Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco

Total Page:16

File Type:pdf, Size:1020Kb

Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2018 Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco Michael Ryan Brown University of Tennessee Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Recommended Citation Brown, Michael Ryan, "Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco. " Master's Thesis, University of Tennessee, 2018. https://trace.tennessee.edu/utk_gradthes/5352 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Michael Ryan Brown entitled "Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the requirements for the degree of Master of Science, with a major in Plant Sciences. Eric R. Walker, Major Professor We have read this thesis and recommend its acceptance: William A. Bailey, Robert D. Miller Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Agronomic Practices to Reduce Alkaloid Levels in Dark Fire-Cured Tobacco A Thesis Presented for the Master of Science Degree The University of Tennessee, Knoxville Michael Ryan Brown December 2018 Acknowledgments I would like to extend my gratitude to Dr. Eric Walker, for giving me a chance to pursue my M.S. in his program. Thank you for your guidance, patience, encouragement, and friendship. I want to thank Dr. Andy Bailey and Dr. Bob Miller for serving on my graduate committee, and for their guidance, assistance, and friendship. To Mr. Joe Beeler, for his constant encouragement, guidance, and friendship. To Dr. Thomas C. Mueller, for his assistance and friendship. To Mr. Rob Ellis and the personnel at Highland Rim Research and Education Center, for their assistance and great memories throughout my years at Tennessee. To the personnel at the University of Kentucky Research and Education Center at Princeton, for their assistance with field plots in 2017. To Dr. Virginia Sykes and Dr. Liesel Schneider, for their guidance and statistical counseling. To my fellow graduate students and undergraduate assistants, Madison Cartwright, Trey Clark, Kacey Cannon, Johnny Richwine, Luke Shoffner, Shawn Butler, Mitchell Richmond, Andrea Keeney, Ethan Parker, Alinna Umphres-Lopez, Ragan Sloan, and Peyton Hix, for their assistance, encouragement, and friendships during my time at Tennessee. To my parents, Mike and Christy Brown, for their constant love, patience, encouragement, and support. To my grandmother, Betty Carol West, for her love, support, and encouragement. To my uncle, Donnie Cherry, for his encouragement to pursue my career in agriculture. To my brother, Austin Brown, for his love and friendship. To Sarah Elise Ramsey, for her encouragement, support, friendship, and love. ii Abstract Field experiments were conducted at two locations over two years to evaluate the effects of agronomic practices on physical and chemical properties of dark fire-cured tobacco. Locations were at the Highland Rim Research and Education Center in Springfield, TN, and at the University of Kentucky Research and Education Center in Princeton, KY. One experiment was conducted in Springfield, TN, in 2016 and experiments were conducted at both locations in 2017. These experiments evaluated two dark tobacco varieties (KT D14 LC and KT D18 LI), two nitrogen rates (84 kg N/ha applied preplant and 196 kg N/ha - 84 kg applied preplant followed by 112 kg at layby), three topping stages (early button, late bloom, and immediately prior to harvest), and two sucker control methods (dropline application with fatty alcohol solution and hand-suckered). The 2017 experiments did not evaluate the sucker control treatments. Soil amendments, pest control, and all other production practices were carried out according to university recommendations. The effects of variety and nitrogen rate on yield were inconsistent. However, similar yield and quality was observed for both varieties when averaged across all years and locations. Leaf chemistry was inconsistent between both varieties. Reduction of nitrogen reduced alkaloids, nicotine, TSNA, and NNN, while earlier topping increased alkaloids, nicotine, TSNA, and NNN. However, results could have been influenced by the amount of days after topping until harvest. While topping immediately prior to harvest significantly reduced alkaloids, nicotine, TSNA, and NNN, this practice also severely decreased yield and quality. Leaf from higher stalk positions produced higher levels of all chemical constituents, except nicotine to nornicotine conversion and NNK. Conversely, lower stalk positions resulted in higher levels of nicotine to nornicotine conversion and NNK. Based on the iii results of this study, reduced nitrogen and later toppings decreased the amount of certain chemical constituents in the cured leaf. iv Table of Contents CHAPTER 1: Introduction... ................................................................................................... 1 CHAPTER 2: Literature Review ............................................................................................. 4 Health Concerns Associated with Tobacco .............................................................................. 5 Tobacco Alkaloids .................................................................................................................. 6 Factors Influencing Alkaloids and TSNAs............................................................................... 7 TSNA Reduction ..................................................................................................................... 9 CHAPTER 3: Research Methods & Procedures....................................................................... 12 Justification ............................................................................................................................. 13 Objective................................................................................................................................. 13 Materials & Methods... ............................................................................................................ 13 Statistical Analysis & Procedures ............................................................................................ 15 Results & Discussion 2016 ...................................................................................................... 16 Results & Discussion 2017 ...................................................................................................... 23 Conclusions & Future Research............................................................................................... 27 LITERATURE CITED ........................................................................................................... 30 APPENDIX ............................................................................................................................ 37 VITA ...................................................................................................................................... 80 v List of Tables Table 1. Treatment list for the 2016 study in Springfield, TN. ................................................. 41 Table 2. Treatment list for the 2017 studies in Springfield, TN and Princeton, KY. ................. 42 Table 3. Total cured leaf yield by variety in 2016. ................................................................... 46 Table 4. Total cured leaf yield in response to nitrogen rate in 2016.......................................... 46 Table 5. Total cured leaf yield by topping stage and sucker control interaction in 2016. .......... 46 Table 6. Lug crop throw by variety in 2016. ............................................................................ 47 Table 7. Lug crop throw by sucker control method in 2016. .................................................... 47 Table 8. Seconds crop throw response by variety and topping stage interaction in 2016. ......... 48 Table 9. Leaf crop throw by variety in 2016 ............................................................................ 49 Table 10. Leaf crop throw by topping stage in 2016. ............................................................... 49 Table 11. Leaf crop throw by sucker control method in 2016................................................... 49 Table 12. Quality grade index response to topping time in 2016. ............................................. 50 Table 13. Total alkaloids in response to nitrogen rate in 2016. ................................................. 51 Table 14. Total alkaloids by stalk position and variety interaction in 2016. ............................. 51 Table 15. Total alkaloids by stalk position and topping stage interaction in 2016..................... 52 Table 16. Total alkaloids by variety and topping stage interaction in 2016............................... 52 Table 17. Total alkaloids response to sucker control method in 2016. ...................................... 53 Table 18. Nicotine response
Recommended publications
  • Hallucinogens - LSD, Peyote, Psilocybin, and PCP
    Hallucinogens - LSD, Peyote, Psilocybin, and PCP Hallucinogenic compounds found in some • Psilocybin (4-phosphoryloxy-N,N- plants and mushrooms (or their extracts) dimethyltryptamine) is obtained from have been used—mostly during religious certain types of mushrooms that are rituals—for centuries. Almost all indigenous to tropical and subtropical hallucinogens contain nitrogen and are regions of South America, Mexico, and classified as alkaloids. Many hallucinogens the United States. These mushrooms have chemical structures similar to those of typically contain less than 0.5 percent natural neurotransmitters (e.g., psilocybin plus trace amounts of acetylcholine-, serotonin-, or catecholamine- psilocin, another hallucinogenic like). While the exact mechanisms by which substance. hallucinogens exert their effects remain • PCP (phencyclidine) was developed in unclear, research suggests that these drugs the 1950s as an intravenous anesthetic. work, at least partially, by temporarily Its use has since been discontinued due interfering with neurotransmitter action or to serious adverse effects. by binding to their receptor sites. This DrugFacts will discuss four common types of How Are Hallucinogens Abused? hallucinogens: The very same characteristics that led to • LSD (d-lysergic acid diethylamide) is the incorporation of hallucinogens into one of the most potent mood-changing ritualistic or spiritual traditions have also chemicals. It was discovered in 1938 led to their propagation as drugs of abuse. and is manufactured from lysergic acid, Importantly, and unlike most other drugs, which is found in ergot, a fungus that the effects of hallucinogens are highly grows on rye and other grains. variable and unreliable, producing different • Peyote is a small, spineless cactus in effects in different people at different times.
    [Show full text]
  • Molecular Modeling of Major Tobacco Alkaloids in Mainstream Cigarette Smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi
    Kurgat et al. Chemistry Central Journal (2016) 10:43 DOI 10.1186/s13065-016-0189-5 RESEARCH ARTICLE Open Access Molecular modeling of major tobacco alkaloids in mainstream cigarette smoke Caren Kurgat, Joshua Kibet* and Peter Cheplogoi Abstract Background: Consensus of opinion in literature regarding tobacco research has shown that cigarette smoke can cause irreparable damage to the genetic material, cell injury, and general respiratory landscape. The alkaloid family of tobacco has been implicated is a series of ailments including addiction, mental illnesses, psychological disorders, and cancer. Accordingly, this contribution describes the mechanistic degradation of major tobacco alkaloids including the widely studied nicotine and two other alkaloids which have received little attention in literature. The principal focus is to understand their energetics, their environmental fate, and the formation of intermediates considered harmful to tobacco consumers. Method: The intermediate components believed to originate from tobacco alkaloids in mainstream cigarette smoke were determined using as gas-chromatography hyphenated to a mass spectrometer fitted with a mass selective detector (MSD) while the energetics of intermediates were conducted using the density functional theory framework (DFT/B3LYP) using the 6-31G basis set. Results: The density functional theory calculations conducted using B3LYP correlation function established that the scission of the phenyl C–C bond in nicotine and β-nicotyrine, and C–N phenyl bond in 3,5-dimethyl-1-phenylpyrazole were respectively 87.40, 118.24 and 121.38 kcal/mol. The major by-products from the thermal degradation of nicotine, β-nicotyrine and 3,5-dimethyl-1-phenylpyrazole during cigarette smoking are predicted theoretically to be pyridine, 3-methylpyridine, toluene, and benzene.
    [Show full text]
  • Hallucinogens and Dissociative Drugs
    Long-Term Effects of Hallucinogens See page 5. from the director: Research Report Series Hallucinogens and dissociative drugs — which have street names like acid, angel dust, and vitamin K — distort the way a user perceives time, motion, colors, sounds, and self. These drugs can disrupt a person’s ability to think and communicate rationally, or even to recognize reality, sometimes resulting in bizarre or dangerous behavior. Hallucinogens such as LSD, psilocybin, peyote, DMT, and ayahuasca cause HALLUCINOGENS AND emotions to swing wildly and real-world sensations to appear unreal, sometimes frightening. Dissociative drugs like PCP, DISSOCIATIVE DRUGS ketamine, dextromethorphan, and Salvia divinorum may make a user feel out of Including LSD, Psilocybin, Peyote, DMT, Ayahuasca, control and disconnected from their body PCP, Ketamine, Dextromethorphan, and Salvia and environment. In addition to their short-term effects What Are on perception and mood, hallucinogenic Hallucinogens and drugs are associated with psychotic- like episodes that can occur long after Dissociative Drugs? a person has taken the drug, and dissociative drugs can cause respiratory allucinogens are a class of drugs that cause hallucinations—profound distortions depression, heart rate abnormalities, and in a person’s perceptions of reality. Hallucinogens can be found in some plants and a withdrawal syndrome. The good news is mushrooms (or their extracts) or can be man-made, and they are commonly divided that use of hallucinogenic and dissociative Hinto two broad categories: classic hallucinogens (such as LSD) and dissociative drugs (such drugs among U.S. high school students, as PCP). When under the influence of either type of drug, people often report rapid, intense in general, has remained relatively low in emotional swings and seeing images, hearing sounds, and feeling sensations that seem real recent years.
    [Show full text]
  • Long-Lasting Analgesic Effect of the Psychedelic Drug Changa: a Case Report
    CASE REPORT Journal of Psychedelic Studies 3(1), pp. 7–13 (2019) DOI: 10.1556/2054.2019.001 First published online February 12, 2019 Long-lasting analgesic effect of the psychedelic drug changa: A case report GENÍS ONA1* and SEBASTIÁN TRONCOSO2 1Department of Anthropology, Philosophy and Social Work, Universitat Rovira i Virgili, Tarragona, Spain 2Independent Researcher (Received: August 23, 2018; accepted: January 8, 2019) Background and aims: Pain is the most prevalent symptom of a health condition, and it is inappropriately treated in many cases. Here, we present a case report in which we observe a long-lasting analgesic effect produced by changa,a psychedelic drug that contains the psychoactive N,N-dimethyltryptamine and ground seeds of Peganum harmala, which are rich in β-carbolines. Methods: We describe the case and offer a brief review of supportive findings. Results: A long-lasting analgesic effect after the use of changa was reported. Possible analgesic mechanisms are discussed. We suggest that both pharmacological and non-pharmacological factors could be involved. Conclusion: These findings offer preliminary evidence of the analgesic effect of changa, but due to its complex pharmacological actions, involving many neurotransmitter systems, further research is needed in order to establish the specific mechanisms at work. Keywords: analgesic, pain, psychedelic, psychoactive, DMT, β-carboline alkaloids INTRODUCTION effects of ayahuasca usually last between 3 and 5 hr (McKenna & Riba, 2015), but the effects of smoked changa – The treatment of pain is one of the most significant chal- last about 15 30 min (Ott, 1994). lenges in the history of medicine. At present, there are still many challenges that hamper pain’s appropriate treatment, as recently stated by American Pain Society (Gereau et al., CASE DESCRIPTION 2014).
    [Show full text]
  • Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing Nr1a/NR2B Glutamate Receptors
    J Pharmacol Sci 98, 58 – 65 (2005) Journal of Pharmacological Sciences ©2005 The Japanese Pharmacological Society Full Paper Corymine Potentiates NMDA-Induced Currents in Xenopus Oocytes Expressing NR1a/NR2B Glutamate Receptors Pathama Leewanich1,2,*, Michihisa Tohda2, Hiromitsu Takayama3, Samaisukh Sophasan4, Hiroshi Watanabe2, and Kinzo Matsumoto2 1Department of Pharmacology, Faculty of Medicine, Srinakharinwirot University, Bangkok 10110, Thailand 2Division of Medicinal Pharmacology, Institute of Natural Medicine, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Toyama 930-0194, Japan 3Laboratory of Molecular Structure and Biological Function, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan 4Department of Physiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand Received January 5, 2005; Accepted March 31, 2005 Abstract. Previous studies demonstrated that corymine, an indole alkaloid isolated from the leaves of Hunter zeylanica, dose-dependently inhibited strychnine-sensitive glycine-induced currents. However, it is unclear whether this alkaloid can modulate the function of the N-methyl- D-aspartate (NMDA) receptor on which glycine acts as a co-agonist via strychnine-insensitive glycine binding sites. This study aimed to evaluate the effects of corymine on NR1a/NR2B NMDA receptors expressed in Xenopus oocytes using the two-electrode voltage clamp technique. Corymine significantly potentitated the NMDA-induced currents recorded from oocytes on days 3 and 4 after cRNA injection but it showed no effect when the current was recorded on days 5 and 6. The potentiating effect of corymine on NMDA-induced currents was induced in the presence of a low concentration of glycine (≤0.1 µM). Spermine significantly enhanced the potentiating effect of corymine observed in the oocytes on days 3 and 4, while the NMDA- receptor antagonist 2-amino-5-phosphonopentanone (AP5) and the NMDA-channel blocker 5- methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine (MK-801) reversed the effect of corymine.
    [Show full text]
  • MRO Manual Before 2004
    Note: This manual is essentially the same as the 1997 HHS Medical Review Officer (MRO) Manual except for changes related to the new Federal Custody and Control Form (CCF). The appendix has also been deleted since the new Federal Custody and Control Form is available as a separate file on the website. Medical Review Officer Manual for Federal Agency Workplace Drug Testing Programs for use with the new Federal Drug Testing Custody and Control Form (OMB Number 0930-0158, Exp Date: June 30, 2003) This manual applies to federal agency drug testing programs that come under Executive Order 12564 and the Department of Health and Human Services (HHS) Mandatory Guidelines. Table of Contents Chapter 1. The Medical Review Officer (MRO) ............................................................... 1 Chapter 2. Federal Drug Testing Custody and Control Form .......................................... 3 Chapter 3. The MRO Review Process ............................................................................ 3 A. Administrative Review of the CCF ........................................................................... 3 I. State Initiatives and Laws ....................................................................................... 15 Chapter 4. Specific Drug Class Issues .......................................................................... 15 A. Amphetamines ....................................................................................................... 15 B. Cocaine ................................................................................................................
    [Show full text]
  • (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact
    pharmaceuticals Review Toxicokinetics and Toxicodynamics of Ayahuasca Alkaloids N,N-Dimethyltryptamine (DMT), Harmine, Harmaline and Tetrahydroharmine: Clinical and Forensic Impact Andreia Machado Brito-da-Costa 1 , Diana Dias-da-Silva 1,2,* , Nelson G. M. Gomes 1,3 , Ricardo Jorge Dinis-Oliveira 1,2,4,* and Áurea Madureira-Carvalho 1,3 1 Department of Sciences, IINFACTS-Institute of Research and Advanced Training in Health Sciences and Technologies, University Institute of Health Sciences (IUCS), CESPU, CRL, 4585-116 Gandra, Portugal; [email protected] (A.M.B.-d.-C.); ngomes@ff.up.pt (N.G.M.G.); [email protected] (Á.M.-C.) 2 UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 3 LAQV-REQUIMTE, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal 4 Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal * Correspondence: [email protected] (D.D.-d.-S.); [email protected] (R.J.D.-O.); Tel.: +351-224-157-216 (R.J.D.-O.) Received: 21 September 2020; Accepted: 20 October 2020; Published: 23 October 2020 Abstract: Ayahuasca is a hallucinogenic botanical beverage originally used by indigenous Amazonian tribes in religious ceremonies and therapeutic practices. While ethnobotanical surveys still indicate its spiritual and medicinal uses, consumption of ayahuasca has been progressively related with a recreational purpose, particularly in Western societies. The ayahuasca aqueous concoction is typically prepared from the leaves of the N,N-dimethyltryptamine (DMT)-containing Psychotria viridis, and the stem and bark of Banisteriopsis caapi, the plant source of harmala alkaloids.
    [Show full text]
  • Stability Evaluation of DMT and Harmala Alkaloids in Ayahuasca Tea Samples
    molecules Communication Stability Evaluation of DMT and Harmala Alkaloids in Ayahuasca Tea Samples Gabriela de Oliveira Silveira 1,* , Rafael Guimarães dos Santos 2,3, Felipe Rebello Lourenço 4 , Giordano Novak Rossi 2 , Jaime E. C. Hallak 2,3 and Mauricio Yonamine 1 1 Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; [email protected] 2 Department of Neurosciences and Behaviour, University of São Paulo, Ribeirão Preto 14049-900, Brazil; [email protected] (R.G.d.S.); [email protected] (G.N.R.); [email protected] (J.E.C.H.) 3 National Institute of Science and Technology—Translational Medicine, Ribeirão Preto 14049-900, Brazil 4 Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil; [email protected] * Correspondence: [email protected] Academic Editors: Monika Waksmundzka-Hajnos and Miroslaw Hawryl Received: 4 April 2020; Accepted: 24 April 2020; Published: 29 April 2020 Abstract: Ayahuasca tea is a hallucinogenic beverage used for religious purposes in Brazil and many other countries that has therapeutic potential in the treatment of some mental health disorders. In the context of psychedelic research, quantification of the tea’s main alkaloids prior to its administration in animal or human studies is essential. For this reason, this study aims to provide information regarding the stability of the main ayahuasca alkaloids (dimethyltryptamine, DMT; harmine, HRM; tetrahydroharmine, THH; harmaline, HRL) in three different conditions: (1) A year stored in a refrigerator either in plastic or glass containers, (2) seven days at 37 ◦C to reproduce usual mail transportation, and (3) after three freeze–thaw cycles.
    [Show full text]
  • Chemicals Required for the Illicit Manufacture of Drugs Table 1 SUBSTANCES in TABLES I and II of the 1988 CONVENTION
    Chemicals Required 1. A variety of chemicals are used in the illicit manufacture of for the Illicit drugs. The United Nations Convention against Illicit Traffic in Manufacture of Drugs Narcotic Drugs and Psychotropic Substances of 1988 (1988 Convention) refers to “substances frequently used in the illicit manufacture of narcotic drugs and psychotropic substances”. Twenty-two such substances are listed in Tables I and II of the 1988 Convention as in force on 1st May, 1998. (See Table1) Table 1 Table I Table II SUBSTANCES IN N-Acetylanthranilic acid. Acetic anhydride TABLES I AND II OF Ephedrine Acetone THE 1988 Ergometrine Anthranilic acid CONVENTION Ergotamine Ethyl ether Isosafrole Hydrochloric acid* Lysergic acid Methyl ethyl ketone 3,4-methylenedioxyphenyl-2-propanone Phenylacetic acid 1-phenyl-2-propanone Piperidine Piperonal Potassium permanganate Pseudoephedrine Sulphuric acid* Safrole Toluene The salts of the substances in this Table The salts of the substances whenever the existence of such salts is in this Table whenever the possible. existence of such salts is possible. * The salts of hydrochloric acid and sulphuric acid are specifically excluded from Table II. U N D C P 11 The term “precursor” is used to indicate any of these substances in the two Tables. Chemicals used in the illicit manufacture of narcotic drugs and psychotropic substances are often described as precursors or essential chemicals, and these include true precursors, solvents, oxidising agents and other Chemicals used in the illicit manufacture of narcotic substances. Although the term is not drugs and psychotropic substances are often technically correct, it has become common described as precursors or essential chemicals, and practice to refer to all such substances as these include true precursors, solvents, oxidising “precursors”.
    [Show full text]
  • Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders
    Int. J. Biol. Sci. 2018, Vol. 14 341 Ivyspring International Publisher International Journal of Biological Sciences 2018; 14(3): 341-357. doi: 10.7150/ijbs.23247 Review Role of Plant Derived Alkaloids and Their Mechanism in Neurodegenerative Disorders Ghulam Hussain1,3, Azhar Rasul4,5, Haseeb Anwar3, Nimra Aziz3, Aroona Razzaq3, Wei Wei1,2, Muhammad Ali4, Jiang Li2, Xiaomeng Li1 1. The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China 2. Dental Hospital, Jilin University, Changchun 130021, China 3. Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan 4. Department of Zoology, Faculty of Life Sciences, Government College University, Faisalabad, 38000 Pakistan 5. Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science. 2-1 Hirosawa, Wako, Saitama 351-0198 Japan Corresponding authors: Professor Xiaomeng Li, The Key Laboratory of Molecular Epigenetics of Ministry of Education, Institute of Genetics and Cytology, Northeast Normal University, 5268 People's Street, Changchun, Jilin 130024, P.R. China. E-mail: [email protected] Tel: +86 186 86531019; Fax: +86 431 85579335 or Professor Jiang Li, Department of Prosthodontics, Dental Hospital, Jilin University, 1500 Tsinghua Road, Changchun, Jilin 130021, P.R. China. E-mail: [email protected] © Ivyspring International Publisher. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). See http://ivyspring.com/terms for full terms and conditions. Received: 2017.10.09; Accepted: 2017.12.18; Published: 2018.03.09 Abstract Neurodegenerative diseases are conventionally demarcated as disorders with selective loss of neurons.
    [Show full text]
  • Alkaloid Biology and Metabolism in Plants Alkaloid Biology and Metabolism in Plants
    Alkaloid Biology and Metabolism in Plants Alkaloid Biology and Metabolism in Plants George R. Waller Oklahoma State University Stillwater, Oklahoma and Edmund K. Nowacki Oklahoma State University Stillwater, Oklahoma and Institute of Plant, Soil, and Nutrition Science Pulawy, Poland PLENUM PRESS • NEW YORK AND LONDON Library of Congress Cataloging in Publication Data Waller, George R. Alkaloid biology and metabolism in plants. Includes bibliographical references and index. 1. Alkaloids. 2. Botanical chemistry. I. Nowacki, Edmund, 1930- joint author. II. Title. QK898.A4W34 581.1 '9242 76-30903 ISBN-13: 978-1-4684-0774-7 ISBN-13: 978-1-4684-0774-7 e-ISBN-13: 978-1-4684-0772-3 001: 10.1007/978-1-4684-0772-3 Published as Article No. P-299 of the Agricultural Experimen t Station, Oklahoma State University, Stillwater, Oklahoma U.S.A. © 1978 Plenum Press, New York Softcover reprint of the hardcover 1st 1978 A Division of Plenum Publishing Corporation 227 West 17th Street, New York, N.Y. 10011 All rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher To Our Wives Hilda and Danuta Preface This *book is designed for the use of the advanced student and professional worker interested in the international scientific community, particularly those in the fields of agronomy, agricultural sciences, botany, biological sciences, natural products chemistry, pharmaceutical chemistry and bio­ chemistry. The purpose is to inform the reader about significant advances in the biology and metabolism of alkaloids in plants.
    [Show full text]
  • The Occurrence of Cocaine in Egyptian Mummies - New Research Provides Strong Evidence for a Trans-Atlantic Dispersal by Humans
    The Open-Access Journal for the Basic Principles of Diffusion Theory, Experiment and Application The Occurrence of Cocaine in Egyptian Mummies - New research provides strong evidence for a trans-Atlantic dispersal by humans Dominique Görlitz Technische Univerität Dresden, Institut für Kartographie, Germany (received 22 May 2016, accepted 29 June 2016) Abstract One of the unsolved problems of modern science is whether the pre-Columbian peoples of the New World developed completely independently of cultural influences from the Old World or if there was a trans-oceanic contact? A number of scientists agree that there are many – and often remarkable – similarities between the cultures of pre-Columbian America and those of the Mediterranean world. Nevertheless, there is no agreement, as yet, on how cultural diffusion can be differentiated from independent invention. Scientific analysis shows that scholarly positions are often strongly pre-formed from paradigms (scientific based assumptions), which tend to hinder consideration of solid scientific data offered by geo-biology and its trans-disciplinary examination of the subject under investigation here. An unambiguous answer to the question, what historical processes led to the emergence of the ancient American agriculture, hasn‟t been given. However, the archaeological discovery of crops with clear trans-oceanic origin, in addition to advances in molecular biology, increasingly support the hypothesis that humans from the distant past influenced each other across the oceans at a much earlier stage. The vegetation and zoo-geography indicate, by numerous examples that some species could only have spread through perhaps unintentional (passive) human transmission [1]. There are two very old crops found in the „New World‟, which contradict the paradigm of a completely independent origin for American agriculture.
    [Show full text]