power House 40 Chili Bar Power House 7 Colgate Power House 294 Deer Creek Power House 6 Drum Power House 104 Dutch Plat Power House 49 El Dorado Power House 20 Feather River Energy Center 50 French Meadow Power House 17 Green Leaf No. -
Floatovoltaics® Solar Power System Overview and SPG Solar Statement
Floatovoltaics® Solar Power System Overview and SPG Solar Statement of Qualifications Submitted by SPG Solar, Inc. CA License # 759086 System Design 38kW Demonstration Installation of 2010 Floatovoltaics ® 200kW Installation at Far Niente Why Floatovoltaics®? SPG Solar’s Floatovoltaics® is at the hub of the energy‐water nexus. When SPG Solar installs a Floatovoltaics® system, our customers not only receive a state of the art solar PV system, but also receive a wealth of additional benefits: Consumes No Land and Capitalize on a Non‐Revenue Generating Area Land is a valuable resource that should be used optimally for farm or industrial production. SPG Solar Floatovoltaics® enables customers with no available land or roof space to enjoy the benefits of solar while capitalizing on typically non‐revenue generating area—water. Improve Water Quality SPG Solar Floatovoltaics® not only saves productive land, but also conserves valuable fresh water for generations to come. As water bodies are exposed to the sun, photosynthesis promotes the growth of organic matter including algae. The algae is typically not desirable, can clog pumping and filtration systems and requires costly chemical treatment to control the problem. Installing SPG Solar Floatovoltaics® will shade the water and reduce photosynthesis. This in turn will reduce the formation of algae and reduce your chemical and operational costs. Cooler Water = Cooler PV Panels = More Power Production Solar PV panels perform better in cooler conditions. By installing SPG Solar Floatovoltaics® over water, not only is the water cooled by the 100% shade but the panels will be naturally cooled resulting in improved power production performance. -
Spanning the Nexus: Integrated Energy Research on Agriculture & Water Challenges
2020 JISEA Virtual Meeting Presenter Profile Jordan Macknick is the Lead Energy-Water-Land Analyst for NREL. He is James McCall is a member of the Resources and Sustainability Group in a member of the Strategic Energy Analysis Center's Systems Modeling the Strategic Energy Analysis Center. His interests include techno- team within the Resources and Sustainability Group. His primary work economic analyses for various renewable technologies, economic and addresses the environmental impacts of energy technologies, while employment impacts, and systems analysis associated with the energy- seeking opportunities for energy and ecological synergies. In his water-food-nexus. Prior work experience was as a researcher at a utility energy-water-land leadership capacity, Macknick analyzes national and law think tank at ASU and a project manager/facilities engineer for an regional implications of different energy pathways in the context of upstream oil and gas producer water and land resources, evaluates opportunities to improve the energy management of water infrastructure, and explores innovative approaches to co-locating solar and agricultural activities. JISEA—Joint Institute for Strategic Energy Analysis 1 Jordan Macknick and James McCall Spanning the Nexus: Integrated Energy Research on Agriculture & Water Challenges JISEA Virtual Meeting April 9, 2020 Energy and Agriculture JISEA—Joint Institute for Strategic Energy Analysis 3 Challenge: Land Use of Achieving SunShot Solar Deployment Goals 2030: 3 million acres 2050: 6 million acres NATIONAL -
APPENDIX A: System Data
2012-2013 ISO Transmission Plan March 20, 2013 APPENDIX A: System Data California ISO/MID A-1 2012-2013 ISO Transmission Plan March 20, 2013 A1 Existing Generation Table A1-1: Existing generation plants in PG&E planning area Planning Area Generating Plant Maximum Capacity Humboldt Bay 166 Kekawaka 4.9 Pacific Lumber 32.5 PG&E - LP Samoa 25 Humboldt Fairhaven 17.3 Blue Lake 12 Humboldt Area Total 258 Santa Fe 160 Bear Canyon 20 Westford Flat 30 Western Geo 38 Geysers 5 53 Geysers 6 53 PG&E - North Coast and Geysers 7 53 North Bay Geysers 8 53 Geysers 11 106 Geysers 12 106 Geysers 13 133 Geysers 14 109 Geysers 16 118 California ISO/MID A-2 2012-2013 ISO Transmission Plan March 20, 2013 Planning Area Generating Plant Maximum Capacity Geysers 17 118 Geysers 18 118 Geysers 20 118 Bottle Rock 55 SMUD Geo 72 Potter Valley 11 Geo Energy 20 Indian Valley 3 Sonoma Landfill 6 Exxon 54 Monticello 12 North Coast and North Bay Area Total 1,619 Pit River 752 Battle Creek 17 Cow Creek 5 North Feather River 736 South Feather River 123 PG&E - West Feather River 26 North Valley Black Butte 11 CPV 717 Hatchet Ridge Wind 103 QFs 353 North Valley Area Total 2,843 California ISO/MID A-3 2012-2013 ISO Transmission Plan March 20, 2013 Planning Area Generating Plant Maximum Capacity Wadham 27 Woodland Biomass 25 UC Davis Co-Gen 4 Cal-Peak Vaca Dixon 49 Wolfskill Energy Cener 60 Lambie, Creed and Goosehaven 143 EnXco 60 Solano 100 High Winds 200 Shiloh 300 Bowman Power House 4 PG&E - Camp Far West (SMUD) 7 Central Valley Chicago Park Power House 40 Chili Bar Power House 7 Colgate Power House 294 Deer Creek Power House 6 Drum Power House 104 Dutch Plat Power House 49 El Dorado Power House 20 Feather River Energy Center 50 French Meadow Power House 17 Green Leaf No. -
Innovating Solar Energy Development Through Floating Photovoltaic
Innovating Solar Energy Development through Floating Photovoltaic Technology Regional Knowledge and Support Technical Assistance Afghanistan, Azerbaijan, Kyrgyz Republic Cindy Cisneros Tiangco, PhD Senior Energy Specialist. Asian Development Bank Central and West Asia Solar PV Resources Monthly variation of Theoretical Global Average Annual Global Horizontal Horizontal Irradiation in the Region Irradiation In the Region with (solar photovoltaic potential) Cumulative constraints Weighted exclusion factors applied for: Practical Resources: • Airports/runway alignments, railroads, urban areas, pipelines • National borders (5 km buffer) • Areas with population density > 100 persons/km2 • Areas >20km away from roads (for construction access) • seismic danger areas • Areas with elevation >3000m or slopes >10% Ecological Resources • Snow and ice areas, shifting sand dunes and salt pans, tundra, swampland, All environmentally protected areas GHI data based upon 12 year half hourly satellite images; Validated by 92 measuring stations worldwide. Accuracy of GHI estimates is around +/- 5%; provides good quality prediction of long term average irradiance For more details see http://www.3tier.com/static/ttcms/us/documents/publications/vali dations/3TIER_Global_Solar_Validation.pdf . Generation mix, potential and installed capacity, NDC targets – (AFG, AZE, KGZ) Southwest Asia – Afghanistan, Pakistan Caucasus – Armenia, Azerbaijan, Georgia Central Asia – Kazakhstan, Kyrgyz Republic, Tajikistan, Turkmenistan, Uzbekistan Kyrgyz Afghanistan Azerbaijan -
Floating Solar Panel System with Automatic Sun Tracker
www.ijcrt.org © 2021 IJCRT | Volume 9, Issue 4 April 2021 | ISSN: 2320-2882 FLOATING SOLAR PANEL SYSTEM WITH AUTOMATIC SUN TRACKER 1NaveenKumar K ,2S.Praveen Bala, 3S.M.Hariharan, 4C.Prakash, 5A.Stanesmervyn 1Assistant Professor, 2Student, 3Student, 4Student, 5Student Department of Mechanical & Automation Engineering SNS College of Technology, Coimbatore, India. Abstract: The task is to plan a functioning sun based global positioning framework which ready to follow the daylight with the guide of light ward resistor (I-DR) as information sensor to peruse the force of daylight. The sun powered global positioning framework utilizes stage as a base and it is moved by a DC motor as the stage should be moved towards the daylight to get the ideal light. The sun based global positioning framework is modified by utilizing microcontroller. Arduino UNO as a fundamental regulator. After the arrangement of the equipment and program, the following movement of the global positioning framework has been carried out to follow the sun dependent on daylight course. In this work, it is planned that the movement of the global positioning framework is relies upon the worth perused by LDR. As an end, the sun based global positioning framework can build the sun-based boards proficiency by keeping the sunlight-based boards opposite with sun's position. This system will act on a Floating system in order to reduce the consumption of land. Index Terms- Sun Tracking, LDR Sensor, Arduino, Water Floater, Battery, DC Motor, Land conservation, Renewable energy I. INTRODUCTION Throughout the long term the exercises of the sun-based energy have being advantageous humankind. -
Hybrid Floating Solar Plant Designs: a Review
energies Review Hybrid Floating Solar Plant Designs: A Review Evgeny Solomin 1,*, Evgeny Sirotkin 1 , Erdem Cuce 2,3, Shanmuga Priya Selvanathan 4 and Sudhakar Kumarasamy 1,5,6,* 1 Department of Electric Power Stations, Network and Supply Systems, South Ural State University, 76 Prospekt Lenina, 454080 Chelyabinsk, Russia; [email protected] 2 Department of Mechanical Engineering, Faculty of Engineering, Recep Tayyip Erdogan University, Zihni Derin Campus, Rize 53100, Turkey; [email protected] 3 Low/Zero Carbon Energy Technologies Laboratory, Faculty of Engineering, Recep Tayyip Erdogan University, Zihni Derin Campus, Rize 53100, Turkey 4 Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, India; [email protected] 5 Faculty of Mechanical and Automotive Engineering Technology, Universiti Malaysia Pahang (UMP), Pekan 26600, Malaysia 6 Energy Centre, Maulana Azad National Institute of Technology, Bhopal 462003, India * Correspondence: [email protected] (E.S.); [email protected] (S.K.) Abstract: The world’s demand for electricity will double by 2050. Despite its high potential as an eco- friendly technology for generating electricity, solar energy only covers a small percentage of the global demand. One of the challenges is associated with the sustainable use of land resources. Floating PV (FPV) plants on water bodies such as a dam, reservoir, canal, etc. are being increasingly developed worldwide as an alternative choice. In this background, the purpose of this research is to provide an outline of the hybrid floating solar system, which can be used to generate renewable energy. The hybrid technologies discussed include: FPV + hydro systems, FPV + pumped hydro, FPV + wave Citation: Solomin, E.; Sirotkin, E.; energy converter, FPV + solar tree, FPV + tracking, FPV + conventional power, FPV + hydrogen. -
Solar Is Driving a Global Shift in Electricity Markets
SOLAR IS DRIVING A GLOBAL SHIFT IN ELECTRICITY MARKETS Rapid Cost Deflation and Broad Gains in Scale May 2018 Tim Buckley, Director of Energy Finance Studies, Australasia ([email protected]) and Kashish Shah, Research Associate ([email protected]) Table of Contents Executive Summary ......................................................................................................... 2 1. World’s Largest Operational Utility-Scale Solar Projects ........................................... 4 1.1 World’s Largest Utility-Scale Solar Projects Under Construction ............................ 8 1.2 India’s Largest Utility-Scale Solar Projects Under Development .......................... 13 2. World’s Largest Concentrated Solar Power Projects ............................................... 18 3. Floating Solar Projects ................................................................................................ 23 4. Rooftop Solar Projects ................................................................................................ 27 5. Solar PV With Storage ................................................................................................. 31 6. Corporate PPAs .......................................................................................................... 39 7. Top Renewable Energy Utilities ................................................................................. 44 8. Top Solar Module Manufacturers .............................................................................. 49 Conclusion ..................................................................................................................... -
1 Photovoltaic Plus Storage
Photovoltaic plus Storage – Part 2, Projects By John Benson February 2019 1. Introduction Part 2 will describe recent major U.S. PV and storage projects and some new twists on residential PV plus storage. Part 1 of this paper (linked below) is on new technologies for utility-scale PV, utility-scale storage and PV plus storage systems, and the evolution of missions. https://www.energycentral.com/c/cp/photovoltaic-plus-storage-%E2%80%93-part-1- technology 2. Projects The projects described below include PV plus storage, PV-only and storage only. 2.1. Arizona Public Service and First Solar A 65 megawatt (MW) project is making news by coupling PV with battery energy storage systems (BESS), a first for utility Arizona Public Service, which solicited proposals in 2017 for generation sources to provide electricity during peak demand hours.1 The solar-plus-storage bid beat out other generation sources, including multiple proposals for natural gas plants. The utility has an agreement with an existing natural gas-fired plant for a total of 570 MW for the summers of 2020 through 2026. A dramatic drop in the cost of BESS, driven in large part by an increase in lithium-ion battery production to satisfy growing demand for electric vehicles allows a PV + storage project to be competitive with gas peakers plus offer more capabilities. Storage is capable of providing services like frequency regulation, which maintains the grid’s electric frequency on a second-to-second basis, and reactive power support, which supports the voltage that must be controlled for grid reliability. -
Design and Development of a Low Cost Floating Solar Power Plant
International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 1202 ISSN 2229-5518 DESIGN AND DEVELOPMENT OF A LOW COST FLOATING SOLAR POWER PLANT SUNIL AMBADIPUDI#1, SRINIVASA RAO GAMPALA#2, S.VENKATESWARLU#3 Assistant Professors, Dept of Mechanical Engg, Swarna Bharathi Institue of Science and Technology, Khammam Abstract— the constant rise in green and sustainable energy demand has been shifting the global focus to develop technologies to utilize the renewable energy sources to the maximum extent possible. Solar energy, owing to its availability across the globe in abundance along with its pollution free nature, is considered to be the best renewable energy source. One of the major challenges posed by solar energy systems is the requirement of large area of land to mount the PV panels. As the availability of land is becoming scarce and the cost of it is increasing day by day, technological solutions to utilize water bodies to mount PV panels are being explored. The PV panels when floating on water, are expected to stay cool and hence would generate more power than those setup on land.The floating solar panels help preserve water levels by reducing evaporation during extreme summers, they also limit the growth of algae and in turn improve the acquatic life sustainability. This work is aimed to design, develop and demonstrate a low cost floating solar power generation module, which can be utilized, in multiple ways, to boost the rural economy. Index Terms- Algae, Floating Platform, Floating PV, Floating Solar, low cost, renewable, buoy. —————————— —————————— 1. INTRODUCTION HE global ecological, economic and political issues in the to power advertisement display boards, which can generate T recent decades demand for reliable and nature-friendly revenues for the village authorities. -
2018 Annual Sustainability Report CONTENTS
2018 Annual Sustainability Report CONTENTS Our People ..................................................................................................2 Environmental Sustainability ...............................................................6 Our Products............................................................................................. 11 Our Governance ......................................................................................14 Our Headquarters and Regional Offices ....................................... 17 United Nations’ Sustainable Development Goals ...................... 18 Our Possibilities ...................................................................................... 19 Vistra Energy Power Plants* Natural Gas Coal Nuclear Solar / Batteries Oil Batteries (under development) Retail Operations Plant Operations Retail and Plant Operations Regional Office Company Headquarters *Note: Does not include plants previously announced to be retired. CEO’S MESSAGE As an integrated energy company, Vistra Energy operates an innovative, customer-centric retail business and a generation fleet focused on safely, reliably, and efficiently generating power in the communities we serve. Electricity is an irreplaceable product that is critical to everyday life, whether it be for residences or businesses. We understand and take very seriously our role to provide cost-effective, reliable power to our customers and help fuel the economy. We also understand and take very seriously that our business has an environmental footprint. -
Steam Generation Under One Sun Enabled by a Floating Structure with Thermal Concentration
Steam generation under one sun enabled by a floating structure with thermal concentration The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ni, George, Gabriel Li, Svetlana V. Boriskina, Hongxia Li, Weilin Yang, TieJun Zhang, and Gang Chen. “Steam Generation Under One Sun Enabled by a Floating Structure with Thermal Concentration.” Nature Energy 1, no. 9 (August 22, 2016): 16126. As Published http://dx.doi.org/10.1038/nenergy.2016.126 Publisher Nature Publishing Group Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/109588 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. Steam Generation under One Sun Using A Floating Structure with Thermal Concentration George Nia, Gabriel Lia, Svetlana V. Boriskinaa, Hongxia Lib, Weilin Yangb, TieJun Zhangb, and Gang Chena, * a Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139 b Department of Mechanical and Materials Engineering, Masdar Institute of Science and Technology, Masdar City, Abu Dhabi, United Arab Emirates Abstract: Harvesting solar energy as heat has many applications, such as power generation, residential water heating, desalination, distillation and wastewater treatment. However, the solar flux is diffuse, and often requires optical concentration, a costly component, to generate high temperatures needed for some of these applications. Here we demonstrate a floating solar receiver capable of generating 100°C steam under ambient air conditions without optical concentration.