NAOS+CONICA at YEPUN: First VLT Adaptive Optics System Sees First Light W
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Imaginative Geographies of Mars: the Science and Significance of the Red Planet, 1877 - 1910
Copyright by Kristina Maria Doyle Lane 2006 The Dissertation Committee for Kristina Maria Doyle Lane Certifies that this is the approved version of the following dissertation: IMAGINATIVE GEOGRAPHIES OF MARS: THE SCIENCE AND SIGNIFICANCE OF THE RED PLANET, 1877 - 1910 Committee: Ian R. Manners, Supervisor Kelley A. Crews-Meyer Diana K. Davis Roger Hart Steven D. Hoelscher Imaginative Geographies of Mars: The Science and Significance of the Red Planet, 1877 - 1910 by Kristina Maria Doyle Lane, B.A.; M.S.C.R.P. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin August 2006 Dedication This dissertation is dedicated to Magdalena Maria Kost, who probably never would have understood why it had to be written and certainly would not have wanted to read it, but who would have been very proud nonetheless. Acknowledgments This dissertation would have been impossible without the assistance of many extremely capable and accommodating professionals. For patiently guiding me in the early research phases and then responding to countless followup email messages, I would like to thank Antoinette Beiser and Marty Hecht of the Lowell Observatory Library and Archives at Flagstaff. For introducing me to the many treasures held deep underground in our nation’s capital, I would like to thank Pam VanEe and Ed Redmond of the Geography and Map Division of the Library of Congress in Washington, D.C. For welcoming me during two brief but productive visits to the most beautiful library I have seen, I thank Brenda Corbin and Gregory Shelton of the U.S. -
ESA/ESO Astronomy Exercise Series A
had a look into the control room, where the different purposes of the computers and monitors were illustrated. After dinner we went again up on the mountain and we saw the opening of the telescopes. The winners were real- ly excited seeing the “big brother” of the NTT moving. After sunset we stayed for a long time in the control room. We got explanations of the instruments mount- ed on each telescope as well as of the objects imaged that night. The Tele- scope Operators, the Staff Astronom- ers and the Visiting Astronomers kindly explained us their work. Of course, on both observatories we had the possibility to ask questions, which was very important for the win- ners, not just hearing astronomers talk- ing, but speaking directly to them. Although the long trip was very ex- VLT: The winners and Gerd Hudepohl in front of UT1. hausting, we forgot it completely seeing the observatories. All are thankful to The next destination was the Paranal got a visit to UT1, ANTU, by day. The ESO for providing this nice prize and Observatory. Humberto Varas was our active optics system and the mounted the opportunity to see the sites, where guide and showed us the site. First we instruments were explained. We also real frontline astronomy is done. In the Footsteps of Scientists – ESA/ESO Astronomy Exercise Series A. BACHER1 and L. LINDBERG CHRISTENSEN2 1ESO and Institut für Astrophysik, Leopold-Franzens-Universität Innsbruck; 2ST-ECF The first instalments of the “ESA/ ESO Astronomy Exercise Series” has been published, on the web and in print (see also ESO PR 29/01). -
Hubble Space Telescope Primer for Cycle 25
January 2017 Hubble Space Telescope Primer for Cycle 25 An Introduction to the HST for Phase I Proposers 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started For information about submitting a HST observing proposal, please begin at the Cycle 25 Announcement webpage at: http://www.stsci.edu/hst/proposing/docs/cycle25announce Procedures for submitting a Phase I proposal are available at: http://apst.stsci.edu/apt/external/help/roadmap1.html Technical documentation about the instruments are available in their respective handbooks, available at: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help Contact the STScI Help Desk by sending a message to [email protected]. Voice mail may be left by calling 1-800-544-8125 (within the US only) or 410-338-1082. The HST Primer for Cycle 25 was edited by Susan Rose, Senior Technical Editor and contributions from many others at STScI, in particular John Debes, Ronald Downes, Linda Dressel, Andrew Fox, Norman Grogin, Katie Kaleida, Matt Lallo, Cristina Oliveira, Charles Proffitt, Tony Roman, Paule Sonnentrucker, Denise Taylor and Leonardo Ubeda. Send comments or corrections to: Hubble Space Telescope Division Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 E-mail:[email protected] CHAPTER 1: Introduction In this chapter... 1.1 About this Document / 7 1.2 What’s New This Cycle / 7 1.3 Resources, Documentation and Tools / 8 1.4 STScI Help Desk / 12 1.1 About this Document The Hubble Space Telescope Primer for Cycle 25 is a companion document to the HST Call for Proposals1. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
The Paleoecology and Fire History from Crater Lake
THE PALEOECOLOGY AND FIRE HISTORY FROM CRATER LAKE, COLORADO: THE LAST 1000 YEARS By Charles T. Mogen A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science and Policy Northern Arizona University August 2018 Approved: R. Scott Anderson, Ph.D., Chair Nicholas P. McKay, Ph.D. Darrell S. Kaufman, Ph.D. Abstract High-resolution pollen, plant macrofossil, charcoal and pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) records were developed from a 154 cm long sediment core collected from Crater Lake (37.39°N, 106.70°W; 3328 m asl), San Juan Mountains, Colorado. Several studies have explored Holocene paleo-vegetation and fire histories from mixed conifer and subalpine bogs and lakes in the San Juan and southern Rocky Mountains utilizing both palynological and charcoal studies, but most have been at relatively low resolution. In addition to presenting the highest resolution palynological study over the last 1000 years from the southern Rocky Mountains, this thesis also presents the first high-resolution pyrogenic PAH and charcoal paired analysis aimed at understanding both long-term fire history and the unresolved relationship between how each of these proxies depict paleofire events. Pollen assemblages, pollen ratios, and paleofire activity, indicated by charcoal and pyrogenic PAH records, were used to infer past climatic conditions. Although the ecosystem surrounding Crater Lake has remained a largely spruce (Picea) dominated forest, the proxies developed in this thesis suggest there were two distinct climate intervals between ~1035 to ~1350 CE and ~1350 to ~1850 CE in the southern Rocky Mountains, associated with the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) respectively. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Exponential Sums After Bombieri and Iwaniec Astérisque, Tome 198-199-200 (1991), P
Astérisque M. N. HUXLEY Exponential sums after Bombieri and Iwaniec Astérisque, tome 198-199-200 (1991), p. 165-175 <http://www.numdam.org/item?id=AST_1991__198-199-200__165_0> © Société mathématique de France, 1991, tous droits réservés. L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/ Publications/Asterisque/) implique l’accord avec les conditions générales d’uti- lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ EXPONENTIAL SUMS AFTER BOMBIERI AND IWANIEC by M.N. HUXLEY BOMBIERI and IWANIEC [BI1, BI2] obtained 9 = 9/56 for the Lindelof exponent (the least 9 for which the Riemann zeta function satisfies C(l/2 + i<) = 0(te+£) as <->oo.) They remarked that their method might not be special to the Lindelof problem; in fact, as the saying goes, "they wrought [worked] better than they knew". To show that one property is uniformly distributed with respect to another property, one forms exponential sums 2M-1 5 = e{f[m)) , (1) M where e(x) = exp 2nix, f(m) = TF(m/M) with F(x) in the function class Cn[l — <5,2 + 6] for some 6 > 0 and n > 4. The case F(x) = log x gives Dirichlet series. If F(x) is a polynomial of degree d with rational coefficients, denominator g, and if T = Md, then the sum 5 is approximately MSJq , where Sq is a complete exponential sum with denominator q. -
Mosasaurs from Germany – a Brief History of the First 100 Years of Research
Netherlands Journal of Geosciences —– Geologie en Mijnbouw | 94 – 1 | 5-18 | 2015 doi: 10.1017/njg.2014.16 Mosasaurs from Germany – a brief history of the first 100 years of research Sven Sachs1,*,JahnJ.Hornung2 &MikeReich2,3 1 Im Hof 9, 51766 Engelskirchen, Germany 2 Georg-August University Gottingen,¨ Geoscience Centre, Department of Geobiology, Gottingen,¨ Germany 3 Georg-August University Gottingen,¨ Geoscience Museum, Gottingen,¨ Germany * Corresponding author. Email: [email protected] Manuscript received: 30 December 2013, accepted: 26 May 2014 Abstract In Germany, mosasaur remains are very rare and only incompletely known. However, the earliest records date back to the 1830s, when tooth crowns werefoundinthechalkoftheIsleofRugen.¨ A number of prominent figures in German palaeontology and geosciences of the 19th and 20th centuries focused on these remains, including, among others, Friedrich von Hagenow, Hermann von Meyer, Andreas Wagner, Hanns Bruno Geinitz and Josef Pompeckj. Most of these works were only short notes, given the scant material. However, the discovery of fragmentary cranial remains in Westphalia in 1908 led to a more comprehensive discussion, which is also of historical importance, as it illustrates the discussions on the highly controversial and radical universal phylogenetic theory proposed by Gustav Steinmann in 1908. This theory saw the existence of continuous lines of descent, evolving in parallel, and did not regard higher taxonomic units as monophyletic groups but as intermediate paraphyletic stages of evolution. In this idea, nearly all fossil taxa form part of these lineages, which extend into the present time, and natural extinction occurs very rarely, if ever. In Steinmann’s concept, mosasaurs were not closely related to squamates but formed an intermediate member in a anagenetic chain from Triassic thalattosaurs to extant baleen whales. -
Alpha ELT Listing
Lienholder Name Lienholder Address City State Zip ELT ID 1ST ADVANTAGE FCU PO BX 2116 NEWPORT NEWS VA 23609 CFW 1ST COMMAND BK PO BX 901041 FORT WORTH TX 76101 FXQ 1ST FNCL BK USA 47 SHERMAN HILL RD WOODBURY CT 06798 GVY 1ST LIBERTY FCU PO BX 5002 GREAT FALLS MT 59403 ESY 1ST NORTHERN CA CU 1111 PINE ST MARTINEZ CA 94553 EUZ 1ST NORTHERN CR U 230 W MONROE ST STE 2850 CHICAGO IL 60606 GVK 1ST RESOURCE CU 47 W OXMOOR RD BIRMINGHAM AL 35209 DYW 1ST SECURITY BK WA PO BX 97000 LYNNWOOD WA 98046 FTK 1ST UNITED SVCS CU 5901 GIBRALTAR DR PLEASANTON CA 94588 W95 1ST VALLEY CU 401 W SECOND ST SN BERNRDNO CA 92401 K31 360 EQUIP FIN LLC 300 BEARDSLEY LN STE D201 AUSTIN TX 78746 DJH 360 FCU PO BX 273 WINDSOR LOCKS CT 06096 DBG 4FRONT CU PO BX 795 TRAVERSE CITY MI 49685 FBU 777 EQUIPMENT FIN LLC 600 BRICKELL AVE FL 19 MIAMI FL 33131 FYD A C AUTOPAY PO BX 40409 DENVER CO 80204 CWX A L FNCL CORP PO BX 11907 SANTA ANA CA 92711 J68 A L FNCL CORP PO BX 51466 ONTARIO CA 91761 J90 A L FNCL CORP PO BX 255128 SACRAMENTO CA 95865 J93 A L FNCL CORP PO BX 28248 FRESNO CA 93729 J95 A PLUS FCU PO BX 14867 AUSTIN TX 78761 AYV A PLUS LOANS 500 3RD ST W SACRAMENTO CA 95605 GCC A/M FNCL PO BX 1474 CLOVIS CA 93613 A94 AAA FCU PO BX 3788 SOUTH BEND IN 46619 CSM AAC CU 177 WILSON AVE NW GRAND RAPIDS MI 49534 GET AAFCU PO BX 619001 MD2100 DFW AIRPORT TX 75261 A90 ABLE INC 503 COLORADO ST AUSTIN TX 78701 CVD ABNB FCU 830 GREENBRIER CIR CHESAPEAKE VA 23320 CXE ABOUND FCU PO BX 900 RADCLIFF KY 40159 GKB ACADEMY BANK NA PO BX 26458 KANSAS CITY MO 64196 ATF ACCENTRA CU 400 4TH -
Hubble Space Telescope Primer for Cycle 18
January 2010 Hubble Space Telescope Primer for Cycle 18 An Introduction to HST for Phase I Proposers Space Telescope Science Institute 3700 San Martin Drive Baltimore, Maryland 21218 [email protected] Operated by the Association of Universities for Research in Astronomy, Inc., for the National Aeronautics and Space Administration How to Get Started If you are interested in submitting an HST proposal, then proceed as follows: • Visit the Cycle 18 Announcement Web page: http://www.stsci.edu/hst/proposing/docs/cycle18announce Then continue by following the procedure outlined in the Phase I Roadmap available at: http://apst.stsci.edu/apt/external/help/roadmap1.html More technical documentation, such as that provided in the Instrument Handbooks, can be accessed from: http://www.stsci.edu/hst/HST_overview/documents Where to Get Help • Visit STScI’s Web site at: http://www.stsci.edu • Contact the STScI Help Desk. Either send e-mail to [email protected] or call 1-800-544-8125; from outside the United States and Canada, call [1] 410-338-1082. The HST Primer for Cycle 18 was edited by Francesca R. Boffi, with the technical assistance of Susan Rose and the contributions of many others from STScI, in particular Alessandra Aloisi, Daniel Apai, Todd Boroson, Brett Blacker, Stefano Casertano, Ron Downes, Rodger Doxsey, David Golimowski, Al Holm, Helmut Jenkner, Jason Kalirai, Tony Keyes, Anton Koekemoer, Jerry Kriss, Matt Lallo, Karen Levay, John MacKenty, Jennifer Mack, Aparna Maybhate, Ed Nelan, Sami-Matias Niemi, Cheryl Pavlovsky, Karla Peterson, Larry Petro, Charles Proffitt, Neill Reid, Merle Reinhart, Ken Sembach, Paula Sessa, Nancy Silbermann, Linda Smith, Dave Soderblom, Denise Taylor, Nolan Walborn, Alan Welty, Bill Workman and Jim Younger. -
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Using the Tycho Catalogue for Axaf
187 USING THE TYCHO CATALOGUE FOR AXAF: GUIDING AND ASPECT RECONSTRUCTION FOR HALF-ARCSECOND X-RAY IMAGES P.J. Green, T.A. Aldcroft, M.R. Garcia, P. Slane, J. Vrtilek Smithsonian Astrophysical Observatory High resolution imaging and/or fast timing measure- ABSTRACT ments are enabled by the High Resolution Camera HRC; Kenter 1996. Advances over the high resolu- tion imagers of Einstein and ROSAT include smaller AXAF, the Advanced X-ray Astrophysics Facility will p ore size, larger micro channel plate area, lower back- b e the third satellite in the series of great observato- ground, energy resolution, and charged particle anti- ries in the NASA program, after the Hubble Space coincidence. Telescop e and the Gamma Ray Observatory. At launch in fall 1998, AXAF will carry a high reso- The AXAF CCD Imaging Sp ectrometer ACIS; lution mirror, two imaging detectors, and two sets of Garmire 1997 is a CCD array for simultaneous imag- transmission gratings Holt 1993. Imp ortant AXAF ing and sp ectroscopyE=E =2050 over almost features are: an order of magnitude improvementin the entire AXAF bandpass with high quantum e- spatial resolution, good sensitivity from 0.1{10keV, ciency and low read noise. Pictures of extended ob- and the capability for high sp ectral resolution obser- jects can b e obtained along with sp ectral information vations over most of this range. from each element of the picture. The ACIS-I array comprises 4 CCDs arranged in a square which pro- The Tycho Catalogue from the Hipparcos mission 2 vide a 16 16 arcmin eld.