Modelling Species Response to Climate Change in Sub-Antarctic Islands: Echinoids As a Case Study for the Kerguelen Plateau

Total Page:16

File Type:pdf, Size:1020Kb

Modelling Species Response to Climate Change in Sub-Antarctic Islands: Echinoids As a Case Study for the Kerguelen Plateau THE KERGUELEN PLATEAU: MARINE ECOSYSTEM + FISHERIES Proceedings of the Second Symposium Kerguelen plateau Marine Ecosystems & Fisheries • SYMPOSIUM 2017 heardisland.antarctica.gov.au/research/kerguelen-plateau-symposium Modelling species response to climate change in sub-Antarctic islands: echinoids as a case study for the Kerguelen Plateau Thomas Saucède1, Charlène Guillaumot1,2, Loïc N. Michel3,4, Salomé Fabri-Ruiz1,2, Alexis Bazin1, Marie Cabessut1, Aurora García-Berro1, Amélie Mateos1, Olivier Mathieu1, Chantal De Ridder2, Philippe Dubois2, Bruno Danis2, Bruno David1, Angie Díaz5, Gilles Lepoint3, Sébastien Motreuil1, Elie Poulin6 and Jean-Pierre Féral7 1 Biogéosciences, UMR 6282 CNRS, Université Bourgogne Franche-Comté, 6 bd Gabriel, F-21000 Dijon, France, [email protected] 2 Laboratoire de Biologie marine CP160/15, Université Libre de Bruxelles, 50 av. Roosevelt, B1050 Bruxelles, Belgium 3 Laboratory of Oceanology, Freshwater and Oceanic Sciences Unit of reSearch (FOCUS), University of Liège, B6C, Allée du 6 Août 15, Quartier Agora, Sart- Tilman, B4000 Liège, Belgium 4 Ifremer, Centre de Bretagne, REM/EEP, Laboratoire Environnement Profond, F-29280 Plouzané, France 5 Departamento de Zoología, Universidad de Concepción, Barrio Universitario s/n, Concepción, Chile 6 Instituto de Ecología y Biodiversidad (IEB), Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras # 3425, Ñuñoa, Santiago, Chile 7 Aix Marseille Université/CNRS/IRD/UAPV, IMBE-Institut Méditerranéen de Biologie et d’Ecologie marine et continentale, UMR 7263, Station Marine d’Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France Corresponding author: [email protected] Abstract In the Kerguelen Islands, the multiple effects of climate change are expected to impact coastal marine habitats. Species distribution models (SDM) can represent a convenient tool to predict the biogeographic response of species to climate change but biotic interactions are not considered in these models. Nevertheless, new species interactions can emerge in communities exposed to environmental changes and the structure of biotic interactions is directly related to the potential resilience of ecosystems. Trophic interaction studies can help predict species vulnerability to environmental changes using carbon (δ13C) and nitrogen (δ15N) stable isotope ratios to generate trophic models. Using new available data inputs, we generated robust SDM and trophic interaction models to assess the potential response and sensitivity of three echinoid species to future worst-case scenarios of environmental change in the Kerguelen Plateau region. The two modelling approaches provide contrasting insights into the potential responses of each species to future environmental changes with both approaches identifying Abatus cordatus to be particularly vulnerable due to its narrow ecological niche and endemism to near-shore areas. Coupling insights gained from trophic niche ecology with species distribution modelling represents a promising approach that can improve our understanding and ability to predict the potential responses of species to future habitat changes. Second Kerguelen Plateau Symposium: marine ecosystem and fisheries: 95–116 95 Modelling species response to climate change Saucède et al. Modéliser la réponse des espèces au changement climatique dans les iles subantarctiques : étude de cas chez les oursins du Plateau des Kerguelen Résumé Les multiples effets du changement climatique impactent d’ores et déjà les habitats marins côtiers des îles Kerguelen. Les modèles de distribution d’espèces (SDM) peuvent permettre de prédire la réponse des espèces au changement climatique mais ces modèles n’intègrent pas le rôle joué par les interactions entre espèces. La structure de ces interactions est pourtant déterminante dans le potentiel de résilience des écosystèmes. Elle peut être modifiée et de nouvelles interactions peuvent émerger dans les communautés exposées aux changements environnementaux. L’étude des interactions trophiques permet d’évaluer en partie la vulnérabilité des espèces aux changements environnementaux, l’analyse de bio-marqueurs tels que les rapports isotopiques du carbone (δ13C) et de l’azote (δ15N) permettant en particulier de produire des modèles d’interactions trophiques. Afin d’évaluer la réponse potentielle et la sensibilité d’espèces des Kerguelen aux changements environnementaux, nous avons produit des modèles de distribution d’espèces et de niche trophique grâce à de nouvelles données de terrain. Trois études de cas ont été choisies parmi les oursins, éléments communs et abondants des communautés benthiques côtières des Kerguelen. Les deux approches de modélisation prédisent des réponses contrastées des espèces aux changements environnementaux futurs selon le scénario le plus pessimiste du GIEC. D’autre part, les deux modèles identifient la même espèce, Abatus cordatus, comme étant particulièrement menacée en raison d’une niche écologique étroite et de son fort endémisme. L’utilisation conjointe de modèles de distribution et de modèles trophiques représente une réelle perspective d’amélioration des prédictions de réponse des espèces aux changements environnementaux. Keywords: species distribution model, trophic niche, isotopic niche, biotic interaction, distribution dynamics Introduction invasive species (Smith, 2002; Allan et al., 2013; Kargel et al., 2014; Molinos et al., 2015; Byrne In the Southern Ocean, and in the sub-Antarctic et al., 2016). Although no exotic species has been islands in particular, the multiple effects of climate reported in coastal marine habitats of the Kerguelen change are already perceptible and include, among Islands yet, this eventuality is not to be excluded other factors, an increase in sea-surface temperature (CCAMLR, 2008, 2013; Hureau, 2011; Féral et al., (Mélice et al., 2003; Ansorge et al., 2009, 2014), a 2019). decrease in rains, an increase in wind speed, and a rise of sunshine hours (Smith, 2002; Mélice et al., Species distribution modelling (SDM) has long 2003; Rouault et al., 2005; Le Roux et al., 2008). retained the attention of ecologists as a useful Future scenarios predict warmer, fresher, and more tool to predict species distribution range shifts in acidic waters, in addition to more extreme climatic response to climate change (Tingley et al., 2014; events and a more intense seasonality (Allan et Guillera-Arroita et al., 2015) and to address conser- al., 2013; Turner et al., 2014; Gutt et al., 2015). vation issues (Ross and Howell, 2013; Marshall et Such changes are expected to alter the structure al., 2014; Reiss et al., 2015; Zucchetta et al., 2016; and functioning of marine ecosystems (Allan et Hill et al., 2017). SDM relates species occurrence al., 2013; Gutt et al., 2015; Féral et al., 2016) and records with environmental predictors (Elith et may lead to shifts in species distributions and in al., 2006; Elith and Leathwick, 2009) to estimate extreme cases, local extinctions (Walther et al., a species’ ecological niche and predict the poten- 2002; Doney et al., 2011). Coastal marine habitats tial extent of suitable areas (Phillips et al., 2017). of the sub-Antarctic islands are particularly at risk Distribution range shifts under climate change can because shallow-water species do not necessarily be predicted by modelling species’ suitable areas have the opportunity to migrate to more favourable according to diverse ecological scenarios (Guisan areas. Moreover, new conditions such as warmer and Thuiller, 2005; Reiss et al., 2015). High- waters, may favour the expansion of exotic and risk areas for species viability can be depicted 96 Second Kerguelen Plateau Symposium: marine ecosystem and fisheries Saucède et al. Modelling species response to climate change on so-called risk maps, which can prove useful are only able to feed on a limited number of food for conservation purposes (Elith and Leathwick, sources (i.e. species with small trophic niches) and 2009; Václavík and Meentemeyer, 2012; Sànchez- typically exhibit low trophic plasticity. This makes Carnero et al., 2016), to define reference sites for them more vulnerable to qualitative and quantita- environmental monitoring (Constable et al., 2014; tive changes in food availability. Gutt et al., 2015, 2018), and for the establishment and management of marine protected areas (Chown Knowledge about trophic ecology of inves- et al., 2017; Coetzee et al., 2017; Gutt et al., 2018). tigated species is highly needed to improve the reliability of model predictions. Over the last dec- Running species distribution models to pre- ades, stable isotopes have proven to be one of the dict the geographic response of species to climate most reliable integrative trophic markers, and have change requires extensive and reliable information become a near-universal tool in ecology (Boecklen systems. Initiatives such as the Census of Ant- et al., 2011). The concept underlying this technique arctic Marine Life (CAML) and the International can be summarised by the idiom ‘you are what Polar Year (2007–2008) have recently contributed you eat’, whereby the isotopic composition of a to improving knowledge of species distribution consumer is a proportional mixture of the isotopic patterns in the Southern Ocean, by initiating and compositions of its food sources, with a slight implementing strong data policies at SCAR (the enrichment towards the heaviest isotope (Boecklen Scientific Committee on Antarctic research) level. et al.,
Recommended publications
  • The Taxonomic Challenge Posed by the Antarctic Echinoids Abatus Bidens and Abatus Cavernosus (Schizasteridae, Echinoidea)
    Polar Biol DOI 10.1007/s00300-015-1842-5 ORIGINAL PAPER The taxonomic challenge posed by the Antarctic echinoids Abatus bidens and Abatus cavernosus (Schizasteridae, Echinoidea) 1,4 1 2 Bruno David • Thomas Sauce`de • Anne Chenuil • 1 3 Emilie Steimetz • Chantal De Ridder Received: 31 August 2015 / Revised: 6 November 2015 / Accepted: 16 November 2015 Ó Springer-Verlag Berlin Heidelberg 2015 Abstract Cryptic species have been repeatedly described together in two haplogroups separated from one another by for two decades among the Antarctic fauna, challenging the 2.7 % of nucleotide differences. They are located in the classic model of Antarctic species with circumpolar dis- Weddell Sea and in the Bransfield Strait. Specimens of A. tributions and leading to revisit the richness of the cavernosus form one single haplogroup separated from Antarctic fauna. No cryptic species had been so far haplogroups of A. bidens by 5 and 3.5 % of nucleotide recorded among Antarctic echinoids, which are, however, differences, respectively. The species was collected in the relatively well diversified in the Southern Ocean. The R/V Drake Passage and in the Bransfield Strait. Morphological Polarstern cruise PS81 (ANT XXIX/3) came across pop- analyses differentiate A. bidens from A. cavernosus. In ulations of Abatus bidens, a schizasterid so far known by contrast, the two genetic groups of A. bidens cannot be few specimens that were found living in sympatry with the differentiated from one another based on morphology species Abatus cavernosus. The species A. cavernosus is alone, suggesting that they may represent a case of cryptic reported to have a circum-Antarctic distribution, while A.
    [Show full text]
  • Biology Bulletin, 2020, Vol
    ISSN 1062-3590, Biology Bulletin, 2020, Vol. 47, No. 6, pp. 683–698. © Pleiades Publishing, Inc., 2020. ECOLOGY Diversity of Antarctic Echinoids and Ecoregions of the Southern Ocean S. Fabri-Ruiza, b, *, N. Navarroa, c, **, R. Laffonta, ***, B. Danisb, ****, and T. Saucèdea, ***** aUMR 6282 Biogéosciences, CNRS, EPHE, Université Bourgogne Franche-Comté, Dijon, 21000 France bMarine Biology Lab, Université Libre de Bruxelle, Brussels, 1050 Belgium cEPHE, PSL University, Paris, 75014 France *e-mail: [email protected] **e-mail: [email protected] ***e-mail: [email protected] ****e-mail: [email protected] *****e-mail: [email protected] Received February 26, 2020; revised May 5, 2020; accepted May 5, 2020 Abstract—Significant environmental changes have already been documented in the Southern Ocean (e.g. sea water temperature increase and salinity drop) but its marine life is still incompletely known given the hetero- geneous nature of biogeographic data. However, to establish sustainable conservation areas, understanding species and communities distribution patterns is critical. For this purpose, the ecoregionalization approach can prove useful by identifying spatially explicit and well-delimited regions of common species composition and environmental settings. Such regions are expected to have similar biotic responses to environmental changes and can be used to define priorities for the designation of Marine Protected Areas. In the present work, a benthic ecoregionalization of the Southern Ocean is proposed based on echinoids distribution data and abiotic environmental parameters. Echinoids are widely distributed in the Southern Ocean, they are tax- onomically and ecologically well diversified and documented. Given the heterogeneity of the sampling effort, predictive spatial models were produced to fill the gaps in between species distribution data.
    [Show full text]
  • Benthic Field Guide 5.5.Indb
    Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.
    [Show full text]
  • Smithsonian at the Poles Contributions to International Polar Year Science
    A Selection from Smithsonian at the Poles Contributions to International Polar Year Science Igor Krupnik, Michael A. Lang, and Scott E. Miller Editors A Smithsonian Contribution to Knowledge WASHINGTON, D.C. 2009 This proceedings volume of the Smithsonian at the Poles symposium, sponsored by and convened at the Smithsonian Institution on 3–4 May 2007, is published as part of the International Polar Year 2007–2008, which is sponsored by the International Council for Science (ICSU) and the World Meteorological Organization (WMO). Published by Smithsonian Institution Scholarly Press P.O. Box 37012 MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu Text and images in this publication may be protected by copyright and other restrictions or owned by individuals and entities other than, and in addition to, the Smithsonian Institution. Fair use of copyrighted material includes the use of protected materials for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify content, and must comply with all other terms or restrictions that may be applicable. Cover design: Piper F. Wallis Cover images: (top left) Wave-sculpted iceberg in Svalbard, Norway (Photo by Laurie M. Penland); (top right) Smithsonian Scientifi c Diving Offi cer Michael A. Lang prepares to exit from ice dive (Photo by Adam G. Marsh); (main) Kongsfjorden, Svalbard, Norway (Photo by Laurie M. Penland). Library of Congress Cataloging-in-Publication Data Smithsonian at the poles : contributions to International Polar Year science / Igor Krupnik, Michael A. Lang, and Scott E. Miller, editors. p. cm. ISBN 978-0-9788460-1-5 (pbk.
    [Show full text]
  • The Antarctic Shelf Case
    Is the species flock concept operational? The Antarctic shelf case. Guillaume Lecointre, Nadia Améziane, Marie-Catherine Boisselier, Céline Bonillo, Frédéric Busson, Romain Causse, Anne Chenuil, Arnaud Couloux, Jean-Pierre Coutanceau, Corinne Cruaud, et al. To cite this version: Guillaume Lecointre, Nadia Améziane, Marie-Catherine Boisselier, Céline Bonillo, Frédéric Busson, et al.. Is the species flock concept operational? The Antarctic shelf case.. PLoS ONE, Public Library of Science, 2013, 8 (8), pp.e68787. 10.1371/journal.pone.0068787. hal-00867232 HAL Id: hal-00867232 https://hal.archives-ouvertes.fr/hal-00867232 Submitted on 3 Oct 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Is the Species Flock Concept Operational? The Antarctic Shelf Case Guillaume Lecointre1*, Nadia Ame´ziane2, Marie-Catherine Boisselier1,Ce´line Bonillo3, Fre´de´ric Busson2, Romain Causse2, Anne Chenuil4, Arnaud Couloux5, Jean-Pierre Coutanceau1, Corinne Cruaud5,Ce´dric d’Udekem d’Acoz6, Chantal De Ridder7, Gael Denys2, Agne`s Dettaı¨1, Guy Duhamel2, Marc Ele´aume2,
    [Show full text]
  • Full Text in Pdf Format
    l MARINE ECOLOGY PROGRESS SERIES Vol. 118: 179-186.1995 Published March 9 Mar. Ecol. Prog. Ser. ; l Pattern of spatial distribution of a brood-protecting schizasterid echinoid, Abatus cordatus, endemic to the Kerguelen Islands Glie Poulin, Jean-Pierre Feral Observatoire Oceanologique de Banyuls, U.R.A. C.N.R.S. 117, F-66650 Banyuls-sur-Mer, France ABSTRACT. This study examined the spatial distribution at different geographic scales of the echinoid Abatus cordatus which is endemic to the Kerguelen Islands. Special attention was paid to the non- dispersal strategy of the specles. It lives burrowed in the sediment and females brood the~ryoung in dorsal pouches. The dispersal of this species is therefore characterised by a limited mobility among adults and the lack of a free-swimming larval phase. Using SCUBA and dredging, A. cordatus was sampled all around Kerguelen. The spatial distribution from the island scale to the bay scale shows dis- continuities at 2 levels: (1) at the island level favourable sectors (princ~pallycharacterised by jagged coastline with numerous sheltered bays) are separated by linear coastline or swell exposed sectors; (2) at the bay scale A. cordatus lives in high density, isolated demes in shallow water of sheltered bays. A. cordatus was most numerous in sediments that ranged from medium to fine sand. The granulometry of the sed~mentand the lack of predation determine this aggregated spatial distrlbution pattern. Con- sidering that the scale of larval dispersal is the consequence of spatial and temporal habitat structure, the non-dispersal strategy of A. cordatus is associated with a spatially varying but temporally constant habitat as predicted by theoretical models.
    [Show full text]
  • Abatus Cordatus , Under
    Ecological Modelling 440 (2021) 109352 Contents lists available at ScienceDirect Ecological Modelling journal homepage: www.elsevier.com/locate/ecolmodel Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions Margot Arnould-P´etr´e a,*, Charl`ene Guillaumot a,b, Bruno Danis b, Jean-Pierre F´eral c, Thomas Sauc`ede a a UMR 6282 Biog´eosciences, Univ. Bourgogne Franche-Comt´e, CNRS, EPHE, 6 bd Gabriel F-21000 Dijon, France b Laboratoire de Biologie Marine, Universit´e Libre de Bruxelles, Avenue F.D.Roosevelt, 50. CP 160/15. 1050 Bruxelles, Belgium c Aix Marseille Universit´e/CNRS/IRD/UAPV, IMBE-Institut M´editerran´een de Biologie et d’Ecologie marine et continentale, UMR 7263, Station Marine d’Endoume, Chemin de la Batterie des Lions, 13007 Marseille, France ARTICLE INFO ABSTRACT Keywords: The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern Ecological modelling oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing Kerguelen the responses of species and populations to environmental change is challenging in such areas for which Climate change ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Model sensitivity Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and Endemic echinoderm Dynamic energy budget common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The Individual-based model model relies on a dynamic energy budget model (DEB) developed at the individual level.
    [Show full text]
  • Understanding Processes at the Origin of Species Flocks with A
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Electronic Publication Information Center Biol. Rev. (2017), pp. 000–000. 1 doi: 10.1111/brv.12354 Understanding processes at the origin of species flocks with a focus on the marine Antarctic fauna Anne Chenuil1∗, Thomas Saucede` 2, Lenaïg G. Hemery3,MarcEleaume´ 4, Jean-Pierre Feral´ 1, Nadia Ameziane´ 4, Bruno David2,5, Guillaume Lecointre4 and Charlotte Havermans6,7,8 1Institut M´editerran´een de Biodiversit´e et d’Ecologie marine et continentale (IMBE-UMR7263), Aix-Marseille Univ, Univ Avignon, CNRS, IRD, Station Marine d’Endoume, Chemin de la Batterie des Lions, F-13007 Marseille, France 2UMR6282 Biog´eosciences, CNRS - Universit´e de Bourgogne Franche-Comt´e, 6 boulevard Gabriel, F-21000 Dijon, France 3DMPA, UMR 7208 BOREA/MNHN/CNRS/Paris VI/ Univ Caen, 57 rue Cuvier, 75231 Paris Cedex 05, France 4UMR7205 Institut de Syst´ematique, Evolution et Biodiversit´e, CNRS-MNHN-UPMC-EPHE, CP 24, Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 5Mus´eum national d’Histoire naturelle, 57 rue Cuvier, 75005 Paris, France 6Marine Zoology, Bremen Marine Ecology (BreMarE), University of Bremen, PO Box 330440, 28334 Bremen, Germany 7Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, D-27570 Bremerhaven, Germany 8OD Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium ABSTRACT Species flocks (SFs) fascinate evolutionary biologists who wonder whether such striking diversification can be driven by normal evolutionary processes. Multiple definitions of SFs have hindered the study of their origins.
    [Show full text]
  • Abatus Agassizii
    fmicb-11-00308 February 27, 2020 Time: 15:33 # 1 ORIGINAL RESEARCH published: 28 February 2020 doi: 10.3389/fmicb.2020.00308 Characterization of the Gut Microbiota of the Antarctic Heart Urchin (Spatangoida) Abatus agassizii Guillaume Schwob1,2*, Léa Cabrol1,3, Elie Poulin1 and Julieta Orlando2* 1 Laboratorio de Ecología Molecular, Instituto de Ecología y Biodiversidad, Facultad de Ciencias, Universidad de Chile, Santiago, Chile, 2 Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile, 3 Aix Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France Abatus agassizii is an irregular sea urchin species that inhabits shallow waters of South Georgia and South Shetlands Islands. As a deposit-feeder, A. agassizii nutrition relies on the ingestion of the surrounding sediment in which it lives barely burrowed. Despite the low complexity of its feeding habit, it harbors a long and twice-looped digestive tract suggesting that it may host a complex bacterial community. Here, we characterized the gut microbiota of specimens from two A. agassizii populations at the south of the King George Island in the West Antarctic Peninsula. Using a metabarcoding approach targeting the 16S rRNA gene, we characterized the Abatus microbiota composition Edited by: David William Waite, and putative functional capacity, evaluating its differentiation among the gut content Ministry for Primary Industries, and the gut tissue in comparison with the external sediment. Additionally, we aimed New Zealand to define a core gut microbiota between A. agassizii populations to identify potential Reviewed by: Cecilia Brothers, keystone bacterial taxa.
    [Show full text]
  • Phylogenomic Analyses of Echinoid Diversification Prompt a Re
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.19.453013; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Phylogenomic analyses of echinoid diversification prompt a re- 2 evaluation of their fossil record 3 Short title: Phylogeny and diversification of sea urchins 4 5 Nicolás Mongiardino Koch1,2*, Jeffrey R Thompson3,4, Avery S Hatch2, Marina F McCowin2, A 6 Frances Armstrong5, Simon E Coppard6, Felipe Aguilera7, Omri Bronstein8,9, Andreas Kroh10, Rich 7 Mooi5, Greg W Rouse2 8 9 1 Department of Earth & Planetary Sciences, Yale University, New Haven CT, USA. 2 Scripps Institution of 10 Oceanography, University of California San Diego, La Jolla CA, USA. 3 Department of Earth Sciences, 11 Natural History Museum, Cromwell Road, SW7 5BD London, UK. 4 University College London Center for 12 Life’s Origins and Evolution, London, UK. 5 Department of Invertebrate Zoology and Geology, California 13 Academy of Sciences, San Francisco CA, USA. 6 Bader International Study Centre, Queen's University, 14 Herstmonceux Castle, East Sussex, UK. 7 Departamento de Bioquímica y Biología Molecular, Facultad de 15 Ciencias Biológicas, Universidad de Concepción, Concepción, Chile. 8 School of Zoology, Faculty of Life 16 Sciences, Tel Aviv University, Tel Aviv, Israel. 9 Steinhardt Museum of Natural History, Tel-Aviv, Israel. 10 17 Department of Geology and Palaeontology, Natural History Museum Vienna, Vienna, Austria 18 * Corresponding author.
    [Show full text]
  • Matrotrophy and Placentation in Invertebrates: a New Paradigm
    Biol. Rev. (2016), 91, pp. 673–711. 673 doi: 10.1111/brv.12189 Matrotrophy and placentation in invertebrates: a new paradigm Andrew N. Ostrovsky1,2,∗, Scott Lidgard3, Dennis P. Gordon4, Thomas Schwaha5, Grigory Genikhovich6 and Alexander V. Ereskovsky7,8 1Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia 2Department of Palaeontology, Faculty of Earth Sciences, Geography and Astronomy, Geozentrum, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria 3Integrative Research Center, Field Museum of Natural History, 1400 S. Lake Shore Dr., Chicago, IL 60605, U.S.A. 4National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand 5Department of Integrative Zoology, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria 6Department for Molecular Evolution and Development, Faculty of Life Sciences, University of Vienna, Althanstrasse 14, A-1090, Vienna, Austria 7Department of Embryology, Faculty of Biology, Saint Petersburg State University, Universitetskaja nab. 7/9, 199034, Saint Petersburg, Russia 8Institut M´editerran´een de Biodiversit´e et d’Ecologie marine et continentale, Aix Marseille Universit´e, CNRS, IRD, Avignon Universit´e, Station marine d’Endoume, Chemin de la Batterie des Lions, 13007, Marseille, France ABSTRACT Matrotrophy, the continuous extra-vitelline supply of nutrients from the parent to the progeny during gestation, is one of the masterpieces of nature, contributing to offspring fitness and often correlated with evolutionary diversification. The most elaborate form of matrotrophy—placentotrophy—is well known for its broad occurrence among vertebrates, but the comparative distribution and structural diversity of matrotrophic expression among invertebrates is wanting.
    [Show full text]
  • Preliminary Results in the Sexual Dimorphism Determination of the Sea Urchin Lytechinus Variegatus Variegatus (Lamarck, 1816), Echinoidea, Toxopneustidae
    Preliminary results in the sexual dimorphism determination of the sea urchin Lytechinus variegatus variegatus (Lamarck, 1816), Echinoidea, Toxopneustidae Denis M. S. Abessa 1; Bauer R. F. Rachid 1,2 & Eduinetty Ceei Pereira M. Sousa 1instituto Oceanográfico da Universidade de São Paulo (Caixa Postal 66149, 05315-970 São Paulo, SP, Brazil) e-mail: [email protected] 2Fundação de Estudos e Pesquisas Aquáticas (Av. Afrânio Peixoto, 412, 05507-000 São Paulo, SP, Brazil) Sea urchin embryos are widely used as test- The distribution and ecology of L. variegatus organisms in ecotoxicological studies. For the are well described (Serafy, 1973; Giordano, 1986). Southeastern Brazilian coast, chronic and acute According to Sánchez-Jérez et al. (2001), L. toxicity test methods have been standardized for variegatus is the least abundant of the sea urchins Lytechinus variegatus (CETESB, 1992). This species from the State of São Paulo, occurring in areas with is abundant, easy to collect, and is fertile throughout sand and rocks, and presenting a patchy distribution. the year. Moreover, tests with L. variegatus are We noticed that L. variegatus can be found in high sensitive, rapid and relatively easy to do. Due to these densities in very few sites, and they are always reasons, toxicity testing with this species is now present at these places, whereas in other sites they routinely employed by some laboratories from the occur in variable, generally low densities or are State of São Paulo. absent. Because of this, each laboratory tend to Toxicity test protocols require the use of establish regular collection sites, that are very limited gamete pools obtained from at least three individuals both in area and number of individuals.
    [Show full text]