Fatal Propionic Acidemia: a Challenging Diagnosis

Total Page:16

File Type:pdf, Size:1020Kb

Fatal Propionic Acidemia: a Challenging Diagnosis Issue: Ir Med J; Vol 112; No. 7; P980 Fatal Propionic Acidemia: A Challenging Diagnosis A. Fulmali, N. Goggin 1. Department of Paediatrics, NDDH, Barnstaple, UK 2. Department of Paediatrics, UHW, Waterford, Ireland Dear Sir, We present a two days old neonate with severe form of propionic acidemia with lethal outcome. Propionic acidemia is an AR disorder, presents in the early neonatal period with progressive encephalopathy and death can occur quickly. A term neonate admitted to NICU on day 2 with poor feeding, lethargy and dehydration. Parents are non- consanguineous and there was no significant family history. Prenatal care had been excellent. Delivery had been uneventful. No resuscitation required with good APGAR scores. Baby had poor suck, lethargy, hypotonia and had lost about 13% of the birth weight. Initial investigations showed hypoglycemia (2.3mmol/L), uremia (8.3mmol/L), hypernatremia (149 mmol/L), severe metabolic acidosis (pH 7.24, HCO3 9.5, BE -18.9) with high anion gap (41) and ketonuria (4+). Hematologic parameters, inflammatory markers and CSF examination were unremarkable. Baby received initial fluid resuscitation and commenced on IV antibiotics. Generalised seizures became eminent at 70 hours of age. Loading doses of phenobarbitone and phenytoin were given. Hepatomegaly of 4cm was spotted on day 4 of life. Very soon baby became encephalopathic requiring invasive ventilation. At this stage clinical features were concerning for metabolic disorder and hence was transferred to tertiary care centre where further investigations showed high ammonia level (1178 μg/dl) and urinary organic acids were suggestive of propionic acidemia. Specific treatment for hyperammonemia and propionic acidemia was started. MRI brain displayed diffusion abnormality in thalami, basal ganglia and brain stem bilaterally and EEG showed severe encephalopathy. Enzyme analysis of fibroblasts revealed severely depressed levels of Propionyl-CoA Carboxylase. Despite improvement in metabolic parameters baby continued to deteriorate clinically with increasing encephalopathy and respiratory depression and active care was withdrawn after discussion with parents. Propionic acidemia is the most common organic acidemia with estimated prevalence between 1:35000- 75000/population. It is caused by mutations in PCCA and PCCB genes which encode α and β subunits of PCC, respectively. Prenatal diagnosis is possible with measurement of the abnormal metabolite in amniotic fluid ¹ ² . Recently a group from Spain demonstrated that non-invasive prenatal diagnosis is possible by studying maternal plasma¹. Clinical findings are nonspecific. Neonatal onset propionic acidemia is characterised by poor feeding, vomiting, hypotonia, lethargy, dehydration, and clinical signs of severe ketoacidosis progress rapidly to coma and death. Seizures occur in about 30% of affected infants. It is frequently accompanied by metabolic acidosis with high anion gap, ketonuria, hypoglycaemia, hyperammonemia and cytopenias. Moderate to severe mental retardation and neurologic manifestations indicating extrapyramidal and pyramidal signs are common sequelae in the older survivors. These abnormalities usually occur after metabolic decompensation. Neuroimaging shows destruction of basal ganglia. This phenomena has been referred to in the literature as metabolic stroke3. Delayed diagnosis or treatment of hyperammonemia leads to high mortality. Thus it becomes medical emergency when present 4. Our patient had most of the above mentioned features. But persistent metabolic acidosis, ketonuria alerted us towards organic acidemia. Thus all neonates with severe metabolic acidosis with ketonuria, one should raise suspicion for organic acidemia; investigations and treatment should be started immediately to avoid severe neurological damage and death. Corresponding Author: Amruta Fulmali Department of Paediatrics, NDDH, Barnstaple, UK Email: [email protected] References: 1. Bustamante-Aragones A, Pérez-Cerdá C, Pérez B, de Alba MR, Ugarte M, Ramos C. Prenatal diagnosis in maternal plasma of a fetal mutation causing propionic acidemia. Mol Genet Metab. 2008; 95:101-3. 2. Inoue Y, Ohse M, Shinka T, Kehara T. Prenatal diagnosis of propionic acidemia by measuring methylcitric acid in dried amniotic fluid on filter paper using GC/MS. J Chromatogr B Analyt Technol Biomed Life Sci. 2008; 870:160-3. 3. Nelsons Textbook of Paediatrics. 20th Ed. Elsevier Saunders. 4. Rafique M. Propionic acidaemia: demographic characteristics and complications. J Pediatr Endocrinol Metab. 2013; 26 (5-6):497-501. .
Recommended publications
  • Hyperammonemia in Review: Pathophysiology, Diagnosis, and Treatment
    Pediatr Nephrol DOI 10.1007/s00467-011-1838-5 EDUCATIONAL REVIEW Hyperammonemia in review: pathophysiology, diagnosis, and treatment Ari Auron & Patrick D. Brophy Received: 23 September 2010 /Revised: 9 January 2011 /Accepted: 12 January 2011 # IPNA 2011 Abstract Ammonia is an important source of nitrogen and is the breakdown and catabolism of dietary and bodily proteins, required for amino acid synthesis. It is also necessary for respectively. In healthy individuals, amino acids that are not normal acid-base balance. When present in high concentra- needed for protein synthesis are metabolized in various tions, ammonia is toxic. Endogenous ammonia intoxication chemical pathways, with the rest of the nitrogen waste being can occur when there is impaired capacity of the body to converted to urea. Ammonia is important for normal animal excrete nitrogenous waste, as seen with congenital enzymatic acid-base balance. During exercise, ammonia is produced in deficiencies. A variety of environmental causes and medica- skeletal muscle from deamination of adenosine monophos- tions may also lead to ammonia toxicity. Hyperammonemia phate and amino acid catabolism. In the brain, the latter refers to a clinical condition associated with elevated processes plus the activity of glutamate dehydrogenase ammonia levels manifested by a variety of symptoms and mediate ammonia production. After formation of ammonium signs, including significant central nervous system (CNS) from glutamine, α-ketoglutarate, a byproduct, may be abnormalities. Appropriate and timely management requires a degraded to produce two molecules of bicarbonate, which solid understanding of the fundamental pathophysiology, are then available to buffer acids produced by dietary sources. differential diagnosis, and treatment approaches available.
    [Show full text]
  • Effect of Propionic Acid on Fatty Acid Oxidation and U Reagenesis
    Pediat. Res. 10: 683- 686 (1976) Fatty degeneration propionic acid hyperammonemia propionic acidemia liver ureagenesls Effect of Propionic Acid on Fatty Acid Oxidation and U reagenesis ALLEN M. GLASGOW(23) AND H. PET ER C HASE UniversilY of Colorado Medical Celller, B. F. SlOlillsky LaboralOries , Denver, Colorado, USA Extract phosphate-buffered salin e, harvested with a brief treatment wi th tryps in- EDTA, washed twice with ph os ph ate-buffered saline, and Propionic acid significantly inhibited "CO z production from then suspended in ph os ph ate-buffe red saline (145 m M N a, 4.15 [I-"ejpalmitate at a concentration of 10 11 M in control fibroblasts m M K, 140 m M c/, 9.36 m M PO" pH 7.4) . I n mos t cases the cells and 100 11M in methyl malonic fibroblasts. This inhibition was we re incubated in 3 ml phosph ate-bu ffered sa lin e cont aining 0.5 similar to that produced by 4-pentenoic acid. Methylmalonic acid I1Ci ll-I4Cj palm it ate (19), final concentration approximately 3 11M also inhibited ' 'C0 2 production from [V 'ejpalmitate, but only at a added in 10 II I hexane. Increasing the amount of hexane to 100 II I concentration of I mM in control cells and 5 mM in methyl malonic did not impair palmit ate ox id ation. In two experiments (Fig. 3) the cells. fibroblasts were in cub ated in 3 ml calcium-free Krebs-Ringer Propionic acid (5 mM) also inhibited ureagenesis in rat liver phosphate buffer (2) co nt ain in g 5 g/ 100 ml essent iall y fatty ac id slices when ammonia was the substrate but not with aspartate and free bovine se rum albumin (20), I mM pa lm itate, and the same citrulline as substrates.
    [Show full text]
  • Propionic Acidemia: an Extremely Rare Cause of Hemophagocytic Lymphohistiocytosis in an Infant
    Case report Arch Argent Pediatr 2020;118(2):e174-e177 / e174 Propionic acidemia: an extremely rare cause of hemophagocytic lymphohistiocytosis in an infant Sultan Aydin Kökera, MD, Osman Yeşilbaşb, MD, Alper Kökerc, MD, and Esra Şevketoğlud, Assoc. Prof. ABSTRACT INTRODUCTION Hemophagocytic lymphohystiocytosis (HLH) may be primary Hemophagocytic lymphohistiocytosis (inherited/familial) or secondary to infections, malignancies, rheumatologic disorders, immune deficiency syndromes (HLH) is a life-threatening disorder in and metabolic diseases. Cases including lysinuric protein which there is uncontrolled proliferation of intolerance, multiple sulfatase deficiency, galactosemia, activated lymphocytes and histiocytes. The Gaucher disease, Pearson syndrome, and galactosialidosis have diagnosis of HLH is based on fulfilling at least previously been reported. It is unclear how the metabolites trigger HLH in metabolic diseases. A 2-month-old infant five of eight criteria (fever, splenomegaly, with lethargy, pallor, poor feeding, hepatosplenomegaly, bicytopenia, hypertriglyceridemia and/ fever and pancytopenia, was diagnosed with HLH and the or hypofibrinogenemia, hemophagocytosis, HLH-2004 treatment protocol was initiated. Analysis for low/absent natural killer cell activity, primary HLH gene mutations and metabolic screening tests were performed together; primary HLH gene mutations were hyperferritinemia, and high soluble interleukin- negative, but hyperammonemia and elevated methyl citrate 2-receptor levels). HLH includes both familial were detected. Propionic acidemia was diagnosed with tandem and reactive disease triggered by infection, mass spectrometry in neonatal dried blood spot. We report this immunologic disorder, malignancy, or drugs. case of HLH secondary to propionic acidemia. Both metabolic disorder screening tests and gene mutation analysis may be Clinical presentations of patients with primary performed simultaneously especially for early diagnosis in (familial) and secondary (reactive) HLH are infants presenting with HLH.
    [Show full text]
  • Clinical Spectrum of Glycine Encephalopathy in Indian Children
    Clinical Spectrum of Glycine Encephalopathy in Indian children Anil B. Jalan *, Nandan Yardi ** NIRMAN, 203, Nirman Vyapar Kendra, Sector 17, Vashi – Navi-Mumbai, India – 400 705 * Chief Scientific Research Officer (Bio – chemical Genetics) ** Paediatric Neurologist an Epileptologist, Pune. Introduction: NKH is generally considered to be a rare disease, but relatively higher incidences have been reported in Northern Finland, British Columbia and Israel (1,2). Non Ketotic Hyperglycinemia, also known as Glycine Encephalopathy, is an Autosomal recessive disorder of Glycine metabolism caused by a defect in the Glycine cleavage enzyme complex (GCS). GCS is a complex of four proteins and coded on 4 different chromosomes. 1. P – Protein ( Pyridoxal Phosphate containing glycine Decarboxylase, GLDC) -> 80 % cases, [ MIM no. 238300 ] , 2. H – Protein (Lipoic acid containing) – Rare, [MIM no. 238310], 3. T – Protein ( Tetrahydrofolate requiring aminomethyltranferase AMT ) – 15 % cases [ MIM no. 238330], 4. L – Protein (Lipoamide dehydrogenase) – MSUD like picture [MIM no. 238331] (1). In classical NKH, levels of CSF – glycine and the ratio of CSF / Plasma glycine are very high (1). Classically, NKH presents in the early neonatal period with progressive lethargy, hypotonia, myoclonic jerks, hiccups, and apnea, usually leading to total unresponsiveness, coma, and death unless the patient is supported through this stage with mechanical ventilation. Survivors almost invariably display profound neurological disability and intractable seizures. In a minority of NKH cases the presentation is atypical with a later onset and features including seizures, developmental delay and / or regression, hyperactivity, spastic diplegia, spino – cerebeller degeneration, optic atrophy, vertical gaze palsy, ataxia, chorea, and pulmonary hypertension. Atypical cases are more likely to have milder elevations of glycine concentrations (2).
    [Show full text]
  • Propionic Acidemia Information for Health Professionals
    Propionic Acidemia Information for Health Professionals Propionic acidemia is an organic acid disorder in which individuals are lacking or have reduced activity of the enzyme propionyl-CoA carboxylase, leading to propionic acidemia. Clinical Symptoms Symptoms generally begin in the first few days following birth. Metabolic crisis can occur, particularly after fasting, periods of illness/infection, high protein intake, or during periods of stress on the body. Symptoms of a metabolic crisis include lethargy, behavior changes, feeding problems, hypotonia, and vomiting. If untreated, metabolic crises can lead to tachypnea, brain swelling, cardiomyopathy, seizures, coma, basal ganglia stroke, and death. Many babies die within the first year of life. Lab findings during a metabolic crisis commonly include urine ketones, hyperammonemia, metabolic acidosis, low platelets, low white blood cells, and high blood ammonia and glycine levels. Long term effects may occur despite treatment and include developmental delay, brain damage, dystonia, failure to thrive, short stature, spasticity, pancreatitis, osteoporosis, and skin lesions. Incidence Propionic acidemia occurs in greater than 1 in 75,000 live births and is more common in Saudi Arabians and the Inuit population of Greenland. Genetics of propionic acidemia Mutations in the PCCA and PCCB genes cause propionic acidemia. Mutations prevent the production of or reduce the activity of propionyl-CoA carboxylase, which converts propionyl-CoA to methylmalonyl-CoA. This causes the body to be unable to correctly process isoleucine, valine, methionine, and threonine, resulting in an accumulation of glycine and propionic acid, which causes the symptoms seen in this condition. How do people inherit propionic acidemia? Propionic acidemia is inherited in an autosomal recessive manner.
    [Show full text]
  • Incidence of Inborn Errors of Metabolism by Expanded Newborn
    Original Article Journal of Inborn Errors of Metabolism & Screening 2016, Volume 4: 1–8 Incidence of Inborn Errors of Metabolism ª The Author(s) 2016 DOI: 10.1177/2326409816669027 by Expanded Newborn Screening iem.sagepub.com in a Mexican Hospital Consuelo Cantu´-Reyna, MD1,2, Luis Manuel Zepeda, MD1,2, Rene´ Montemayor, MD3, Santiago Benavides, MD3, Hector´ Javier Gonza´lez, MD3, Mercedes Va´zquez-Cantu´,BS1,4, and Hector´ Cruz-Camino, BS1,5 Abstract Newborn screening for the detection of inborn errors of metabolism (IEM), endocrinopathies, hemoglobinopathies, and other disorders is a public health initiative aimed at identifying specific diseases in a timely manner. Mexico initiated newborn screening in 1973, but the national incidence of this group of diseases is unknown or uncertain due to the lack of large sample sizes of expanded newborn screening (ENS) programs and lack of related publications. The incidence of a specific group of IEM, endocrinopathies, hemoglobinopathies, and other disorders in newborns was obtained from a Mexican hospital. These newborns were part of a comprehensive ENS program at Ginequito (a private hospital in Mexico), from January 2012 to August 2014. The retrospective study included the examination of 10 000 newborns’ results obtained from the ENS program (comprising the possible detection of more than 50 screened disorders). The findings were the following: 34 newborns were confirmed with an IEM, endocrinopathies, hemoglobinopathies, or other disorders and 68 were identified as carriers. Consequently, the estimated global incidence for those disorders was 3.4 in 1000 newborns; and the carrier prevalence was 6.8 in 1000. Moreover, a 0.04% false-positive rate was unveiled as soon as diagnostic testing revealed negative results.
    [Show full text]
  • 16. Questions and Answers
    16. Questions and Answers 1. Which of the following is not associated with esophageal webs? A. Plummer-Vinson syndrome B. Epidermolysis bullosa C. Lupus D. Psoriasis E. Stevens-Johnson syndrome 2. An 11 year old boy complains that occasionally a bite of hotdog “gives mild pressing pain in his chest” and that “it takes a while before he can take another bite.” If it happens again, he discards the hotdog but sometimes he can finish it. The most helpful diagnostic information would come from A. Family history of Schatzki rings B. Eosinophil counts C. UGI D. Time-phased MRI E. Technetium 99 salivagram 3. 12 year old boy previously healthy with one-month history of difficulty swallowing both solid and liquids. He sometimes complains food is getting stuck in his retrosternal area after swallowing. His weight decreased approximately 5% from last year. He denies vomiting, choking, gagging, drooling, pain during swallowing or retrosternal pain. His physical examination is normal. What would be the appropriate next investigation to perform in this patient? A. Upper Endoscopy B. Upper GI contrast study C. Esophageal manometry D. Modified Barium Swallow (MBS) E. Direct laryngoscopy 4. A 12 year old male presents to the ER after a recent episode of emesis. The parents are concerned because undigested food 3 days old was in his vomit. He admits to a sensation of food and liquids “sticking” in his chest for the past 4 months, as he points to the upper middle chest. Parents relate a 10 lb (4.5 Kg) weight loss over the past 3 months.
    [Show full text]
  • Arginine-Provider-Fact-Sheet.Pdf
    Arginine (Urea Cycle Disorder) Screening Fact Sheet for Health Care Providers Newborn Screening Program of the Oklahoma State Department of Health What is the differential diagnosis? Argininemia (arginase deficiency, hyperargininemia) What are the characteristics of argininemia? Disorders of arginine metabolism are included in a larger group of disorders, known as urea cycle disorders. Argininemia is an autosomal recessive inborn error of metabolism caused by a defect in the final step in the urea cycle. Most infants are born to parents who are both unknowingly asymptomatic carriers and have NO known history of a urea cycle disorder in their family. The incidence of all urea cycle disorders is estimated to be about 1:8,000 live births. The true incidence of argininemia is not known, but has been estimated between 1:350,000 and 1:1,000,000. Argininemia is usually asymptomatic in the neonatal period, although it can present with mild to moderate hyperammonemia. Untreated, argininemia usually progresses to severe spasticity, loss of ambulation, severe cognitive and intellectual disabilities and seizures Lifelong treatment includes a special diet, and special care during times of illness or stress. What is the screening methodology for argininemia? 1. An amino acid profile by Tandem Mass Spectrometry (MS/MS) is performed on each filter paper. 2. Arginine is the primary analyte. What is an in-range (normal) screen result for arginine? Arginine less than 100 mol/L is NOT consistent with argininemia. See Table 1. TABLE 1. In-range Arginine Newborn Screening Results What is an out-of-range (abnormal) screen for arginine? Arginine > 100 mol/L requires further testing.
    [Show full text]
  • The Pharmabiotic for Phenylketonuria: Development of a Novel Therapeutic
    University of South Carolina Scholar Commons Senior Theses Honors College Spring 2019 The hP armabiotic for Phenylketonuria: Development of a Novel Therapeutic Chloé Elizabeth LeBegue University of South Carolina, [email protected] Follow this and additional works at: https://scholarcommons.sc.edu/senior_theses Part of the Alternative and Complementary Medicine Commons, Amino Acids, Peptides, and Proteins Commons, Biochemical Phenomena, Metabolism, and Nutrition Commons, Biotechnology Commons, Congenital, Hereditary, and Neonatal Diseases and Abnormalities Commons, Digestive, Oral, and Skin Physiology Commons, Digestive System Diseases Commons, Enzymes and Coenzymes Commons, Genetic Phenomena Commons, Medical Biotechnology Commons, Medical Genetics Commons, Medical Nutrition Commons, Medical Pharmacology Commons, Nutritional and Metabolic Diseases Commons, Other Pharmacy and Pharmaceutical Sciences Commons, Pharmaceutical Preparations Commons, Pharmaceutics and Drug Design Commons, and the Preventive Medicine Commons Recommended Citation LeBegue, Chloé Elizabeth, "The hP armabiotic for Phenylketonuria: Development of a Novel Therapeutic" (2019). Senior Theses. 267. https://scholarcommons.sc.edu/senior_theses/267 This Thesis is brought to you by the Honors College at Scholar Commons. It has been accepted for inclusion in Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. THE PHARMABIOTIC FOR PHENYLKETONURIA: DEVELOPMENT OF A NOVEL THERAPEUTIC By Chloé Elizabeth
    [Show full text]
  • Overview of Newborn Screening for Organic Acidemias – for Parents
    Overview of Newborn Screening for Organic Acidemias – For Parents What is newborn screening? What organic acidemias are on Indiana’s newborn screen? Before babies go home from the nursery, they have a Indiana’s newborn screen tests for several organic small amount of blood taken from their heel to test for acidemias. Some of the organic acidemias on a group of conditions, including organic acidemias. Indi ana’s newborn screen are: Babies who screen positive for an organic acidemia 3-Methylcrotonyl-CoA carboxylase need follow-up tests done to confirm they have the deficiency (also called 3-MCC deficiency) condition. Not all babies with a positive newborn Glutaric acidemia, type I screen will have an organic acidemia. Isovaleric acidemia Methylmalonic acidemia What are organic acidemias? Multiple-CoA carboxylase deficiency Propionic acidemia Organic acidemias are conditions that occur when a person’s body is not able to use protein to make What are the symptoms of organic acidemias? energy. Normally, when we eat, our bodies digest (or break down) food into certain proteins. Those Every child with an organic acidemia is different. proteins are used by our bodies to make energy. Most babies with organic acidemias will look normal Enzymes (special proteins that help our bodies at birth. Symptoms of organic acidemias can appear perform chemical reactions) usually help our bodies shortly after birth, or they may show up later in break down food and create energy. infancy or childhood. Common symptoms of organic A person with an organic acidemia is missing at least acidemias include weakness, vomiting, low blood one enzyme, or his/her enzymes do not work sugar, hypotonia (weak muscles), spasticity (muscle correctly.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE Et Al
    US 20160281 166A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0281166 A1 BHATTACHARJEE et al. (43) Pub. Date: Sep. 29, 2016 (54) METHODS AND SYSTEMIS FOR SCREENING Publication Classification DISEASES IN SUBJECTS (51) Int. Cl. (71) Applicant: PARABASE GENOMICS, INC., CI2O I/68 (2006.01) Boston, MA (US) C40B 30/02 (2006.01) (72) Inventors: Arindam BHATTACHARJEE, G06F 9/22 (2006.01) Andover, MA (US); Tanya (52) U.S. Cl. SOKOLSKY, Cambridge, MA (US); CPC ............. CI2O 1/6883 (2013.01); G06F 19/22 Edwin NAYLOR, Mt. Pleasant, SC (2013.01); C40B 30/02 (2013.01); C12O (US); Richard B. PARAD, Newton, 2600/156 (2013.01); C12O 2600/158 MA (US); Evan MAUCELI, (2013.01) Roslindale, MA (US) (21) Appl. No.: 15/078,579 (57) ABSTRACT (22) Filed: Mar. 23, 2016 Related U.S. Application Data The present disclosure provides systems, devices, and meth (60) Provisional application No. 62/136,836, filed on Mar. ods for a fast-turnaround, minimally invasive, and/or cost 23, 2015, provisional application No. 62/137,745, effective assay for Screening diseases, such as genetic dis filed on Mar. 24, 2015. orders and/or pathogens, in Subjects. Patent Application Publication Sep. 29, 2016 Sheet 1 of 23 US 2016/0281166 A1 SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS S{}}\\93? sau36 Patent Application Publication Sep. 29, 2016 Sheet 2 of 23 US 2016/0281166 A1 &**** ? ???zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz??º & %&&zzzzzzzzzzzzzzzzzzzzzzz &Sssssssssssssssssssssssssssssssssssssssssssssssssssssssss & s s sS ------------------------------ Patent Application Publication Sep. 29, 2016 Sheet 3 of 23 US 2016/0281166 A1 23 25 20 FG, 2. Patent Application Publication Sep. 29, 2016 Sheet 4 of 23 US 2016/0281166 A1 : S Patent Application Publication Sep.
    [Show full text]
  • Successful Remote Monitoring During COVID-19 Pandemic of Patients
    Successful Remote Monitoring During COVID-19 Pandemic of Patients with Inborn Errors of the Amino acid Metabolism not including PKU from a Single Reference center using Filter Paper Samples Sinziana Stanescu ( [email protected] ) Ramon y Cajal University Hospital: Hospital Universitario Ramon y Cajal https://orcid.org/0000-0003-0340-4580 Amaya Belanger-Quintana Ramon y Cajal University Hospital: Hospital Universitario Ramon y Cajal Francisco Arrieta Ramon y Cajal University Hospital: Hospital Universitario Ramon y Cajal Patricia Alcaide Universidad Autonoma de Madrid Facultad de Ciencias Pedro Ruiz-Sala Universidad Autonoma de Madrid Facultad de Ciencias Research Keywords: COVID-19, inborn errors of metabolism, monitoring, lter samples Posted Date: December 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-122663/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/9 Abstract Background. Patients with inborn errors of metabolism (IEM) pose specic management challenges, considering their multisystem involvement. Among them, children and adults with organic acidemias (OA) and other disorders of the amino acid metabolism have a high risk for severe metabolic events that need to be recognized and promptly treated, and therefore require frequent clinical and biochemical evaluations. The novel highly pathogenic SARS-CoV2 virus appeared in Europe in the rst trimester of 2020. This pandemic has a huge impact on the health care systems all over the world, interrupting the follow-up of many chronic diseases. For metabolic patients, travel to reference units may be reduced due to mobility restrictions but more importantly, attendance to medical facilities can be a risk of infection that can be a danger in itself but also trigger a metabolic decompensation.
    [Show full text]