Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 November 2017 doi:10.20944/preprints201711.0041.v1 Peer-reviewed version available at Cancers 2017, 9, 160; doi:10.3390/cancers9120160 Article Integrative bioinformatic analysis of transcriptomic data identifies conserved molecular pathways underlying ionizing radiation-induced bystander effects (RIBE) Constantinos Yeles1,2, Efstathios-Iason Vlachavas2,3,4, Olga Papadodima2, Eleftherios Pilalis4, Constantinos E. Vorgias1, Alexandros G. Georgakilas5, and Aristotelis Chatziioannou2,4,* 1 Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Zografou Campus, Athens 15701, Greece 2 Metabolic Engineering and Bioinformatics Research Team, Institute of Biology Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens 11635, Greece 3 Department of Molecular Biology and Genetics, Democritus University of Thrace, Dragana 68100, Greece 4 Enios Applications Private Limited Company, Athens A17671, Greece 5 Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou 15780, Athens, Greece * Correspondence:
[email protected]; Tel.: +30-2107273751- Abstract: Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular events is initiated in response to the exposure to ionizing radiation (IR), something that may occur during diagnostic or therapeutic medical applications. In order to better investigate these complex response mechanisms, we employed a unified framework integrating statistical microarray analysis, signal normalization and translational bioinformatics functional analysis techniques. This approach was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE. The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated samples versus sham-irradiated controls.