New Records of Echinolittorina Punctata (Gastropoda: Littorinidae) in the Mediterranean Sea from Italy, France and Greece Paolo G

Total Page:16

File Type:pdf, Size:1020Kb

New Records of Echinolittorina Punctata (Gastropoda: Littorinidae) in the Mediterranean Sea from Italy, France and Greece Paolo G Marine Biodiversity Records, page 1 of 5. # Marine Biological Association of the United Kingdom, 2015 doi:10.1017/S1755267214001420; Vol. 8; e3; 2015 Published online New records of Echinolittorina punctata (Gastropoda: Littorinidae) in the Mediterranean Sea from Italy, France and Greece paolo g. albano Universita¨t Wien, Institut fu¨r Pala¨ontologie, Althanstraße 14, A-1090 Wien, Austria Echinolittorina punctata was historically distributed in the southern sectors of the Mediterranean Sea. However, in the last decades a progressive range extension has occurred. In this context, new populations in France (Colliure, Cap d’Agde) and in Italy (Monte Argentario, Tuscany) are reported here. The population in Cap d’Agde is the northernmost in the entire Mediterranean Sea, the population in Monte Argentario is the northernmost along the Italian Tyrrhenian coastline and along the direction of range extension described in the last few years. Details on population density and size frequency dis- tributions in Monte Argentario are provided, showing a decrease in density and an increase in minimum size from south to north. New records are also provided from Salamina Island and Rhodes Island in Greece. The latter likely dates back to 1836– 1837 and is the first record from the Mediterranean Sea. This record confirms that the species was widely distributed in the Levantine Sea at the time, although records from Greece and Turkey are extremely rare in the literature and in museum collections. Keywords: Mollusca, Littorinidae, Mediterranean Sea, Italy, France, Greece, distribution records, new records Submitted 24 October 2014; accepted 25 November 2014 INTRODUCTION shell collector communities in Europe. E. punctata has always been considered an interesting finding due to its southern dis- Echinolittorina punctata (Gmelin, 1791) is a prosobranch tribution; it is easily observable in the intertidal zone and also gastropod belonging to the family Littorinidae. Its taxonomic easily recognizable; it would not have escaped the attention of history and current status were reviewed by Reid (2011). the several collectors that have beachcombed Italian shores. E. punctata lives in the intertidal zone, on both natural and In this context, I wish to provide further new records in the man-made hard substrates. Its range spans from the Mediterranean Sea: (i) from southern Tuscany, the northern- Atlantic coast of South Africa to The Gambia, the Canary most locality in Italy; (ii) from southern France, the northern- Islands and the Mediterranean Sea, with the exception of its most locality in the Mediterranean Sea; and (iii) from Greece, northernmost sectors. It is in this latter basin that a remark- likely the first record in the Mediterranean Sea. Consequently, able range extension has been recorded in the last few the maps provided in Albano (2014, Figure 17.2) are updated. decades (see Albano, 2014 for a review). Until approximately 1950, the species was confined to the westernmost Mediterranean Sea (southern Spain and Algeria) and the MATERIALS AND METHODS south-eastern Levantine Sea. Since then, it has been reliably recorded from Tunisia, Turkey, Cyprus and Greece. Living individuals were searched for, by eye, on rocky shores. However, to what extent these records were related to newly Where found, coordinates were retrieved from Google Earth settled populations versus newly surveyed areas is not (datum WGS84) and input into a relational database. In known. On the contrary, the prodigious range extension Monte Argentario (Tuscany, Italy) on 27 May 2014, the along the Italian peninsula that brought the species from the density was estimated by counts in 1 m2 quadrats haphazardly southernmost tip of Sicily (Brugnone, 1850) to the Jonian selected on the shore. Sea in Puglia (Albano & Trono, 2008) and at the latitude of Specimens were then taken to the laboratory, where their Rome along the Tyrrhenian Sea (Albano, 2010) is quite cer- size was measured with a stereomicroscope equipped with a tainly not an artefact of poor detection. The Italian shores high precision measuring stage. Statistical tests and histo- have been surveyed for decades by one of the most numerous grams were performed using the statistical programming environment R, version 3.1.1 (R Development Core Team, Corresponding author: 2009). Specimens were photographed with a Leica M420 P.G. Albano macroscope, shooting photos at different depths of field that Email: [email protected] were later stacked with the CombineZP software. 1 2 paolo g. albano Further records were communicated by colleagues on the and Le Cannelle were different (Kolmogorov–Smirnov test, basis of their field observations (A. Benocci, D. Grech, D ¼ 0.5171, P ≪ 0.05). R. Huet and P. Ovalis). Identification was checked in person or with photos sent by colleagues and further material was retrieved from museum collections (namely, Museum fu¨r DISCUSSION Naturkunde, Berlin). New records from Italy RESULTS The first record of Echinolittorina punctata in Italy dates back to 1850, when G. Brugnone described Turbo siculus, later recognized as a junior synonym of E. punctata, as an abundant New records species on the rocks of Pozzallo at the south-easternmost tip of New populations and records are reported from Italy, France Sicily. The species seemed confined to this area for all of the and Greece (Table 1). Echinolittorina punctata was found 19th century. It was then reported from Catania, on the in Italy in Ansedonia, the southernmost part of Tuscany eastern coast of Sicily, by Patane´ (1946), from the neighbour- (A. Benocci, personal communication), and all around ing coast of Palermo in the 1970s (D’Anna, 1986), from Monte Argentario, Tuscany (Figure 1A, B), on upper inter- Calabria in the 1980s (Micali & Giovine, 1983), in tidal rocks, 5–20 cm above the water-line. In France, indivi- Campania (D’Anna, 2001), Lazio (Soppelsa et al., 2004; duals were found in Colliure (D. Grech, personal Albano, 2010) and Puglia (Albano & Trono, 2008) in the communication) (Figure 2C, D), close to the border with 2000s. The populations that are described here from Spain, and Cap d’Agde (R. Huet, personal communication), Tuscany represent a further step northward along the Italian approximately 80 km to the north-east. In Greece, the Tyrrhenian coast; an advancement of approximately 100 km species was found on Salamina Island, near Athens (P. from the latest records in Lazio, north of Rome, from 2010, Ovalis, personal communication). Moreover, a lot from which is the northernmost record in Italy (Figure 3B). There Rhodes is reported from the Museum fu¨r Naturkunde, is no record in the literature of E. punctata populating Berlin. It was probably collected in 1836–1837. Tuscany. Looking at the personal observations carried out in Monte Argentario from 2001 to 2007, where the species was not previously recorded, it is likely that this population is of Details on the populations at Monte very recent settlement. Argentario, Tuscany It is not clear why all the collected individuals were adults and above 3.2 mm in height. One simple explanation could be In Monte Argentario, species density had a clear south to that smaller (younger) individuals were overlooked due to north trend: the southernmost locality, Feniglia, had a mean their small size. However, Monte Argentario hosts another density of 25.3 specimen m22, Le Cannelle had a mean periwinkle, Melarhaphe neritoides (Linnaeus, 1758), which is density of 4.5 specimen m22 and Bagni di Domiziano had a widespread species in the Mediterranean basin. M. neritoides only 0.5 specimen m22. The localities were situated 10 km was collected in the same quadrats, it is usually smaller than from each other. Moreover, no specimen had a height meas- E. punctata, and indeed very young specimens of 1–2 mm uring less than 3.2 mm (Feniglia) (Figure 2) and the in size were collected along with E. punctata. minimum size increased from south to north, being 5.0 mm A further explanation might be that juveniles live lower on at Le Cannelle and 5.2 mm at Bagni di Domiziano. The the shore, maybe even below the water-line. Palant & height distributions at Feniglia and Le Cannelle were Fishelson (1968) observed that small individuals (less than normal (Shapiro-Wilk test, W ¼ 0.9746 and W ¼ 0.9797 5 mm) of E. punctata lived lower on the shore in Israel, in respectively, P ≫ 0.05), while at Bagni di Domiziano they the regularly wetted zone among Chthamalus, an observation could not be computed because only two specimens confirmed at a different locality by Lipkin & Safriel (1971). were found. Moreover, the height distributions at Feniglia Indeed, this appears to be a general trend in several littorinids, Table 1. New populations and records of Echinolittorina punctata in the Mediterranean Sea. Locality No. specimens Latitude Longitude Date Source Italy, Monte Argentario, Feniglia Beach 76 42824′20′′N11812′36′′E April and May 2014 P.G. Albano under Poggio Pertuso Italy, Monte Argentario, L’Acqua Dolce A few 42822′33′′N11811′22′′E April and May 2014 P.G. Albano Italy, Monte Argentario, Le Cannelle 27 42822′38′′N11808′20′′E April and May 2014 P.G. Albano Italy, Monte Argentario, Porto Santo Stefano A few 42826′22′′N11807′04′′E April 2014 P.G. Albano Italy, Monte Argentario, Bagni di Domiziano 2 42826′07′′N11809′12′′E April and May 2014 P.G. Albano Italy, Promontorio di Ansedonia, Several 42824′N11817′E 16th May 2014 A. Benocci Spacco della Regina France, Colliure A few 42831′27′′N3805′08′′E 10th April 2012 D. Grech France, Cap d’Agde A few 43816′N3830′E 2008 R. Huet Greece, Salamina Island Several 37855′N23830′E 20th May 2012 P. Ovalis Greece, Rhodos 4 36826′N28813′E 1836–1837 Museum fu¨r Naturkunde, Berlin (no. 117971) new records of echinolittorina punctata 3 Costa, 1778) close to the limit of the species distribution in the north of Scotland were dominated by the larger, older individuals.
Recommended publications
  • (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: the Genera Nodilittorina, Austrolittorina and Afrolittorina
    © Copyright Australian Museum, 2004 Records of the Australian Museum (2004) Vol. 56: 75–122. ISSN 0067-1975 The Subfamily Littorininae (Gastropoda: Littorinidae) in the Temperate Southern Hemisphere: The Genera Nodilittorina, Austrolittorina and Afrolittorina DAVID G. REID* AND SUZANNE T. WILLIAMS Department of Zoology, The Natural History Museum, London SW7 5BD, United Kingdom [email protected] · [email protected] ABSTRACT. The littorinine gastropods of the temperate southern continents were formerly classified together with tropical species in the large genus Nodilittorina. Recently, molecular data have shown that they belong in three distinct genera, Austrolittorina, Afrolittorina and Nodilittorina, whereas the tropical species are members of a fourth genus, Echinolittorina. Austrolittorina contains 5 species: A. unifasciata in Australia, A. antipodum and A. cincta in New Zealand, and A. fernandezensis and A. araucana in western South America. Afrolittorina contains 4 species: A. africana and A. knysnaensis in southern Africa, and A. praetermissa and A. acutispira in Australia. Nodilittorina is monotypic, containing only the Australian N. pyramidalis. This paper presents the first detailed morphological descriptions of the African and Australasian species of these three southern genera (the eastern Pacific species have been described elsewhere). The species-level taxonomy of several of these has been confused in the past; Afrolittorina africana and A. knysnaensis are here distinguished as separate taxa; Austrolittorina antipodum is a distinct species and not a subspecies of A. unifasciata; Nodilittorina pyramidalis is separated from the tropical Echinolittorina trochoides with similar shell characters. In addition to descriptions of shells, radulae and reproductive anatomy, distribution maps are given, and the ecological literature reviewed.
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • Echinolittorina Peruviana (Lamarck, 1822): Antecedentes De La Especie
    Sociedad Malacológica de Chile (SMACH) Amici Molluscarum 18: 39-42 (2010) Echinolittorina peruviana (Lamarck, 1822): antecedentes de la especie Viviana M. Castillo y Donald I. Brown Laboratorio de Biología de la Reproducción y del Desarrollo, Departamento de Biología y Ciencias Ambientales, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile. E-mail: [email protected] Clasificación Clase Gastropoda Cuvier, 1795 en cuya base interna se observa una línea blanca, Subclase Orthogastropoda Ponder y Lindberg, 1997 curvada hacia la columela, que es cóncava a recta Superorden Caenogastropoda Cox, 1960 de color café lechoso o muy oscuro (Guzmán et al ., Orden Sorbeoconcha Ponder y Lindberg, 1997 1998). La protoconcha no se observa (Reid, Suborden Hypsogastropoda Ponder y Lindberg, 1997 2002a). Los individuos adultos poseen externa- Infraorden Littorinimorpha Golikov y Starobogatov, 1975 mente una coloración muy característica, con Superfamilia Littorinoidea Children, 1834 líneas blancas y negras verticales en forma de zig- Familia Littorinidae Gray, 1840 zag (Guzmán et al ., 1998; Reid, 2002a); en cam- Subfamilia Littorininae Children, 1834 bio, los juveniles son de color negro (Jordán y Género Echinolittorina Habe, 1956 Ramorino, 1975). La cabeza y los tentáculos son de color negro, con un borde blanco alrededor del ojo; la rádula tiene una longitud que fluctúa entre 2,8 y Sinonimia 3,4 mm (Reid, 2002a). Para Echinolittorina peruviana (Lamarck, 1822) se han recuperado de la literatura los siguientes sinónimos (Reid, 2002a; Guzmán et al ., 1998): Distribución geográfica Phasianella peruviana Lamarck, 1822 Su distribución latitudinal, según distintos autores, Littorina peruviana Gray, 1839 tiene como límite sur Valparaíso (Chile) Turbo zebra Wood, 1828 (Marincovich, 1973; Álamo y Valdivieso, 1987); Littorina zebra Phillipi, 1847 sin embargo, Aldea y Valdovinos (2005) recien- Littorina zebra var.
    [Show full text]
  • Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka
    Journal of Geoscience and Environment Protection, 2021, 9, 21-30 https://www.scirp.org/journal/gep ISSN Online: 2327-4344 ISSN Print: 2327-4336 Gastropods Diversity in Thondaimanaru Lagoon (Class: Gastropoda), Northern Province, Sri Lanka Amarasinghe Arachchige Tiruni Nilundika Amarasinghe, Thampoe Eswaramohan, Raji Gnaneswaran Department of Zoology, Faculty of Science, University of Jaffna, Jaffna, Sri Lanka How to cite this paper: Amarasinghe, A. Abstract A. T. N., Eswaramohan, T., & Gnaneswa- ran, R. (2021). Gastropods Diversity in Thondaimanaru lagoon (TL) is one of the three lagoons in the Jaffna Penin- Thondaimanaru Lagoon (Class: Gastropo- sula, Sri Lanka. TL (N-9.819584, E-80.134086), which is 74.5 Km2. Fringing da), Northern Province, Sri Lanka. Journal these lagoons are mangroves, large tidal flats and salt marshes. The present of Geoscience and Environment Protection, 9, 21-30. study is carried out to assess the diversity of gastropods in the northern part https://doi.org/10.4236/gep.2021.93002 of the TL. The sampling of gastropods was performed by using quadrat me- thod from July 2015 to June 2016. Different sites were selected and rainfall Received: January 25, 2020 data, water temperature, salinity of the water and GPS values were collected. Accepted: March 9, 2021 Published: March 12, 2021 Collected gastropod shells were classified using standard taxonomic keys and their morphological as well as morphometrical characteristics were analyzed. Copyright © 2021 by author(s) and A total of 23 individual gastropods were identified from the lagoon which Scientific Research Publishing Inc. belongs to 21 genera of 15 families among them 11 gastropods were identified This work is licensed under the Creative Commons Attribution International up to species level.
    [Show full text]
  • Alien Species in the Mediterranean Sea by 2012. a Contribution to the Application of European Union’S Marine Strategy Framework Directive (MSFD)
    Review Article Mediterranean Marine Science Indexed in WoS (Web of Science, ISI Thomson) and SCOPUS The journal is available on line at http://www.medit-mar-sc.net Alien species in the Mediterranean Sea by 2012. A contribution to the application of European Union’s Marine Strategy Framework Directive (MSFD). Part 2. Introduction trends and pathways Α. ZENETOS1, S. GOFAS2, C. MORRI3, A. ROSSO4, D. VIOLANTI5, J.E. GARCÍA RASO2, M.E. ÇINAR6, A. ALMOGI-LABIN7, A.S. ATES8, E. AZZURRO9, E. BALLESTEROS10, C.N. BIANCHI3, M. BILECENOGLU11, M.C. GAMBI12, A. GIANGRANDE13, C. GRAVILI13, O. HYAMS-KAPHZAN7, P.K. KARACHLE14, S. KATSANEVAKIS15, L. LIPEJ16, F. MASTROTOTARO17, F. MINEUR18, M.A. PANCUCCI-PAPADOPOULOU1, A. RAMOS ESPLÁ19, C. SALAS2, G. SAN MARTÍN20, A. SFRISO21, N. STREFTARIS1 and M. VERLAQUE18 1 Hellenic Centre for Marine Research, P.O. Box 712, 19013, Anavissos, Greece 2 Departamento de Biologia Animal, Facultad de Ciencias, Universidad de Málaga, E-29071 Málaga, Spain 3 DiSTAV (Dipartimento di Scienze della Terra, dell’Ambiente e della Vita), University of Genoa, Corso Europa 26, I-16132 Genova, Italy 4 Dipartimento di Scienze Biologiche Geologiche e Ambientali, Sezione Scienze della Terra, Laboratorio Paleoecologia, Università di Catania, Corso Italia, 55- 95129 Catania, Italy 5 Dipartimento di Scienze della Terra, Università diTorino, via Valperga Caluso 35, 10125 Torino, Italy 6 Ege University, Faculty of Fisheries, Department of Hydrobiology, 35100 Bornova, Izmir, Turkey 7 Geological Survey of Israel, 30 Malchei Israel St., Jerusalem 95501, Israel 8 Department of Hydrobiology, Faculty of Marine Sciences and Technology Çanakkale Onsekiz Mart University, 17100, Çanakkale, Turkey 9 ISPRA, National Institute for Environmental Protection and Research, Piazzale dei Marmi 2, 57123 Livorno, Italy 10 Centre d’Estudis Avanç ats de Blanes (CSIC), Acc.
    [Show full text]
  • Mollusc Fauna of Iskenderun Bay with a Checklist of the Region
    www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 12: 171-184 (2012) DOI: 10.4194/1303-2712-v12_1_20 SHORT PAPER Mollusc Fauna of Iskenderun Bay with a Checklist of the Region Banu Bitlis Bakır1, Bilal Öztürk1*, Alper Doğan1, Mesut Önen1 1 Ege University, Faculty of Fisheries, Department of Hydrobiology Bornova, Izmir. * Corresponding Author: Tel.: +90. 232 3115215; Fax: +90. 232 3883685 Received 27 June 2011 E-mail: [email protected] Accepted 13 December 2011 Abstract This study was performed to determine the molluscs distributed in Iskenderun Bay (Levantine Sea). For this purpose, the material collected from the area between the years 2005 and 2009, within the framework of different projects, was investigated. The investigation of the material taken from various biotopes ranging at depths between 0 and 100 m resulted in identification of 286 mollusc species and 27542 specimens belonging to them. Among the encountered species, Vitreolina cf. perminima (Jeffreys, 1883) is new record for the Turkish molluscan fauna and 18 species are being new records for the Turkish Levantine coast. A checklist of Iskenderun mollusc fauna is given based on the present study and the studies carried out beforehand, and a total of 424 moluscan species are known to be distributed in Iskenderun Bay. Keywords: Levantine Sea, Iskenderun Bay, Turkish coast, Mollusca, Checklist İskenderun Körfezi’nin Mollusca Faunası ve Bölgenin Tür Listesi Özet Bu çalışma İskenderun Körfezi (Levanten Denizi)’nde dağılım gösteren Mollusca türlerini tespit etmek için gerçekleştirilmiştir. Bu amaçla, 2005 ve 2009 yılları arasında sürdürülen değişik proje çalışmaları kapsamında bölgeden elde edilen materyal incelenmiştir.
    [Show full text]
  • Rocky Shore Snails As Material for Projects (With a Key for Their Identification)
    Field Studies, 10, (2003) 601 - 634 ROCKY SHORE SNAILS AS MATERIAL FOR PROJECTS (WITH A KEY FOR THEIR IDENTIFICATION) J. H. CROTHERS Egypt Cottage, Fair Cross, Washford, Watchet, Somerset TA23 0LY ABSTRACT Rocky sea shores are amongst the best habitats in which to carry out biological field projects. In that habitat, marine snails (prosobranchs) offer the most opportunities for individual investigations, being easy to find, to identify, to count and to measure and beng sufficiently robust to survive the experience. A key is provided for the identification of the larger species and suggestions are made for investigations to exploit selected features of individual species. INTRODUCTION Rocky sea shores offer one of the best habitats for individual or group investigations. Not only is there de facto public access (once you have got there) but also the physical factors that dominate the environment - tides (inundation versus desiccation), waves, heat, cold, light, dark, salinity etc. - change significantly over a few metres in distance. As a bonus, most of the fauna and flora lives out on the open rock surface and patterns of distribution may be clearly visible to the naked eye. Finally, they are amongst the most ‘natural’ of habitats in the British Isles; unless there has been an oil spill, rocky sea shores are unlikely to have been greatly affected by covert human activity. Some 270 species of marine snail (Phylum Mollusca, Class Gastropoda; Sub-Class Prosobranchia) live in the seas around the British Isles (Graham, 1988) and their empty shells may be found on many beaches. Most of these species are small (less than 3 mm long) or live beneath the tidemarks.
    [Show full text]
  • Patrones Filogeográficos De Dos Moluscos Intermareales a Lo Largo De Un Gradiente Biogeográfico En La Costa Norte Del Perú
    PATRONES FILOGEOGRÁFICOS DE DOS MOLUSCOS INTERMAREALES A LO LARGO DE UN GRADIENTE BIOGEOGRÁFICO EN LA COSTA NORTE DEL PERÚ TESIS PARA OPTAR EL GRADO DE MAESTRO EN CIENCIAS DEL MAR BACH. SERGIO BARAHONA PADILLA LIMA – PERÚ 2017 ASESOR DE LA TESIS Aldo Santiago Pacheco Velásquez PhD. en Ciencias Naturales Profesor invitado de la Maestría en Ciencias del Mar de la Universidad Peruana Cayetano Heredia Laboratorio CENSOR, Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta, Chile CO-ASESORA DE LA TESIS Ximena Vélez Zuazo PhD. en Ecología y Evolución Directora del Programa Marino de Monitoreo y Evaluación de la Biodiversidad (BMAP) del Instituto Smithsonian de Biología de la Conservación, Perú JURADO EVALUADOR DE LA TESIS Dr. Dimitri Gutiérrez Aguilar (Presidente) Dr. Pedro Tapia Ormeño (Secretario) Dr. Jorge Rodríguez Bailón (Vocal) DEDICATORIA Esta tesis está dedicada a mi amada familia, a mis dos padres y a mi hermana, quienes estuvieron, están y estarán siempre allí, apoyándome y dándome ánimos para seguir adelante en esta ardua pero satisfactoria labor que es la investigación. AGRADECIMIENTOS La presente tesis fue financiada por la beca de estudios de posgrado otorgada por FONDECYT (Fondo Nacional de Desarrollo Científica, Tecnológico y e Innovación Tecnológica), CIENCIACTIVA y el Consejo Nacional de Ciencia y Tecnología (CONCYTEC) del Ministerio de Educación del Perú, en el marco del programa de posgrado de Ciencias del Mar de la Universidad Peruana Cayetano Heredia. A mi asesor, Aldo Pacheco Velásquez, por su paciencia y significativos aportes de conocimiento que permitieron atacar la tesis desde varias perspectivas. A mi co- asesora Ximena Vélez-Zuazo, a quien considero una hermana mayor, por el constante ánimo y soporte durante la ejecución de la tesis.
    [Show full text]
  • 2020 Frontiers ALAN.Pdf
    fnins-14-602796 November 11, 2020 Time: 19:19 # 1 REVIEW published: 16 November 2020 doi: 10.3389/fnins.2020.602796 Exposure to Artificial Light at Night and the Consequences for Flora, Fauna, and Ecosystems Jack Falcón1*, Alicia Torriglia2, Dina Attia3, Françoise Viénot4, Claude Gronfier5, Francine Behar-Cohen2, Christophe Martinsons6 and David Hicks7 1 Laboratoire Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS FRE 2030, SU, IRD 207, UCN, UA, Paris, France, 2 Centre de Recherche des Cordeliers, INSERM U 1138, Ophtalmopole Hôpital Cochin, Assistance Publique - Hôpitaux de Paris, Université de Paris - SU, Paris, France, 3 ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Maisons-Alfort, France, 4 Muséum National d’Histoire Naturelle, Paris, France, 5 Lyon Neuroscience Research Center (CRNL), Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Lyon, France, 6 Centre Scientifique et Technique du Bâtiment, Saint Martin d’Hères, France, 7 Inserm, CNRS, Institut des Neurosciences Cellulaires et Intégratives, Université de Strasbourg, Strasbourg, France The present review draws together wide-ranging studies performed over the last decades that catalogue the effects of artificial-light-at-night (ALAN) upon living species and their environment. We provide an overview of the tremendous variety of light- Edited by: Jacques Epelbaum, detection strategies which have evolved in living organisms - unicellular, plants and Institut National de la Santé et de la animals, covering chloroplasts (plants), and the plethora of ocular and extra-ocular Recherche Médicale, France organs (animals). We describe the visual pigments which permit photo-detection, Reviewed by: Randy J. Nelson, paying attention to their spectral characteristics, which extend from the ultraviolet West Virginia University, United States into infrared.
    [Show full text]
  • Gastropoda: Littorinidae) from the Quaternary of Chile
    Palaeontologia Electronica palaeo-electronica.org A new species of Echinolittorina Habe, 1956 (Gastropoda: Littorinidae) from the Quaternary of Chile Juan Francisco Araya and David G. Reid ABSTRACT We describe a new fossil littorinid species, Echinolittorina nielseni sp. nov., from the Quaternary Caldera Strata, Región de Atacama, northern Chile. Fossils of littorin- ids are globally rare because of their high-intertidal habitat on rocky shores. The new species has a large, broad shell with strong spiral ribs and an angled periphery, differ- ing from the two living littorinids currently found along the coasts of mainland Chile and from all the extant species distributed in the southeastern Pacific. In comparison with the living Chilean Echinolittorina peruviana, the new species shows stronger ribs and more inflated whorls, but they share an unusual detail in the irregular arrangement of spiral sculpture. We hypothesize that the new species may be ancestral or sister to E. peruviana and discuss the adaptive significance of shell sculpture. Juan Francisco Araya. Departamento de Geología, Universidad de Atacama, Copayapu 485, Copiapó, Región de Atacama, Chile and Programa de Doctorado en Sistemática y Biodiversidad, Universidad de Concepción, Concepción, Chile. [email protected] author: zoobank.org/Authors/443B4F42-FB13-42A6-B92B-1B0F835698A9 orcid.org/0000-0002-4087-964 David G. Reid. Mollusca Research Group, Department of Life Sciences, The Natural History Museum, London SW7 5BD, United Kingdom. [email protected] Keywords: Quaternary; Pleistocene; SE Pacific Ocean; Littoraria; new species Submission: 19 September 2015 Acceptance: 29 January 2016 INTRODUCTION cies continue to be discovered in the area, particu- larly in the Región de Atacama (Osorio, 2012; The shallow-water marine molluscs living in Araya, 2013).
    [Show full text]
  • Title Proximate Mechanisms Causing Morphological Variation in a Turban
    Proximate Mechanisms Causing Morphological Variation in a Title Turban Snail Among Different Shores Kurihara, Takeo; Shikatani, Mayu; Nakayama, Kouji; Nishida, Author(s) Mutsumi Citation Zoological Science (2006), 23(11): 999-1008 Issue Date 2006-11 URL http://hdl.handle.net/2433/108577 Right (c) 日本動物学会 / Zoological Society of Japan Type Journal Article Textversion publisher Kyoto University ZOOLOGICAL SCIENCE 23: 999–1008 (2006) © 2006 Zoological Society of Japan Proximate Mechanisms Causing Morphological Variation in a Turban Snail Among Different Shores Takeo Kurihara1*, Mayu Shikatani2, Kouji Nakayama3 and Mutsumi Nishida2 1Ishigaki Tropical Station, Seikai National Fisheries Research Institute, Ishigaki Island, Okinawa 907-0451, Japan 2Department of Marine Bioscience, Ocean Research Institute, University of Tokyo, 1-15-1 Minamidai, Nakano, Tokyo 164-8639, Japan 3 Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan In many benthic organisms with a planktonic larval stage, local populations have different morphol- ogy. Such difference may arise from some of the following proximate mechanisms. “Local recruit- ment (LR)”: no larvae move between local populations, and segregated populations possess alleles coding for locally adaptive morphology. “Intragenerational selection (IS)”: larvae move between local populations, and individuals with alleles for locally adaptive morphology survive after recruit- ment. “Phenotypic plasticity (PP)”: larvae move between local populations and show phenotypic plasticity to adapt to a locality after recruitment. We examined which mechanism explains our find- ing that a planktonic developer Turbo coronatus coronatus (Gastropoda) had significantly longer spines on its shell on more exposed shores at scales of < 2 km. Experiments at Ishigaki Island, Okinawa, Japan, showed the following results.
    [Show full text]
  • Benthic Assemblages in South American Intertidal Rocky Shores: Biodiversity, Services, and Threats
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/299507578 Benthic Assemblages in South American Intertidal Rocky Shores: Biodiversity, Services, and Threats Chapter · January 2016 READS 318 29 authors, including: Gregorio Bigatti Alvar Carranza IBIOMAR- Instituto de Biología de Organismo… University of the Republic, Uruguay 82 PUBLICATIONS 563 CITATIONS 96 PUBLICATIONS 814 CITATIONS SEE PROFILE SEE PROFILE Tito Lotufo Erasmo C Macaya University of São Paulo University of Concepción 37 PUBLICATIONS 216 CITATIONS 63 PUBLICATIONS 441 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: Alvar Carranza letting you access and read them immediately. Retrieved on: 26 May 2016 Chapter BENTHIC ASSEMBLAGES IN SOUTH AMERICAN INTERTIDAL ROCKY SHORES: BIODIVERSITY, SERVICES, AND THREATS Patricia Miloslavich1,2, Juan José Cruz-Motta,1,3, Alejandra Hernández1,4, César Herrera1, Eduardo Klein1, Francisco Barros5, Gregorio Bigatti6, Maritza Cárdenas7, Alvar Carranza8, Augusto Flores9, Patricia Gil10, Judith Gobin11, Jorge Gutiérrez12, Marcos Krull5, Juan F. Lazarus13, Edgardo Londoño13, Tito Lotufo9, Erasmo Macaya14, Elba Mora15, Sergio Navarrete16, Gabriela Palomo17, Mirtala Parragué16, Franciane Pellizzari18, Rosana Rocha19, Leonardo Romero20, Roberto Retamales21, Roger Sepúlveda22, Michelle C. Silva18 and Sabrina Soria17 1Universidad Simón Bolívar, Caracas, Venezuela 2Australian Institute of Marine Science,
    [Show full text]